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Lagrangian statistics and temporal intermittency in a shell model of turbulence
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We study the statistics of single-particle Lagrangian velocity in a shell model of turbulence. We show that
the small-scale velocity fluctuations are intermittent, with scaling exponents connected to the Eulerian structure
function scaling exponents. The observed reduced scaling range is interpreted as a manifestation of the inter-
mediate dissipative range, as it disappears in a Gaussian model of turbulence.
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In recent years there has been a great improvement in
laboratory experimental investigation of turbulence from
Lagrangian point of view@1–4#. In the Lagrangian approach
the flow is described by the~Lagrangian! velocity v(x0 ,t) of
a fluid particle initially at positionx(0)5x0. This is the natu-
ral description for studying transport and mixing of neutra
advected substances in turbulent flows.

One of the simplest statistical quantities one can be in
ested in is single-particle velocity incrementsdv(t)5v(t)
2v(0) ~where, assuming statistical homogeneity, we ha
dropped the dependence onx0) for which dimensional analy-
sis in fully developed turbulence predicts@5,6#

^dv i~ t !dv j~ t !&5C0«td i j , ~1!

where« is the mean energy dissipation andC0 is a numerical
constant. The remarkable coincidence that the varianc
dv(t) grows linearly with time is the physical basis o
which stochastic models of particle dispersion are based.
important to recall that the ‘‘diffusive’’ nature of Eq.~1! is
purely incidental: it is a direct consequence of Kolmogor
scaling in the inertial range of turbulence and is not direc
related to a diffusive process. Let us recall briefly the ar
ment leading to the scaling in Eq.~1!. We can think of the
velocity v(t) advecting the Lagrangian trajectory as the s
perposition of the different velocity contributions comin
from turbulent eddies~which also move with the same ve
locity of the Lagrangian trajectory!. After a time t the com-
ponents associated with the smaller~and faster! eddies, be-
low a certain scale,, are decorrelated and thus at the lead
order one hasdv(t).dv(,). Within Kolmogorov scaling,
the velocity fluctuation at scale, is given by dv(,)
;V(,/L)1/3, whereV represents the typical velocity at th
largest scaleL. The correlation time ofdv(,) scales as
t(,);t0(,/L)2/3 and thus one obtains the scaling in Eq.~1!
with «5V2/t0.

This argument shows that the linear scaling in Eq.~1! is
the result of the combination of the Kolmogorov scaling f
velocity fluctuations and eddy turnover time in physic
space, as seen by a Lagrangian tracer. From a nume
point of view, the observation of Eq.~1! is more delicate than
standard Eulerian structure functions, as it requires the
rect resolution of the sweeping effect on the Lagrangian
jectories. Of course, this can be done in direct numer
1063-651X/2002/66~6!/066307~4!/$20.00 66 0663
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simulations~but at moderate Reynolds numbers! @7# and, as
we will see, in a Lagrangian version of the shell model
turbulence.

Equation~1! can be generalized to higher-order mome
with the introduction of a set of temporal scaling expone
j(p),

^dv~ t !p&;Vp~ t/t0!j(p). ~2!

The dimensional estimation sketched above gives the pre
tion j(p)5p/2 but one might expect corrections to dime
sional scaling in the presence of intermittency.

A generalization of Eq.~1! which takes into account in
termittency corrections can be easily developed by extend
the previous argument within the multifractal model of tu
bulence@8,9#. The dimensional argument is repeated for t
local scaling exponenth, giving dv(t);V(t/t0)h/(12h). In-
tegrating over theh distribution one ends with

^dv~ t !p&;VpE dhS t

t0
D [ ph2D(h)13]/(12h)

. ~3!

In the limit t/t0→0, the integral can be estimated by a stee
est descent argument giving the prediction

j~p!5min
h

Fph2D~h!13

12h G . ~4!

The fractal dimensionD(h) is related to the Eulerian struc
ture function scaling exponentsz(q) by the Legendre trans
form @9# z(q)5minh@qh2D(h)13#. The standard inequality
in the multifractal model@following from the exact result
z(3)51], D(h)<3h12, implies for Eq.~4! that even in
presence of intermittencyj(2)51. This is a direct conse
quence of the fact that energy dissipation enters into Eq.~1!
at the first power. Our expression for scaling exponents~4!
recovers in a more compact form the prediction obtained
the basis of an ‘‘ergodic hypothesis’’ of the statistics of e
ergy dissipation@10#.

Recent experimental results@4# have shown that indeed
Lagrangian velocity fluctuations are intermittent and disp
anomalous scaling exponents, as predicted by the abov
gument. Despite the relative high Reynolds number of
experiments, a true temporal scaling range is not obser
©2002 The American Physical Society07-1
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Thus the estimation of the scaling exponents in Eq.~2! can
be done only relatively to a reference moment~the so-called
ESS procedure@11#!.

In this work we use a dynamical shell model of turbulen
for investigating scaling~2! and prediction~4! at very high
Reynolds numbers. In shell models the velocity fluctuatio
of the eddies at the scale,n5L22n are represented by
single variableun (n51,2, . . . ,N). Only local interactions
among shells are represented and therefore no sweepin
fects are present@12#. In this sense shell models are dynam
cal models of velocity fluctuations in a Lagrangian fram
work, and for this reason have been already used in the s
of turbulent dispersion@13#. The equation of motion for the
complex shell variableun is @14#

dun

dt
5 iknS un12un11* 2

d

2
un11un21* 1

12d

4
un21un22D

2nkn
2un1 f n , ~5!

wherekn5,n
21 , f n is a deterministic forcing acting on th

first shells only,n is the viscosity, andd is a parameter. Shel
model~5! is characterized by a chaotic dynamics with a s
tistically steady state with a constant flux of kinetic ener
from large scales to small scales. The fluctuations gener
by the chaotic dynamics are responsible for the obser
corrections to the Kolmogorov exponents for the struct
functions which are found close to the accepted experime
values@12#.

Lagrangian velocity in the shell model framework can
represented as the superposition of the contributions o
the different eddies. Let us define

v~ t ![ (
n51

N

Re~un!, ~6!

where we have taken, rather arbitrarily, only the real par
the shell variables with a unit coefficient. Indeed, from t
definition of the shell model, there is no precise recipe
reconstructing the Lagrangian velocity. More generally, o
could think of a representation in which shell variables
multiplied by appropriate wavelet functions. Of course, n
merical prefactors such asC0 in Eq. ~1! will depend on the
wavelet basis and thus cannot be estimated within the pre
approach. Nevertheless one expects that different choice
the basis do not affect Lagrangian scaling exponentsj(p),
which are determined by the dynamical properties of
model.

Previous studies of multitime correlations in shell mod
of turbulence have shown the existence of a set of correla
times, in agreement with the multifractal picture of the tu
bulent cascade@15#. This is an indication that, as we will see
the Lagrangian velocity defined as Eq.~6! will be affected by
intermittency.

Very long and accurate numerical simulations of the sh
model ~5! with N524 shells andd51/2 have been per
formed. The energy is injected at a constant flux«50.01 in
the first two shells and is removed at the smallest shells
viscosity n51027. With these parameters, our simulatio
06630
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correspond to a Reynolds number Re.108. For each realiza-
tion, Lagrangian structure functions are computed from
Lagrangian velocity~6! up to the large-scale timet0. An
average is then taken over 105 independent realizations. Th
Eulerian scaling exponentsz(q) are determined within the
same simulations from the Eulerian structure functio
Sq(kn)5^uunuq&;kn

2z(q) .
In Fig. 1 we plot the set of numerically determined Eul

rian structure function scaling exponentsz(q) together with
the fractal dimensionD(h) reconstructed by inverting the
Legendre transform. We observe strong intermittency in
locity statistics with scaling exponents that clearly devia
from the Kolmogorov prediction. We remark that the scali
exponents are not universal with respect to the particu
shell model. Model~5! gives a set of exponents which are
little more intermittent than, but not far from, the experime
tally observed exponents@9#: z(2).0.72, z(4).1.25,
z(6).1.71. As a consequence, the values ofj(p) obtained
from Eq. ~4! using theD(h) of Fig. 1 can be compared
directly with experimental data results.

Figure 2 shows the second-order Lagrangian struc
function ~1! as a function of time. The linear behavior
evident ~see the inset! even if a long crossover from th
ballistic scaling at short timêdv(t)2&;t2 is present. In spite
of the very high Reynolds numbers achievable in the sh
model, the extension of the temporal scaling~2! is still mod-
erate. For a comparison with the available experimental d
in the inset we also plot the result obtained from two sim
lations at lower resolution, with Re.23106 and Re.105.
In the latter case almost no scaling range is observable.
spite these limitations, we will see that high Re simulatio
allow the determination of the Lagrangian scaling expone
with good accuracy.

In Fig. 3 we plot the probability density functions~pdf’s!
of dv(t) computed at differentt in the linear scaling range o
Fig. 2 rescaled with their variances. The form of the p
varies continuously from almost Gaussian at large ti
(t;t0) to the development of stretched exponential tails
short times, similar to what was observed in laboratory
periments@4#. FlatnessF grows from the Gaussian valu

FIG. 1. Shell model Eulerian structure function scaling exp
nentsz(q) determined from the statistics over 105 independent con-
figurations. In the inset we plot the codimension 32D(h) as deter-
mined by numerically inverting the Legendre transform.
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F53 up toF.20 at smallest times. This is an indication
Lagrangian intermittency, in the sense that the Lagrang
statistics cannot be described in terms of a single sca
exponent.

In Fig. 4 we plot the set of Lagrangian scaling expone
j(p) obtained from a direct fit of temporal structure fun
tions. The nonlinear behavior inp confirms the presence o
Lagrangian intermittency already observed from the pdf.
present the result for moments up top56, which approxi-
mately corresponds, from Eq.~4!, to the Eulerian structure
function of orderq58. In this sense temporal structure fun
tions are more intermittent. Figure 4 shows that the agr
ment with the multifractal prediction~4! is very good up to
the moment achievable with our statistics. What is even m
remarkable is that our prediction is very close to experim
tally determined exponents. For example, we findj(3)

FIG. 2. Second-order Lagrangian structure function^dv(t)2&
normalized with large-scale velocityV as a function of time delayt
for the simulation at Re5108. The continuous line is the ballistic
behavior t2 at short time. The dashed line represents the lin
growth ~1!. Inset:^dv(t)2& compensated with the dimensional pr
diction «t at Re5108 ~continuous line!, Re523106 ~dashed line!,
and Re5105 ~dotted line!.

FIG. 3. Probability density functions of velocity difference
dv(t) normalized with the variance at time lagst/t0

50.002 (h),0.01(*), 0.06(3), 0.35(1). The continuous line
represents a Gaussian. Inset: flatnessF5^dv(t)4&/^dv(t)2&2 as a
function of time and Gaussian valueF53 ~dashed line!.
06630
n
g

s

e

e-

re
-

.1.31,j(4).1.58,j(5).1.85, while the experimental dat
give @4# jexp(3)51.3460.02, jexp(4)51.5660.06, and
jexp(5)51.860.2. Of course our prediction~4! should be
directly tested by using the fractal dimensionD(h) obtained
from the experimental data.

We conclude with a brief discussion on the effects of
termittency on the extension of the scaling range. The lo
crossover in Fig. 2 can be understood in terms of the in
mediate dissipative range as a consequence of the fluctu
dissipative scale@9,16#. Indeed, the smallest time at whic
one can expect scaling~1! is the Kolmogorov timeth
;t0 Re2(12h)/(11h), which fluctuates withh. A demonstra-
tion of the effects induced by intermittency is given by co
sidering a nonintermittent Gaussian model.

Settingf n5n50, Eq.~5! becomes a conservative syste
with two conserved quantities which depend on the value
d @12#. In statistically stationary conditions, the model sho
equipartition of the conserved quantities among the shells
agreement with the statistical mechanics prediction@17#. For
d511222/3 the equipartition state leads at small scales
Kolmogorov scalinĝ uunu2&;kn

22/3 with Gaussian statistics

r

FIG. 4. Lagrangian structure function scaling exponentsj(p)
numerically determined by a best fit on Eq.~2!. The line represents
the multifractal prediction~4! with D(h) obtained from Fig. 1.

FIG. 5. Second-order Lagrangian structure function^dv(t)2&
normalized with large-scale velocityV as a function of time delayt
for the equilibrium Gaussian model. The continuous line is the b
listic behaviort2 at short time. The dashed line represents the lin
growth ~1!.
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In Fig. 5 we plot the second-order Lagrangian structure fu
tion ~1! for the Gaussian model. Both ballistic and diffusiv
scaling are clearly observable and the crossover is stro
reduced with respect to Fig. 2.

In this work we have investigated the statistical propert
of Lagrangian velocity in fully developed turbulence. A pr
diction for intermittent scaling exponents of Lagrangi
structure functions is given within the multifractal forma
ism. Very high Reynolds number simulations in the sh
model confirm the multifractal prediction, even if rath
small scaling ranges are observed. At lower Reynolds n
bers, comparable with those achievable in laboratory exp
uid
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ments, almost no scaling is observed and the scaling ex
nents can be determined only in a relative way. The red
tion of the scaling range in Lagrangian statistics is int
preted as an effect of the intermediate dissipative range
Gaussian, nonintermittent version of the shell model c
firms this interpretation. Deviations from Gaussianity in L
grangian statistics impose severe limitations on the use
stochastic models for particle dispersion@18#, which should
be modified in order to take into account the effects of int
mittency.
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No. 2001023848. We acknowledge the allocation of co
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