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We present the results of direct numerical simulations (DNS) of turbulent flows seeded with millions
of passive inertial particles. The maximum Reynolds number is Reλ ∼ 200. We consider particles
much heavier than the carrier flow in the limit when the Stokes drag force dominates their dynamical
evolution. We discuss both the transient and the stationary regimes. In the transient regime, we study the
growth of inhomogeneities in the particle spatial distribution driven by the preferential concentration
out of intense vortex filaments. In the stationary regime, we study the acceleration fluctuations as a
function of the Stokes number in the range St ∈ [0.16 : 3.3]. We also compare our results with those
of pure fluid tracers (St = 0) and we find a critical behavior of inertia for small Stokes values. Starting
from the pure monodisperse statistics we also characterize polydisperse suspensions with a given mean
Stokes, St .

PACS numbers: 02-50.-r, 47.27.GS, 47.57.-s

1. Introduction

Suspensions of dust, impurities, droplets, bubbles and other finite-size particles advected by
incompressible turbulent flows are commonly encountered in many natural phenomena and
industrial processes. These finite-size particles, whose density may differ from that of the
underlying fluid, cannot be modeled as point-like tracers because of their inertia. Often, they
are characterized by the presence of strong inhomogeneities in their spatial distribution. Indeed,
light (heavy) particles tend to concentrate on specific regions of the flow characterized by high
(low) values of the vorticity. Such a phenomenon is dubbed as ‘preferential concentration’ [1].
The inhomogeneities then appearing in the particle spatial distribution are important because
they affect the probability to find close particle pairs and thus influence their possibility to
collide, or to have biological and chemical interactions. Examples showing the importance
of this phenomenon are the formation of rain drops by coalescence in warm clouds [2–5], or
the coexistence between several species of plankton in the hydrosphere [6, 7]. Engineering
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applications encompass optimization of spray combustion in diesel engines [8] and in rocket
propellers [9]. Inertial particles are also important for the problem of dispersion of dust,
chemicals or aerosols in the atmosphere [10, 11].

Recently, much effort has been devoted to the study of phenomena related to preferential
concentration of inertial particles in turbulent flows by means of both theoretical [12–15]
and computational [16–21] approaches. Progresses in the characterization of the statistical
features of particle clusters have been achieved by studying inertial particles evolving in
laminar stochastic flows [12, 22–25] and two dimensional turbulent flows [26]. Experimental
results are reviewed in [1]. Recently, experiments [27] have also been realized borrowing
techniques from Lagrangian turbulence [28–32].

Considerable less attention has been paid to other aspects of inertial particle dynamics,
and in particular to the statistical properties of their acceleration in turbulent flows. This is
an important issue relevant, for example, to the development of stochastic models of particle
motion [33]. It is also interesting to contrast the statistics of the acceleration of inertial particles
with that of fluid tracers which has been extensively studied by means of experiments [28–31,
34], numerical simulations [35–40] and theoretical approaches [36, 41–43, 53]. This is even
more interesting in the light of recent experiments [27] designed to study inertial particles in
turbulent flows by means of Lagrangian measurements. Concerning fluid tracers, it has been
found that the acceleration probability density function (pdf) displays the typical fat tails of
highly intermittent signals [28, 32]. The tails of the pdf have been associated with trapping
events into vortex filaments [28, 35]. Moreover, a model based on the multifractal description
of turbulence has been proved able to describe the pdf of the acceleration tracers [36]. Similar
questions are still open for inertial particles. Because of the centrifugal force acting on such
particles, inertia is expected to considerably change the statistics of trapping events into vortex
filaments. It is important to quantify this effect by looking at the modification of the pdf tails as
a function of the degree of inertia. Moreover, it is not known how to generalize the multifractal
approach used for passive tracers to the case of passive particles with inertia.

In this paper we focus on the statistical properties of particles much heavier than the carrier
fluid. We are interested in investigating, by means of high-resolution direct numerical simula-
tions (DNS), the combined effects of preferential concentration and of inertia in determining
the statistics of acceleration. With this aim, we review and extend the results presented in
[43]. In particular, we perform a systematic study as a function of the Stokes number. Here
Stokes is defined as St = τs/τη, τs being the typical response time of the particle and τη the
Kolmogorov time of the flow.

Most results concern monodisperse suspensions, i.e. set of particles with a unique Stokes
number. Since laboratory and natural suspensions are typically polydisperse, we shall extend
our analysis to this case also.

Understanding the relevant time scales to reach a stationary regime is important both for
experimental studies—often limited in running time—and for a dynamical description of
preferential concentration. We present an analysis of the transient regime, i.e. the time window
necessary for the particles to reach a statistically steady regime, starting from their initial
configuration.

The paper is organized as follows. In section 2, we recall the equations of motion for the
case of inertial particles much heavier than the surrounding fluid. A detailed description of
the numerical setup is given in section 3. In section 4 the validity of the model equations
for our numerical experiments is considered. Moreover, we discuss the statistical features of
preferential concentration both during the transient and in the statistically stationary regime.
The most relevant features of particle acceleration statistics for monodisperse suspensions are
discussed in section 5. Section 6 is devoted to extend the previous analysis to polydisperse
cases. Conclusions and perspectives are drawn in section 7.
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2. Heavy particle dynamics

The equations of motion of a small, rigid, spherical particle immersed in an incompressible
flow have been consistently derived from first principles in [44–46] under a certain number
of assumptions. The main working hypothesis is to consider low particle concentration, so
that it is possible to neglect collisions, particle-to-particle hydrodynamic interactions and the
feedback of particles on the carrier fluid. Another hypothesis is that the particle radius r is
much smaller than any active scale of the turbulent flow, namely that r � η, where η denotes
the Kolmogorov dissipative scale. Finally, the particle Reynolds number Rep = r |V − u|/ν,
where |V − u| is the typical relative velocity of the particle with the flow and ν is the fluid
kinematic viscosity, has to be small, i.e. Rep � 1. These hypotheses lead us to describe the
fluid flow surrounding the particle as a Stokes flow and to write a close differential equation
for the motion of the particle*. The dynamics of a single particle then depends on only two
dimensionless parameters. The first is β = 3ρf/(ρf + 2ρp), accounting for the mass density
ratio between the particle, ρp, and the fluid, ρf. The second control parameter is the Stokes
number St = τs/τη, where the particle response time is τs = r2/(3βν). Further, neglecting
gravity, and assuming that the particle is much heavier than the fluid, the particle velocity V
is to leading order a solution to [12, 45]

dV
dt

= β Dtu(X, t) − V(t) − u(X(t), t)

τs
, (1)

where X denotes the particle position, u(x, t) the fluid velocity field, and Dtu(X, t) = ∂tu +
u · ∇u is the fluid acceleration at the particle position. As long as Dtu(X, t) does not become
too large (see section 4.1), the first term in the right-hand side of (1) can be neglected when
β � 1, so that the equations can be further simplified to

dX
dt

= V(t) ,

dV
dt

= − 1

τs
(V(t) − u(X(t), t)). (2)

It is interesting to compare the evolution equations for particles (2) with that for the motion
of fluid tracers:

dx(t)

dt
= u(x(t), t), (3)

which corresponds to the limit τs = 0 of (2). Tracers may be seen as St = 0 particles.

3. Details on the DNS and the data set

The carrier fluid is evolved according to the incompressible Navier–Stokes equations:

∂u
∂t

+ u · ∇u = −∇p

ρf
+ ν	u + f , (4)

where p is the pressure field and f is the external energy source, 〈 f ·u〉 = ε. These are solved
on a cubic grid with periodic boundary conditions. Energy is injected by keeping constant
the spectral content of the two smallest wavenumber shells [47]. The viscosity is chosen so

* Generally, these hypothesis are also sufficient to neglect the contributions of the Basset history and the added mass
terms, and the Faxén corrections.
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Table 1. DNS parameters. Microscale Reynolds number Rλ, root-mean-square velocity urms, energy dissipation
ε, viscosity ν, Kolmogorov length scale η = (ν3/ε)1/4, integral scale L , Eulerian large-scale eddy turnover time

TE = L/urms, Kolmogorov timescale τη = (ν/ε)1/2, total integration time Ttot, duration of the transient regime Ttr,
grid spacing 	x , resolution N 3, number of trajectories of inertial particles for each Stokes Nt saved at a frequency
of τη/10, number of particles Np per Stokes stored at a frequency of 10τη , total number of advected particles Ntot.

Errors on all statistically fluctuating quantities are of the order of 10%. The Stokes numbers are
St = (0; 0.16; 0.27; 0.37; 0.48; 0.59; 0.69; 0.80; 0.91; 1.01; 1.12; 1.34; 1.60; 2.03; 2.67; 3.31).

Rλ urms ε ν η L TE τη

185 1.4 0.94 0.00205 0.010 π 2.2 0.047

Ttot Ttr 	x N 3 Nt Np Ntot

12 4 0.012 5123 5 · 105 7.5 · 106 12 · 107

as to have a well-resolved dissipative range, η ≈ 	x where 	x is the grid spacing. We use a
fully dealiased pseudospectral algorithm with second-order Adam–Bashforth time stepping.
We performed three sets of runs at resolution N 3 with N = 128, 256, 512, the corresponding
Reynolds numbers are Rλ = 65, 105, 185 (see also Ref. [43]).

Particle dynamics, equation (2), is integrated in parallel with that of the fluid by means of a
second-order Adam–Bashforth time-stepping, in which the fluid velocity at particle position
is estimated by linear interpolation.

For each set of runs, the following procedure has been adopted. We integrate the Navier–
Stokes equations until the flow reaches a statistically steady state. Once a turbulent configu-
ration for the flow is obtained, millions of particles and tracers are seeded in the flow. Their
initial positions are uniformly distributed in the volume, and velocities are chosen equal to the
local fluid velocity. Equations (2) for particles and (3) for tracers are then advanced in parallel
with those for the fluid (4). We consider particles with 15 different Stokes numbers ranging
from 0.16 to 3.5 (see caption of table 1 for the exact values), and a set of tracers, St = 0. For
each set of particles with a given Stokes number, we save the position and the velocity of Nt

particles every dt = τη/10, with a maximum number of recorded trajectories of Nt = 5 × 105

for the highest resolution. Along these trajectories we also store the velocity of the carrier
fluid. At a lower frequency, ∼10τη, we save the position and velocity of a larger number Np of
particles (up to 7.5 × 106 per St , at the highest resolution) together with the Eulerian velocity
field.

A summary of the physical parameters for the run at the highest resolution, the one discussed
in this paper, is given in table 1.

4. Statistical analysis of the data set

First, we check if the approximate equations (2) are consistent with the assumptions used
to derive them, in the range of parameters of our DNS. Second, we study how particles,
injected homogeneously in the domain, reach a statistically inhomogeneous steady state spatial
distribution. Further, we characterize preferential concentration of particles as a function of
the Stokes number in the stationary regime.

4.1 Limit of validity for the particle equations of motion

To validate our working hypotheses, we check that they are self-consistent with neglecting
the term proportional to β in (1). In particular, we want to see what are the constraints
on the values of β and on the particle radius r that should be satisfied in order to fulfil
the assumption β|Dtu| � |u − V |/τs . The first observation is that from the definition of
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St and from the dimensional estimation of the Kolmogorov scale η = (ν3/ε)1/4, one has
r/η = √

3βSt , meaning that for St � 1 there are no severe constraints on the value of β.
Differently, for large St , in order to have r � η, one may need to use unphysical small values
of β. To see whether this is the case, let us consider a typical example of parameter values: the
case of water in air β ≈ 0.001, and St = 3 (which is the largest value used in our simulations).
In the worst case, we have r/η ≤ 0.3 which is still small enough to justify our neglecting the
Basset history and the added mass terms, and the Faxén corrections [45], leading to equation (1)
for the particle dynamics. We now show that it is self-consistent to further neglect the term
β Dtu. Since in the DNS we do not have stored the fluid acceleration at particle positions
for the whole trajectory, we assume Dtu ≈ dtu, i.e. we estimate the fluid acceleration at the
particle position with the time derivative of the fluid velocity along the particle path. The
validity of this approximation relies on the fact that the pdf of dtu that, for large St , are
very close to those of Dtu (not shown), meaning that strong acceleration events are well
represented.

Figure 1 shows, for three representative Stokes numbers, the distribution of the ratio

Q = β
|du/dt |

|(u − V)|/τs
. (5)

As one can see, the statistical weight of events Q > 0.1 is very low, meaning that with a very
high probability equations (2) are a valid approximation. Of course, for density ratios smaller
than β = 0.001 the approximation will work even better. If one considers, for instance, sand
dust transported in the atmosphere at an altitude of roughly 5 km, β is reduced by a factor of
1/10 and in this case our simulations do not catch any event where Q > 0.1.

We thus conclude that in the range of β considered above, the fluid inertia term is also
negligible and equations (2) correctly describe the motion of small heavy particles in a turbulent
flow at moderate Reynolds number.

4.2 Transient regimes and formation of preferential concentrations

It is well known that inertial particles tend to concentrate on specific regions of the flow.
By performing a local analysis of the equations of motion it is possible to show that, for

Figure 1. Log–log plot of the pdf P(Q) versus Q = βτs |dtu|/|u−V |, with β = 0.001 and for three different Stokes
numbers St = 0.16, 0.59 and 3.31 from the inner to the outer curve, respectively.
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small Stokes numbers, particles heavier than the fluid tend to concentrate on strain dominated
regions of the flow and escape from rotational regions, while the opposite is observed for
lighter particles [15, 16, 24]. Hence, particles do not sample uniformly the full velocity field
and are sensitive to its geometry.

Being interested in those properties of particle dynamics that are closely linked to the flow
geometry at the particle locations (such as the distributions of velocity and of acceleration),
one should clearly understand the bias induced by the correlation between particle positions
and flow structures. Indeed, highly intermittent spots of the turbulent flow have a strong
signature on the acceleration distribution of simple tracers through the phenomenon of vor-
tex trapping [28, 35]. Moreover, at variance with tracers, whose dynamics is completely
determined by that of the velocity field, inertial particles have their own dynamics. Therefore,
for arbitrary initial data, a relaxation time is needed for them to reach a statistically stationary
motion. Our simulations are started with a spatially uniform distribution of particles with a
vanishing acceleration (velocity equal to that of the fluid). At sufficiently large times, the
spatial distribution of particles becomes strongly inhomogeneous and strongly correlates with
the flow structure (see figure 2 for two typical examples of the particle spatial distribution).
As one can see, even for small values of the Stokes number, particles get less concentrated
on those regions where the flow develops strong vortical structures, represented as dark gray
spots in the figure. To have insights into the dynamics of heavy particles and to control the
statistical analysis it is important to understand the time scales involved in the dynamical
process of formation of such inhomogeneities.

A naive inspection of equations (2) for the motion of a single particle suggests that after
few τs , the particle velocity should relax to that of the fluid. However this relaxation time
is clearly not enough to stabilize the statistical properties of the particle distribution, and in
particular to form statistically stationary clusters of particles. Indeed, at least for large St ,
particles organize in structures with length scales comparable with the largest ones present in
the system (as shown in the right panel of figure 2).

To quantify the formation of inhomogeneities in the particle distribution we used two
observables. The first one gives a rather global insight and is based on the coarse-grained
mass distribution of particles. The second observable is local and is related to the particle
distribution at scales of the order of the most violent events of the turbulent flow, namely the
fraction of particles in rotation and stretching regions of the flow.

Figure 2. (Left) For St = 0.16, particles positions on a two-dimensional slice of the simulation box and, in gray
scale, the amplitude of the vorticity field. (Right) The same for St = 2.03.
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Figure 3. 〈m2〉 versus time, for particles with Stokes numbers St = 0 (bottom solid line), St = 0.16 (empty boxes),
St = 0.27 (filled boxes), St = 0.48 (empty circles), St = 0.90 (filled circles), St = 1.60 (empty triangles) and
St = 3.31 (filled triangles). The two vertical arrows indicate the large-scale eddy turnover time TE ≈ 2. (dashed
arrow) and the time chosen to be the end of the transient dynamics Ttr ≈ 4 (solid arrow).

We start the characterization of the inhomogeneous distributions of particles by measuring
the degree of concentration as obtained by coarse-graining the volume in small cubes of side
, and then looking at the distribution of the number m j (or mass) of particles in the j th cell.
Figure 3 represents the behavior of the second-order spatial moment 〈m2〉 = (/2π )3 ∑

j m2
j

of the mass distribution measured on cubes of side  = 2	x . For tracers, which remain
uniformly distributed, 〈m2〉 stays constant to the initial value, as given by a Poisson distribution.
Differently, as soon as St > 0, 〈m2〉 starts to increase with time until it stabilizes, fluctuating
around a mean value. As shown in the figure all curves reach this steady state only for
t ≥ 2 ≈ TE, i.e. for times of the order of the large-scale eddy turnover time. In performing
statistical analysis, for the sake of safety, we consider that the transient ends at Ttr ≈ 2TE

(second arrow in the figure). Let us note however that, even in the statistically steady regime,
t > Ttr, fluctuations of 〈m2〉 can be rather large and correlated to those of the total energy
(see figure 4), making the definition of the transition between unsteady and steady regimes
somehow difficult. At lower resolutions, we obtained quantitatively similar behaviors. We also
checked that the time scale for equilibration does not depend sensibly on  (this remains true
only if  is not too large).

We now turn to the second observable based on the particle position conditioned on the
flow local geometry. There are several possible ways to identify strain- or rotation-dominated

Figure 4. Time evolution of the total energy E = 1
2

∫
dr |u(r , t)|2 (continuous red line) and of the total energy

dissipation, ε (dotted blue line).
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structures in three dimensions (see [48] for a review) : here we characterize the geometry of the
fluid velocity field u by looking at the eigenvalues of the strain matrix σ̂i j = ∂i u j . Generally, if
the eigenvalues are all real, the point is said to be hyperbolic, while if they are all imaginary it
is elliptic. In two-dimensions hyperbolic and elliptic points clearly identify strain and vortical
structures, respectively. In 3D, pure elliptic points do not exist and the identification is less
straightforward; the hyperbolic or non-hyperbolic nature of a point can then be identified by
looking at the sign of the discriminant [49]:

	 =
(

det[σ̂ ]

2

)2

−
(

Tr[σ̂ 2]

6

)3

. (6)

In deriving (6), we omitted the term proportional to Tr[σ̂ ] because of incompressibility. For
	 ≤ 0 the strain matrix has three real eigenvalues (strain regions), while for 	 > 0 it has
one real and two complex conjugate eigenvalues (rotational regions). The number of particles
NSt (	 > 0) in 	 > 0 regions is represented in figure 5 as a function of time and for differ-
ent Stokes numbers. We chose here to normalize this quantity by the number NSt=0(	 > 0)
of tracers in non-hyperbolic regions to smooth out the instantaneous fluctuations of hyper-
bolic and non-hyperbolic points in the flow. At t = 0 this ratio is 1 for all values of St
because particles are uniformly injected in the domain. As time goes on, it follows a very
fast drop from the initial value. Unfortunately, the strong fluctuations, correlated to those of
the total energy (figure 4), do not permit us to unambiguously clarify if the time required
for NSt (	 > 0)/NSt=0(	 > 0) to stabilize is or is not of the same order of that needed by
〈m2〉. However, according to figure 5, it does seem that the correlation with the flow geom-
etry settles on a time scale shorter than that needed to stabilize particles mass moments. It
would be interesting to test this point, by studying the simultaneous evolution of particles
uniformly injected, and particle already stabilized with the surrounding flow. This would
help to disentangle spurious effects induced by the fluctuation of the global properties of
the flow.

We conclude this section by commenting the right panel of figure 5, where we show the
average number of particles normalized by the total number Np, 〈NSt (	 > 0)〉/Np in the
stationary regime. As previously observed [43], it appears that preferential concentration is
non-monotonic in St , but there is an ‘optimal’ Stokes number for which the effect is maximal,
here St � 0.55. This behavior can be understood as follows. To have particles concentrated
on specific flow structures, their response time must be fast enough to allow them to follow the

Figure 5. Average fraction of particles in the non-hyperbolic regions NSt (	 > 0)/NSt=0(	 > 0) versus time, for
Stokes numbers St = 0.16 (plus), St = 0.27 (crosses), St = 0.48 (stars), St = 0.90 (empty boxes), St = 1.60 (filled
boxes) and St = 3.31 (empty circles). The vertical arrows are as in figure 3. Right: average fraction of particles in the
non-hyperbolic regions 〈NSt (	 > 0)〉/Np versus St . The average has been performed considering only steady-state
data, i.e. for t ≥ Ttr.
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flow evolution. Clearly, large St particles are unable to do that and tend to decorrelate from
the flow geometry, though their large-scale distribution may still be strongly inhomogeneous
(as indeed observed; figure 2). On the other hand, for St � 1 particles behavior is closer and
closer to that of tracers, whose positions do not correlate with the flow geometry. As we will
see in the next section the balance between these two effects has a strong signature in the
probability distribution of particle acceleration.

5. Statistical properties of the acceleration

One of the most striking features that characterize tracers is the very intermittent distribution
of the acceleration [28, 29, 31, 35] ; fluctuations as strong as 80 times the root mean square
acceleration arms reflect the tendency of tracers to be trapped into vortical structures [28, 50, 51].
We would like to understand if this property is shared also by inertial particles and what are
the main features of the acceleration fluctuations, on changing the importance of inertia. A
natural way to proceed is to start from the equations of motion. In the statistically stationary
state, the formal solution of equation (2) is

V(t) = 1

τs

∫ t

−∞
e−(t−s)/τs u(X(s), s) ds

a(t) = 1

τ 2
s

∫ t

−∞
e−(t−s)/τs [u(X(t), t) − u(X(s), s)] ds. (7)

It is clear that the kernel e−(t−s)/τs acts as a low-pass filter on the fluid velocity differences,
suppressing frequencies larger than the inverse of the Stokes time τ−1

s . The larger the Stokes
number St , the more important this effect should be. On the other hand, we have indications
that the limit of vanishing Stokes number is singular, due to the clusterization of particles
onto fractal sets [24, 25]. This should also have consequences on the acceleration statistics.

In figure 6, the probability density functions for the particles acceleration are plotted for
different Stokes numbers and compared with that of tracers. As we could expect, acceleration
fluctuations become less and less intermittent as St increases. To disentangle different effects,
it is useful to analyze the two limiting cases of small and large Stokes numbers, separately.

Figure 6. Normalized acceleration pdfs for a subset of Stokes values (St = 0, 0.16, 0.37, 0.58, 1.01, 2.03, 3.31
from top to bottom) at Rλ = 185. The darker line corresponds to tracers, St = 0.
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Figure 7. Comparison between arms (fill circles) as a function of Stokes with the acceleration of the fluid tracer
conditioned to be on the particle position, 〈(Dtu)2〉1/2 (empty boxes). The last curve (empty circles), approaching
arms for large St , is the one obtained from the filtered tracer trajectories, aF

rms.

At small St , i.e. τs � τη, the fluid velocity along the trajectory evolves smoothly in time
and the acceleration reduces to a(t) � dtu(X(t), t), i.e. to the derivative of fluid velocity along
the inertial particle trajectory. In the limit of vanishing St , this is indistinguishable from the
fluid acceleration Dtu(X(t), t) evaluated at particle positions and one expects that the particle
acceleration essentially coincides with the fluid acceleration. There is however one major
difference with the tracer case : inertial particles preferentially concentrate on regions with
low vorticity (see right panel of figure 5). In figure 7, we plot the results of arms, as a function
of St . Note the singular effect of the inhomogeneous spatial distribution which results in a
drastic reduction of arms already for small St . This behavior is even more pronounced for the
fourth moment of the acceleration [43]. To better understand the importance of preferential
concentration, we have measured the tracers acceleration 〈(Dtu)2〉1/2 conditioned on the spatial
positions of the inertial particles: the result is also plotted in figure 7. The agreement of the
two curves at small St confirms the validity of the previous argument.

However, on increasing St , the curves start to deviate. While arms monotonically decreases
with St , the tracer acceleration conditioned on the particle positions has a minimum for
St ≈ 0.5 close to the maximum of preferential concentration, eventually recovering the value
of the unconditioned tracers for larger St . For increasing St , we indeed know that inertial
particles explore the small-scale structures of the flow more and more homogeneously and a
different mechanism is responsible for the reduction of arms.

At large St , i.e. τs � τη, we indeed expect the filtering effect to become more and more
important. Again, we start from tracers: for each solution, x(t) of equation (3), we define a
new velocity, uF, obtained from filtering the fluid velocity along the particle trajectory over a
time window of the size of the order of the Stokes time:

uF(t) = 1

τs

∫ t

−∞
e−(t−s)/τs u(x(s), s) ds, (8)

then the filtered acceleration is given by aF = duF/dt . In figure 7 the acceleration variance of
particles arms is compared with that obtained from tracers in the above manner, without any
additional spatial conditioning. The curves corresponding to arms and aF

rms become closer and
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Figure 8. In each panel the following four curves are shown: the normalized acceleration pdf for inertial particles
(solid line), the acceleration pdf of fluid tracers Dtu conditioned to particle positions (empty boxes), the acceleration
pdf of filtered fluid trajectories aF (filled boxes) and the unconditioned acceleration pdf for fluid tracers (dotted
line). Note that the filtered acceleration aF pdf, which is for small St practically coincident with the (unfiltered and
unconditioned) fluid acceleration pdf, becomes closer and closer to the particle acceleration pdf as St increases. The
opposite is observed for the tracer acceleration conditioned to particle positions.

closer as St increases, supporting the conjecture that preferential concentration for St > 1
becomes less important.

For intermediate St a non trivial interplay between the above two mechanisms takes place.
A model, even qualitative, able to bridge the gap between the two limits in still unavailable.

In the limit of small and large St the qualitative trend of the pdfs can be captured
by the same arguments as those used for arms. In figure 8 we compare the normalized
pdf particle acceleration with those obtained by using the tracer acceleration measured
on the particle position, Dtu, and the filtered tracer trajectories, aF, respectively. For the
smallest Stokes number St = 0.16, the overlap between the conditional tracer accelera-
tion and the particle acceleration is almost perfect, while the filtered one is very close to
the unconditioned tracer acceleration pdf. The opposite is observed for the largest Stokes
number, St = 3.31. Note that the (normalized) conditional tracer acceleration pdf is very
close to the unconditioned one, meaning that preferential concentration is no longer effec-
tive on the small-scale statistics for large St . For two intermediate St values, we observe
the transition from preferential concentration-dominated regime to the filtering dominated
one.

We conclude this section by going back to the instantaneous distribution of particles for
small and large St (see figure 2). Both pictures present an inhomogeneous spatial distribution
for the inertial particles but for different reasons. At small St (left panel), inhomogeneity is
mostly related to the fact that particles escape from large vorticity regions. For such small
response times τs , particles are able to follow the flow variations but the very small scales
properties of the fluid are sampled in a biased way. This explains the remarkable agreement
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between particle acceleration statistics and fluid tracers conditioned on particle positions. At
a larger Stokes number, the inhomogeneity is less correlated to the fine structures of the flow.
Indeed we observe void regions whose typical size can be much larger than the Kolmogorov
length scale and comparable to the inertial range scales. In spite of the clear inhomogeneous
distribution of particles, the small scales, r � η, are sampled more homogeneously than at
smaller St . This is coherent with the fact that the conditional tracer acceleration statistics is
very close to the unconditioned one.

6. Acceleration of polydisperse suspensions

Suspensions generally involve particles distributed over different sizes. This is true not only
for phenomena observed in nature, as for aerosol distribution in the atmosphere, but also for
laboratory experiments. In some cases, particles can also considerably change their size with
time, as it happens for water droplets in warm clouds [52], so varying their Stokes number.
Direct numerical simulations allow us to study inertial particles in the idealized case of a
given Stokes number, as we have done previously, but also permit us to test phenomenological
approaches for polydisperse flows. In this section, we study what happens to the acceleration
pdf when particles have a non-trivial size distribution, or equivalently when the Stokes number
of a given suspension is a random variable with a distribution Q(St). This is particularly
important to have clean and possibly unambiguous comparison of numerical simulations
results and laboratory experiments.

To model the acceleration pdf Ppoly(a) in polydisperse flows, we first need a functional
form for the pdf, P(a|St), of particles with a given Stokes number St . Second we make a
convolution of the latter distribution with Q(St). Building up a phenomenological model for
the acceleration pdf of monodisperse suspension valid at different Stokes numbers is not an
easy goal. For tracers, the multifractal formalism, without free parameter, is able to predict
an acceleration pdf which is in excellent agreement with DNS data [36]. However any simple
extension of such an approach to heavy particles does not seem to work, because of the
almost singular nature of the small St limit and of the complex interplay between preferential
concentration and time filtering. In the lack of such a model, the first step is done by fitting
the acceleration pdf and changing the Stokes number. At small values of the acceleration,
i.e. in the pdf core, we expect to have a Gaussian-like profile P(a|St) ∼ exp(−a2); while
for large fluctuations a � arms, we should recover a distribution with stretched exponential
tails, P(a|St) ∝ exp(−aγ ). A simple functional form for the pdf, P(a|St) of the normalized
acceleration y = a/arms(St) satisfying these two requirements is

P̃(y | St) ≡ arms P(y arms | St) = exp

{
− c1|y|2

1 + c3 yc2
+ c4

}
. (9)

Here, to have a simple fitting procedure, we have used four free parameters, ci (St) with
i = [1, . . . , 4], although two of them may be fixed by the requirement of having the pdf
normalized to a unit area and a unit variance. Of course, the most important parameter is
c2(St) which fixes the Stokes number dependency of the far tail exponent γ = 2 − c2.

The acceleration pdf measured in our DNS has been fitted with expression (9) for all available
St . The values for the four free parameters are those reported in table 2. They all gently, but
non-monotonically, vary with the Stokes number. In particular, the exponent c2, which controls
the fat tails, goes from about ∼1.6, for the smallest Stokes, to ∼1.2, for the largest available
one. This is in agreement with the tendency towards a less intermittent distribution for particles
with a larger inertia. From figure 9, we can see that the fitting formula (9) reproduces well the
acceleration distribution (here shown for St = 0.16 and St = 1.01 only).
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Table 2. The values of the fitting parameters ci on changing the Stokes number. Note that only two out of the four
parameters are indeed independent because the pdf must be normalized to have a unit area and a unit variance. The
fitted functional form is not meant to have a solid phenomenological base. It is used, as simple as it is, to estimate

the importance of polydisperse suspensions with respect to monodisperse ones.

St 0 0.16 0.27 0.37 0.48 0.59 0.69 0.80
c1 2.68 2.17 2.24 2.31 1.67 1.64 1.83 1.66
c2 1.55 1.43 1.38 1.35 1.36 1.33 1.29 1.28
c3 0.79 0.75 0.83 0.91 0.62 0.63 0.76 0.68
c4 −0.41 −0.53 −0.53 −0.53 −0.65 −0.67 −0.64 −0.68

St 0.91 1.01 1.12 1.34 1.60 2.03 2.67 3.31
c1 0.83 1.64 1.15 1.08 1.18 1.95 0.89 0.76
c2 1.40 1.25 1.30 1.28 1.24 1.11 1.23 1.27
c3 0.24 0.69 0.42 0.39 0.46 1.00 0.30 0.21
c4 −0.98 −0.69 −0.82 −0.85 −0.81 −0.67 −0.90 −0.94

To assess the variations for a polydisperse suspension, we make the convolution between the
acceleration pdf conditioned on the Stokes numberP(a|St) and the Stokes number distribution
Q(St) :

Ppol(a) =
∫

dSt P(a | St)Q(St). (10)

A possible choice for Q(St) is a Poisson-like distribution: for any available Stokes number
St , we generate a Poisson pdf with mean value St = St and we insert it as a test curve to
evaluate the convolution (10). In figure 10 we compare the polydisperse pdf (10) obtained
with a Poissonian distribution, Q(St), with a given St and a monodisperse distribution with
St = St . We do it for two different average Stokes numbers, namely St = 0.27 and 1.01.

As expected, the effect of a random distribution for the Stokes number is much more
important for the tails than for the cores. We recall also that in the case of monodisperse
suspensions the pdf tails are the most sensitive to St variations. Hence, any polydisperse
suspensions characterized by a particle-size distribution skewed towards small values of the
Stokes number should develop more intermittent tails than those expected on the basis of their
mean Stokes value.

Figure 9. Comparison of the acceleration pdf from DNS data (symbols) and the fit (solid line) of equation (9) for
two monodisperse cases: for St = 0.27 (outer curves) and St = 1.01 (inner curves).
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Figure 10. Comparison between the acceleration pdf for a polydisperse case (filled squares) of mean Stokes value
St , and a monodisperse case (solid line) at the Stokes number St = St . In the inset, the Poisson distribution Q(St)
of mean Stokes value St . The left panel refers to the case with the Stokes number St = 0.27, while the right panel
refers to St = 1.01.

7. Conclusions and perspectives

Direct numerical simulations, even at moderate Reynolds number, represent a valuable tool
for the study of the Lagrangian motion of heavy particles. Here we have described the specific
setup of our numerical study, analyzed the importance of preferential concentration and particle
clustering as a function of the Stokes number. Moreover, we have explored the transient
dynamics which precedes the settling of the particle motion onto a statistically steady state
in terms of the particle distribution. This may be particularly important for real observations
and laboratory experiments, where long time records of particle motion are hardly attainable.
We have also reviewed and extended some recent results about the acceleration pdf of inertial
particles, by varying the importance of inertia. The main conclusions are (i) preferential
concentration plays an almost singular role at small Stokes, since even a small inertia is
sufficient to expel particles from vortical regions where the strongest acceleration fluctuations
are experienced; (ii) for small Stokes, a good quantitative agreement between the inertial
particle acceleration and the conditioned fluid tracer acceleration is obtained; (iii) at large
Stokes, the main effect is filtering of the velocity induced by the response Stokes times.

The formulation of a phenomenological model able to describe the inertial particle accel-
eration as a function of both Stokes and Reynolds numbers is still beyond our reach. An easy
fitting procedure has however been proposed for polydisperse suspensions, which is the most
common experimental situation. For polydisperse cases, we show that the simple approach
of characterizing the suspension in terms of its average Stokes number without taking into
account the Stokes number distribution can give a systematic bias, particularly if the particle
distribution is skewed towards small Stokes values. It would be extremely important to test
the proposed approach with experimental data. Finally it would be interesting to numerically
investigate St � 1 particles to get a better understanding of the almost singular behavior that
has been observed for the acceleration.
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