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How small droplets form in turbulent multiphase flows
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The formation of small droplets and bubbles in turbulent flows is a crucial process in
geophysics and engineering, whose underlying physical mechanism remains a puzzle. In
this Letter, we address this problem by means of high-resolution numerical simulations,
comparing a realistic multiphase configuration with a numerical experiment in which we
attenuate the presence of strong velocity gradients either across the whole mixture or in the
disperse phase only. Our results show unambiguously that the formation of small droplets
is governed by the internal dynamics which occurs during the breakup of large drops
and that the high vorticity and the extreme dissipation associated to these events are the
consequence and not the cause of the breakup.

DOI: 10.1103/PhysRevFluids.9.L072301

Introduction. The dynamics of droplet and bubble breakup in turbulence is fundamental for
several industrial [1] and environmental processes [2,3]. Because of the complex turbulent envi-
ronment, drops typically have a broad range of sizes. In several cases, the diameter of the smallest
droplets/bubbles is of the utmost importance, as for the dissolution of air bubbles in the oceans [4]
or the transport of oil droplets deep into the marine environment after spilling [3]. The main actors at
play in such processes are turbulence and capillarity, with the balance between the two determining
the minimum droplet diameter for breakup to occur, before capillarity can resist the turbulent
pressure fluctuations causing fragmentation. This threshold size is called the Kolmogorov-Hinze
(KH) scale [5,6], and on dimensional considerations reads as

dKH ∼ (ρc/σ )−3/5〈ε〉−2/5, (1)

where ρc is the density of the carrier phase, σ is the surface tension, and 〈ε〉 is the domain
averaged turbulent energy dissipation rate. The fragmentation dynamics for droplets larger than
the KH scale is understood in terms of a local cascade à la Kolmogorov [7], for which experimental
and numerical evidence has been presented [2,8,9]. A broad spectrum of sub-Hinze droplets with
diameter smaller than dKH is also found. Despite recent attempts to understand this regime [10–13],
the origin/dynamics of these small droplets in turbulence and their interaction with the surrounding
flow remain mostly unknown.

A key feature of the breakup process appears to be the presence of strong velocity gradients
in proximity of regions with high interfacial curvature, which contributes to increasing the local
vorticity and creates areas of high energy dissipation [9,14]. Two possible complementary mecha-
nisms are thought to be at the origin of the sub-Hinze droplets: (i) the presence of local events of
extreme turbulence which induce a local decrease of the KH scale and cause the droplet breakup; (ii)
capillary dynamics, i.e., surface tension forces, which leads to a pinch off and eventually generates
intense dissipative events.
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FIG. 1. Visualization of high-intensity vorticity within the droplet during breakup. (a) A portion of the
domain is extracted from the whole simulation. (b) Beginning of a droplet breakup event: the droplet separates
into two regions, divided by a neck; the vorticity inside the droplet shows high values (ω ≈ ωth) on the edges.
(c), (d) As the droplet deforms, regions of stronger vorticity form in proximity of the neck. (e), (f) The breakup
becomes inevitable and smaller droplets form as a result.

In the favor of the second scenario, experiments on the fragmentation of a single drop have
shown that the sub-Hinze dynamics is nonlocal in size [11,12], suggesting that the turbulence strain
produces small filaments, which eventually leads to pinch off via fast capillary dynamics [8,15,16].
One numerical example is shown in Fig. 1, where a droplet larger than the KH size is deformed
by turbulence into a thin ligament which, by Rayleigh-Plateau instabilities, produces several small
droplets. Non locality is evident since the size of the daughter droplet is related with the diameter of
the ligament and not of the entire droplet. Within this scenario, large dissipation events are induced
by the rupture of the interface at the origin of sub-Hinze structures.

On the other hand, recent works have pointed out that the presence of the interface increases
the probability of large vorticity and dissipative regions [17], leading to a higher intermittency than
single-phase turbulence [9,12]. This evidence might support the first mechanism (i), meaning that
intense vorticity external to the droplets is the main cause of the fragmentation and the formation
of sub-Hinze inclusions. Thus far, no numerical or laboratory experiment has been able to settle
this issue and the statistical relevance of the two possible scenarios in particular in a realistic
configuration with many droplets.

In this Letter, we address this dilemma by means of high-resolution numerical simulations, in
which we control the small scale dynamics by penalizing the vorticity field, something not possible
in a laboratory experiment [18]. The idea comes directly from Eq. (1). In a local sense, d ∼ ε−2/5

suggests that small droplets are linked to regions of high dissipation. Hence, artificially penalizing
the regions with strong velocity gradients (where ε � 〈ε〉) should enable us to understand where and
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how sub-Hinze structures are formed. Thanks to this surgery of the turbulent flow, we are capable to
show that it is the flow inside the droplets which dominates the formation of very small droplets and
the dynamics at the smallest scales, therefore supporting the second of the proposed mechanisms.
Moreover, we show that turbulent extreme events have some impact on the structures with a diameter
of the order of the KH scale, but are statistically negligible for the scales in the sub-Hinze range,
where capillary effects are dominant. Our results demonstrate that the formation of small droplets
below the KH scale is primarily dominated by capillarity, and, in turn, that the generation of small
droplets is responsible for the presence of local maxima of vorticity and dissipation, rather than the
contrary.

Methods. We solve the one-fluid Navier-Stokes equations (NSE) including deformable interfaces
[19]:

du
dt

= −∇P + ∇ · [ν([∇u + ∇uT)] + σξδsn + f + fC, (2)

where u is the velocity field, P is the pressure, ν is the kinematic viscosity, ξ is the interface
curvature, n is the interface normal, δs is a δ-Dirac function localized at the interface between
the two phases, and σ is the surface tension coefficient. Turbulence is sustained through the ABC
forcing f [20].

To control the flow we add the penalizing term fC = −Cu [18], where regions of high vorticity
ω can be suppressed directly in the momentum equation through the masking function:

C = β

(
tan h(ω − ωth ) + 1

2

)
, (3)

where β is the filter amplitude (β = 0 corresponds to standard NSE), ω = |∑i j (∂iu j − ∂ jui )| is the
vorticity modulus, and ωth = 5σω is the maximum threshold value, with σω the standard deviation
of the vorticity for the reference multiphase case (see below).

It is worth noticing that a penalization force which suppresses the regions with large values
of the energy dissipation rate ε cannot be applied because its effect would be canceled by the
pressure gradients. In a preliminary test, we observed that a direct masking based on ε alters the local
structure of the velocity-gradient tensor and it does not preserve the incompressibility of the velocity
field. Enforcing the incompressibility restores the local velocity gradients and cancels the effect of
the penalization force. To overcome this issue we adopt a penalization method that suppresses the
regions of high vorticity, which are linked to the events of strong dissipation while having a different
local structure of the velocity gradients [21].

Simulations are carried out via the open-source code FLUTAS [22], and the interface is re-
constructed using the volume of fluid method MTHINC [23]. Simulations are performed at the
Taylor-scale Reynolds number Reλ = 137, measured in the single-phase turbulent field [9]. The
box-side length is 2π , discretized using N = 512 grid points, with turbulence sustained at L f = π ,
with a kinematic viscosity ν = 0.006, and a matching density and viscosity between the phases.
The volume fraction is α = Vd/V = 0.1, where Vd is the volume of the dispersed phase and V is the
volume of the computational domain. The large-scale Weber number is We = ρu2

rmsL f /σ = 42.6.
The present setup has been shown to develop a droplet distribution N (d ) displaying both the −10/3
and −3/2 scaling ranges at scales larger and smaller than the KH scale [9]. We remark that, due to
the conceptual nature of this numerical experiment, a full exploration of the phase space for density
and viscosity contrast has little interest. In fact, this setup is conceived ad-hoc to study the effects
of breakup on velocity gradients. These are better appreciated without the inertial effect of density
contrast, and the vorticity generation due to viscosity contrast (see [14,17,24])

Numerical results. We report results from four numerical experiments, comparing three different
multiphase simulations and one single phase. Reference simulations are for single-phase (SP) and
multiphase (MP) flow. The two simulations in which the vorticity is penalized in the whole domain
(MPp) and only inside the dispersed phase (MPp,i). For the results corresponding to the single-phase
penalized simulation, see the Supplemental Material [25].
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FIG. 2. Render of (a) nonfiltered MP flow and (b) filtered MPp flow. We show isocontours of the color
function (the droplet interface) and the vorticity field projected on the background planes.

From the visual comparison of the MP and MPp simulations shown in Fig. 2, we may already
qualitatively observe that suppressing local gradients partially inhibits the formation of small
droplets, while preserving the large-scale flow structures. In particular, in the multiphase simulation
with the penalization force [MP, Fig. 2(b)] we observe the formation of elongated fluid structures
stretched by large-scale vortices, but the fragmentation of the droplets is overall attenuated.

To quantify the penalization effects, we report in Fig. 3 the probability density function (PDF)
of the vorticity magnitude [panel (a)] and of the energy dissipation [panel (b)]. Comparing with
the SP case, the MP flow displays an increment of the PDF tails both for vorticity and dissipation,
confirming that the presence of the interface increases intermittency [12]. The increase is substantial
for the energy dissipation. The effect of the filter appears in the vorticity PDFs sharply at ω = ωth,
i.e., exactly at the masking threshold. High values of ω are still possible due to the incompressibility

FIG. 3. Probability density functions of vorticity magnitude, panel (a); and energy dissipation ε ≡ ν|∂iu j |2,
panel (b). SP and MP refer to C = 0 cases, while MPp and MPp,i are the penalized cases, for which ωth = 5σω

(σω being the vorticity standard deviation for case MP) and β = 0.02. Vorticity is normalized by ωth, while
energy dissipation by its standard deviation for the single-phase case σSP. The label i stands for inside, which
indicates when the vorticity is penalized only inside the droplet phase, which corresponds to the α = 10% of
the mixture.
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FIG. 4. PDF of velocity increments at � = 0.03Lf , normalized by the standard deviation for case SP. The
PDF is obtained at small scales, much smaller than the Kolmogorov-Hinze scale. The legend is the same as in
Fig. 3.

constraint of Eq. (2), as observed also for Navier-Stokes, SP simulations [18]. From Fig. 3(a) it is
evident that the statistics of vorticity obtained penalizing inside the droplet phase only (MPp,i) is
close to the unfiltered field MP, because the penalization only acts on 10% of the total volume. The
PDF of dissipation appears to be less affected by penalization. We find that the average dissipation
in the MPp run is reduced of about 15% with respect to the MP case. According to Eq. (1) this
corresponds to a change of 6% in dKH.

Further insight on the flow statistics is provided by the analysis of the PDF of the velocity
increments δ�u� = u(x + �) − u(x) [26], reported in Fig. 4 for a separation below the Hinze scale.
In the absence of penalization, the multiphase case (MP) is more intermittent, as also recently
investigated [24]. When the mask is acting on the whole fluid (MPp case), the distributions
become Gaussian-like in multiphase flows, similarly to the single-phase case discussed in Ref. [18].
However, if the vorticity is filtered only inside the dispersed phase (MPp,i case), the probability
distributions vary little when compared to the SP flow, the curves being distinguishable only in
the far tails. This is explained by the low volume fraction considered, as most of the field (i.e.,
90%) remains unchanged. The data lie between those of the the single phase and the multiphase
flow, since the masking is not removing the interfaces, which are responsible for the increase in
intermittency. Which scales are affected by the masking function is discussed in the Supplemental
Material [25], where we show that penalizing strong vorticity regions is equivalent to act at scales
below the Kolmogorov-Hinze one.

The effect of vorticity penalization (both in the dispersed phase and in the whole flow) on the
droplet-size distribution is shown in Fig. 5 together with the comparison with the unmasked case.
To ease the comparison, we normalize the different curves by the total number of droplets of the
unmasked MP flow. The distribution of large droplets (above the KH scale) for both the MPp and
MPp,i cases are close to the MP reference run. However, significant quantitative differences are
found in the total number of small droplets, especially for d < dKH ≈ 0.15L f ; notably, the number
of droplets in the MPp flow is approximately 60% of those in the MP case. This can be better
appreciated in the inset of Fig. 5, where we display the ratio between the number of droplets of the
masked cases and the unmasked MP case. As the mass is conserved, the number of larger droplets
increases in the masked cases. The most important result is that the distribution is the same when the
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FIG. 5. Droplet-size-distribution for cases MP (red dotted line with triangles), MPp (black dashed line with
dots), and MPp,i (blue dashed line with dots) where probability is obtained by normalizing all cases for the
total number of droplets of the MP case. The inset shows the ratio for the total number of droplets of the filtered
cases and the reference MP case. The black dotted vertical line represents the KH scale.

mask is applied to the whole mixture or only inside the dispersed phase. This observation is at odds
with the statistics of dissipation which are almost unaffected by the penalization in the dispersed
phase, and demonstrates that high levels of vorticity and the most extreme dissipation events are a
consequence of the destabilization process which leads to the breakup.

Discussion. The present results indicate that the mechanism underlying the production of droplets
below the Kolmogorov-Hinze scale in a turbulent emulsion is reduced when the vorticity is limited
inside the droplets. Consequently, the origin of very small droplets can be traced back to capillary
stresses, which act faster than the smallest turbulent eddies.

The following dynamical process has been unveiled: turbulent motions deform the droplets
locally creating filaments, typically larger than the Kolmogorov-Hinze scale. Capillary instabilies
are then triggered by the turbulent fluctuations (appearance of necks). This further reduces the
filament dimension and produces vorticity inside the droplet, which, in turn, accelerates the filament
instability in a self-sustained process, eventually leading to the rupture into different drops. Our
results may suggest that similar mechanisms are at play in droplets and in bubbles [10].

This last singular step is associated with strong vorticity release and increased dissipation.
Therefore, extreme dissipation events are not the cause, but rather the effect of the breakup. Note
also that the physics of the fragmentation of droplets larger than dKH is instead largely unaffected
by the masking, confirming the quasilocal cascade à la Kolmogorov in this range.

Our findings show that it is possible to simplify the study of small droplets formation in
turbulence by neglecting the action of large scale motion, and focusing on the droplet deformed
state and its internal dynamics. For future works, it would be precious to analyze in detail the
dynamics of the rupture of ligaments in relation with the creation of vorticity and dissipation. That
would be important to build up reduced models relevant for applications.
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