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The effects induced by long temporal correlations of the velocity gradients on the
dynamics of a flexible polymer are investigated by means of theoretical and numerical
analysis of the Hookean and finitely extensible nonlinear elastic (FENE) dumbbell
models in a random renewing flow. For Hookean dumbbells, we show that long
temporal correlations strongly suppress the Weissenberg-number dependence of the
power-law tail characterising the probability density function (PDF) of the elongation.
For the FENE model, the PDF becomes bimodal, and the coil–stretch transition
occurs through the simultaneous drop and rise of the two peaks associated with the
coiled and stretched configurations, respectively.
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1. Introduction
The dynamics of a flexible polymer in a moving fluid depends strongly on the

properties of the velocity gradients. A remarkable example is given by the coil–
stretch transition in a planar extensional flow v = (εx, −εy) (de Gennes 1974; Perkins,
Smith & Chu 1997). This flow is characterised by a direction of pure compression
and a direction of pure stretching with constant strain rate ε. The elongation of the
polymer is controlled by the Weissenberg number Wi= ετp , where τp is the longest
relaxation time of the polymer. The value Wi = 1/2 marks the coil–stretch transition:
for Wi < 1/2, the polymer remains coiled under the action of the entropic elastic
force, whereas for Wi > 1/2 the drag force exerted by the flow overcomes the entropic
force and the polymer unravels almost completely. As a consequence, the probability
density of the extension, p(R), has a single pronounced peak, whose position depends
on Wi . For Wi < 1/2, the peak is in the neighbourhood of the equilibrium size of the
polymer, R0; for Wi > 1/2, the peak approaches the maximum length Rmax .

The ability of a (non-uniform) laminar flow to deform an isolated polymer has
now been demonstrated for various flow configurations (see, e.g. the reviews by
Larson 2005 and Shaqfeh 2005). The corresponding problem for random flows was
first studied by Lumley (1972, 1973), who observed that the strain tensor of an
incompressible random flow always has a direction of stretching, although such
direction fluctuates in time and in space. Lumley further remarked that the vorticity
penalises polymer stretching, for it prevents the polymer from remaining aligned with
the principal axes of the strain tensor. He then concluded that random flows can
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stretch polymers if the product of the Lagrangian correlation time of the strain tensor
and the modulus of the maximum eigenvalue of the deformation tensor exceeds a
critical value proportional to τ−1

p . Groisman & Steinberg (2001) confirmed these
conclusions by showing evidences of a significant amount of polymer stretching in a
low-Reynolds-number random flow generated by viscoelastic instabilities.

In random flows, the time scale describing the stretching of line elements is the
reciprocal of the maximum Lyapunov exponent λ. Hence, the appropriate definition
of the Weissenberg number is Wi = λτp . Balkovsky, Fouxon & Lebedev (2000) and
Chertkov (2000) related the deformation of a polymer in a random flow to the statistics
of the stretching rate or, more precisely, to the entropy function associated with its
probability density function (e.g. Crisanti, Paladin & Vulpiani 1993). Based on this
analysis, Balkovsky et al. (2000) predicted the existence of the coil–stretch transition
for any random flow with positive λ, and proposed the following explanation.
For an infinitely extensible polymer (Rmax → ∞), the stationary probability density
function (PDF) of the extension has a power-law tail: p(R) ∝ R−1−α for R � R0,
where α depends on the form of the entropy function. The exponent α is positive
for Wi < 1/2, it decreases with increasing Wi and becomes negative as Wi exceeds 1/2.
Consequently, p(R) is normalisable only for Wi < 1/2, whereas for Wi � 1/2, there
is unbounded growth of the extension and the assumption of infinite extensibility
becomes inadequate. This abrupt change in the statistics of the extension is interpreted
as indicating the coil–stretch transition in random flows. The threshold Wi = 1/2
reproduces (to within a numerical factor) Lumley’s criterion. (Balkovsky et al. (2000)
defined the Weissenberg number as Wi = 2λτp so that the coil–stretch transition
occurs at Wi = 1.)

If the random flow is isotropic and has zero correlation time, p(R) can be written
explicitly and the behaviour predicted by Balkovsky et al. (2000) can be obtained by
direct computation (Chertkov 2000; Thiffeault 2003; Celani, Musacchio & Vincenzi
2005; Martins Afonso & Vincenzi 2005). In this particular case, α = d(Wi−1 − 2)/2,
where d is the spatial dimension of the flow.

A polymer having finite maximum extension (Rmax < ∞) reaches a stationary
configuration at any Wi since the entropic force forbids extensions greater than Rmax .
According to the analysis of the infinitely extensible case, p(R) is now expected
to display a power-law behaviour R−1−α for R0 � R � Rmax . In a short-correlated
flow, the coil–stretch transition results from the combination of this power law and
the cutoff at R =Rmax: as Wi increases, the intermediate power law rises and the
peak of p(R) moves from R0 to extensions near Rmax (Martins Afonso & Vincenzi
2005). An important qualitative difference between extensional and random flows
must nevertheless be emphasised. In the former case, p(R) has a pronounced peak
at an extension near either R0 or Rmax depending on whether Wi is less or greater
than 1/2. In the latter case, p(R) has broad tails signalling the coexistence of coiled
and stretched configurations with predominance of either configuration according to
the value of Wi . In random flows, the coil–stretch transition is not as sharp as in
the extensional case because of the random nature of the velocity gradient and the
presence of vorticity.

The coil–stretch transition and the relation between the exponent α and the
maximum Lyapunov exponent λ were investigated experimentally by Gerashchenko,
Chevallard & Steinberg (2005) and Liu & Steinberg (2010). In these experiments,
the statistics of the extension was measured by following a fluorescently labelled
polymer in a random velocity field generated by elastic turbulence. The PDF of
polymer extension was also investigated by means of direct numerical simulations of
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the continuum equation for the polymer conformation tensor (Eckhardt, Kronjäger &
Schumacher 2002; Boffetta, Celani & Musacchio 2003) and by means of Brownian
dynamics simulations for elastic dumbbells (Celani et al. 2005; Davoudi &
Schumacher 2006; Bagheri et al. 2010) or multi-bead chains (Watanabe & Gotoh
2010). The results of the simulations support the picture of polymer dynamics
presented above.

The Weissenberg number suffices to determine the elongation of a polymer in
laminar flows. By contrast, in random flows, an additional dimensionless number
may influence the deformation of the polymer, namely the Kubo number Ku = λτc,
where τc is the Lagrangian correlation time of the velocity gradient. The case Ku = 0
has been briefly reviewed above. In this paper, we examine the effect of a non-zero Ku
and show that the dynamics at Ku > 1 differs significantly from the one predicted for
short-correlated flows. To emphasise the basic physical mechanisms, we consider a
simplified situation. The polymer molecule is modelled as an elastic dumbbell (Bird
et al. 1977). This approximation is appropriate when attention is restricted to the
extension of the polymer (Watanabe & Gotoh 2010). As for the random advection,
we consider a two-dimensional linear renewing flow. In renewing flows, time is split
into intervals of length τc and the velocities in different intervals are independent
and identically distributed (e.g. Childress & Gilbert 1995, p. 320). Linear renewing
flows were used by Zel’dovich et al. (1984) to study the kinematic dynamo effect; the
magnetic field is actually stretched by the velocity gradient in the same way as an
infinitely extensible polymer. The use of a linear renewing flow enables us to obtain
semi-analytical results and to accurately compute the statistics of polymer extension
with moderate numerical effort.

The remainder of the paper is divided as follows. In § 2, we briefly review the
elastic dumbbell model. In § 3, we introduce the renewing random flow. The results
are presented in § 4. Finally, some conclusions are drawn in § 5.

2. Elastic dumbbell model
An elastic dumbbell is composed of two beads joined by a spring. The beads

represent the two ends of the polymer; the spring models the entropic force. For
the sake of simplicity, we assume that the flow transporting the dumbbell is two-
dimensional.

The vector separating the ends of the polymer, R, satisfies the stochastic ordinary
differential equation (e.g. Bird et al. 1977):

Ṙ = σ (t)R − 1

2τp

f (R)R +

√
R2

0

τp

ξ (t), (2.1)

where R = |R| and ξ (t) is white noise, i.e. a Gaussian process with zero mean and
two-time correlation 〈ξi(t)ξj (t

′)〉 = δij δ(t − t ′). The three terms on the right-hand-
side of (2.1) result from the drag force, the entropic elastic force and thermal
noise, respectively. The 2 × 2 matrix σ (t) is the velocity gradient evaluated along the
trajectory of the centre of mass of the dumbbell: σij (t) = ∂jvi(t). The function f (R)
is identically equal to 1 for an infinitely extensible polymer (Hookean model) and
has the form f (R) = 1/(1 − R2/R2

max) for a finitely extensible polymer with nonlinear
elasticity (FENE model). In the former case, R is defined on �2; in the latter case, R
belongs to [0, Rmax) × [0, Rmax).
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Equation (2.1) holds under some assumptions on the dynamics of the beads. The
velocity field is assumed to be linear at the size of the dumbbell. The drag on a bead is
given by the Stokes law. Furthermore, hydrodynamic interactions between the beads
and inertial effects are disregarded.

3. Linear renewing flow
According to the assumptions of the dumbbell model, in the reference frame of the

centre of mass of the polymer, the velocity field is of the form: vi(r, t) = σij (t)rj . The
velocity gradient σ (t) is constant in each of the time intervals In = [nτc, (n + 1)τc),
n ∈ �. We denote by σn the (random) value taken by σ (t) in In: σ (t) = σn for all t ∈ In.
The random matrices σn are identically distributed and statistically independent. We
assume that, for a fixed n, σn is Gaussian, zero mean, statistically isotropic and
traceless (so that the velocity field is incompressible). As a result, σ (t) takes the form:

σ (t) =
S

2

(
ζ1(t) ζ2(t)
ζ2(t) −ζ1(t)

)
+

Ω√
2

(
0 ζ3(t)

−ζ3(t) 0

)
(3.1)

with S and Ω being positive constants. The elements ζi(t) satisfy: ζi(t) = ζi,n for
all t ∈ In, where the ζi,n are Gaussian random variables such that 〈ζi,n〉 =0 for all i

and n and 〈ζi,nζj,m〉 = δij δnm for all i, j = 1, 2, 3 and n, m ∈ �. The mean-squared strain
and rotation rates are S2 and Ω2, respectively. We set Ω = S to reproduce the relation
holding for the solution of the Navier–Stokes equation (e.g. Frisch 1995, p. 20).

Strictly speaking, the flow considered is not statistically stationary in time.
Nevertheless, over time ranges longer than τc, it can be considered as a good
approximation to a stationary flow with correlation time τc owing to the invariance
with respect to the transformation t → t + τc and thanks to the independence of the
matrices σ (t) in different time intervals In (Zel’dovich et al. 1984). The δ-correlated
flow (i.e. white-in-time noise) is recovered by letting τc tend to zero while holding S2τc

constant.
As mentioned in the Introduction, the elongation of a polymer is related to the

statistics of the stretching rate of the flow. For a review on the entropy function and
the generalised Lyapunov exponents in statistical physics, we refer the reader to the
book by Crisanti et al. (1993). Here, we briefly recall some basic elements of the
theory. If �(t) denotes a fluid-line element, the stretching rate at time t is defined as
γ (t) = t−1 ln[�(t)/�(0)]. The maximum Lyapunov exponent is the long-time limit of
the average stretching rate: λ= limt → ∞〈γ (t)〉, where the average is taken over the
realisations of σ (t). The PDF of γ for long t takes the large-deviation form (Crisanti
et al. 1993):

P (γ, t) ∝ e−G(γ )t , (3.2)

where G(γ ) is the entropy function. G(γ ) is non-negative and attains its minimum
value at the point λ. Equivalently, the stretching properties of the flow can be
characterised by the generalised Lyapunov exponents, defined as the rate of growth
of the moments of �(t):

L(q) = lim
t → ∞

1

t
ln

〈(
�(t)

�(0)

)q〉
. (3.3)

The function L(q) is the Legendre transform of G(γ ), L(q) = maxγ [γ q − G(γ )],
and satisfies L′(0) = λ. For small q , L(q) can be obtained by using the quadratic
approximation G(γ ) ≈ (γ − λ)2/(2∆) so that L(q) ≈ λq + 
q2/2.
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For the linear renewing flow, we can compute L(q) by adapting to the present
problem the method described by Gilbert & Bayly (1992) (see also Childress &
Gilbert 1995, pp. 322–326). A line element satisfies the equation:

�̇(t) = σ (t)�(t). (3.4)

Since σ (t) is constant in In, the solution of (3.4) for t ∈ In is: �(t) = eσnt�(nτc). Hence

�((n + 1)τc) = Jn�(nτc), (3.5)

where Jn =eσnτc is written

Jn =
1

2ωn

(
2ωnc

+
n + Sζ1,nc

−
n (Sζ2,n +

√
2Ωζ3,n)c

−
n

(Sζ2,n −
√

2Ωζ3,n)c
−
n 2ωnc

+
n − Sζ1,nc

−
n

)
(3.6)

with ωn = 1
2

√
S2(ζ 2

1,n + ζ 2
2,n) − 2Ω2ζ 2

3,n, c
+
n = (eωnτc +e−ωnτc )/2, and c−

n =(eωnτc −e−ωnτc )/2

(we remind the reader that ζi,n is the constant value taken by the random function
ζi(t) in In). If ωn is real, then Jn can be written in terms of hyperbolic functions; for
a non-real complex ωn, Jn involves trigonometric functions. By using the statistical
isotropy of the flow and the fact that the matrices σn are identically distributed and
independent for different n, it is possible to show the following relation (Gilbert &
Bayly 1992; Childress & Gilbert 1995):

〈�q((n + 1)τc)〉
〈�q(nτc)〉

= 〈|Jne|q〉In
, (3.7)

where e is any constant unit vector and the average 〈·〉In
is taken over the statistics

of the gradient in the interval In only. Iterating (3.7) yields: 〈�q(nτ )〉 = 〈ρq〉n
In
�q(0)

with ρ2 ≡ |Jne|2 = eTJT
n Jne. It follows that L(q) and λ can be written as

L(q) = τ−1
c ln〈ρq〉In

and λ = τ−1
c 〈ln ρ〉In

. (3.8)

Given that the σn are identically distributed, the average can be taken over any
interval In. Equations (3.8) provide a simple way to compute the function L(q) and
the Lyapunov exponent. The behaviour of λ as a function of τc is reported in figure 1.
The following asymptotic behaviours hold (Chertkov et al. 1996):

λ ∼ S2τc

4
(τc → 0) and λ ∼ Re〈ωn〉In

=

√
π

2

S

2

√
S2

S2 + 2Ω2
(τc → ∞).

(3.9)
For Ω = S, one obtains λ∼

√
π/6 S/2 as τc → ∞. Thus, the Lyapunov exponent

becomes independent of τc for large τc, and the convergence to the asymptotic value
is exponential. By contrast, the variance ∆ monotonically increases like ∆ ∼ S2τc/4
both for small and large τc (Chertkov et al. 1996), and therefore the generalised
Lyapunov exponents do not saturate to a constant value (figure 1). We stress the
fact that the above asymptotic behaviours hold for any two-dimensional random
flow that is incompressible and statistically isotropic and not only for the renewing
flow.

4. Statistics of polymer extension
In order to investigate the influence of temporal correlations of the velocity gradients

on the dynamics of polymers, we numerically integrated (2.1) for the elastic dumbbell
model, where the velocity gradients were determined by (3.1). We computed the
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Figure 1. Lyapunov exponent as a function of τc (circles). Dashed and dotted lines represent
the asymptotic behaviours (3.9) for τc → 0 and τc → ∞, respectively. Inset, generalised Lyapunov
exponents L(q) for three values of Ku. Note that L(−d) =L(0) = 0 in agreement with the
properties of the generalised Lyapunov exponents proved by Zel’dovich et al. (1984).

PDF of the polymer elongation R for various values of Ku and Wi . The numerical
integration has been performed using the predictor–corrector scheme proposed by
Öttinger (1996) for the FENE model and the stochastic Runge–Kutta algorithm
introduced by Honeycutt (1992) for the Hookean model. The statistics of polymer
elongation has been computed by following the dynamics of a single dumbbell for
107 time intervals In.

Within the Hookean model, the PDF of the extension behaves like p(R) ∝ R−1−α

for R � R0 (Balkovsky et al. 2000). The coil–stretch transition is identified by the
change of sign of α, which occurs at Wi =1/2. The effects of the temporal correlation
of the velocity gradients can be quantified through the dependence of α on the
Kubo number. The numerical simulations of the Hookean model show that for small
values of Ku the tail of p(R) is almost independent of Ku; conversely, for Ku � 1,
the tail rises as Ku increases and approaches the slope −1 (figure 2). Because of
long temporal correlations, even polymers with a short relaxation time occasionally
experience significant stretching events, and this effect produces a power-law tail close
to the coil–stretch transition also for small values of Wi .

This intuitive idea can be rationalised by the following argument. The exponent α

determines the lowest order such that 〈Rα〉 diverges and satisfies α = 2τpL(α) (Boffetta
et al. 2003). For Wi near 1/2, α is not far from zero and it is appropriate to use the
quadratic approximation for L(q). α = 2τpL(α) then yields (Balkovsky et al. 2000):

α =
λ

∆

(
1

Wi
− 2

)
. (4.1)

While the dependence of α on the Weissenberg number is contained entirely in the
second factor, the Kubo number enters the expression for α through the ratio λ/∆.
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Figure 2. PDFs of polymer elongation, p(R), for the Hookean model at Wi = 1/4. Note the
power-law behaviours p(R) ∝ Rd−1 for R � R0 and p(R) ∝ R−1−α for R � R0. Inset, exponent
α as a function of Ku . Here α0 = limKu → 0 α. Dash-dotted and dashed lines are the asymptotic
behaviours (4.1) and (4.2) for Ku → 0 and Ku → ∞, respectively.

For the linear renewing flow, the asymptotic behaviours discussed in § 3 give:

λ/∆ ∼ 1 (Ku → 0) and λ/∆ = O(Ku−1) (Ku → ∞). (4.2)

One obtains that for small values of Ku the tail of p(R) is independent of Ku ,
whereas α = O(Ku−1) as Ku is increased, in agreement with our numerical findings.

Although for an infinitely extensible polymer, p(R) is normalisable only for α > 0
(equivalently for Wi > 1/2), the calculation leading to the power-law behaviour
remains formally valid also if α < 0 (Wi > 1/2). In this case, the stationary PDF
of the extension exists only if the nonlinearity of the elastic force is taken
into account, and the power-law prediction is expected to hold for intermediate
extensions R0 � R � Rmax . To allow the development of the intermediate power law,
we performed numerical simulations of the FENE model at artificially high Rmax/R0.
For Wi < 1/2, the results agree with those obtained for the Hookean model (figure 3a).
For Wi > 1/2, an increase of Ku produces a decrease of the intermediate slope
of p(R), which can be negative even for very large Wi (figure 3b). According to
(4.2), near Wi =1/2, the range of variation of α as a function of Wi can be made
arbitrarily small by increasing Ku , to the extent that the intermediate slope of p(R)
becomes almost independent of Wi (figure 4). Our findings show that the picture of
a coil–stretch transition associated with the increase of the intermediate slope of p(R)
does not hold in a long-correlated flow. At large Ku , the appearance of the stretched
state occurs through the drop of the maximum at R ≈ R0 and the simultaneous rise
of a second maximum near Rmax (figure 4).

For realistic values of Rmax/R0, it is difficult to detect a clean power law at
intermediate extensions and the above scenario becomes even more relevant. The
numerical simulations of the FENE model for Rmax/R0 = 20 show that, for short-
correlated flows (Ku � 1), the coil–stretch transition manifests through the gradual
widening of p(R) and the displacement of its maximum from values close to R0
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Figure 3. PDFs of polymer elongation for the FENE model at various values of Ku for
Wi = 1/4 (a) and Wi = 1 (b). The maximum extension is set to Rmax =103R0.

R–1

Wi = 1/4
1/2

1

10–1

100

10–2

10–3

10–4

R/R0

10–1 100 101 102 103

p(
R

)

Figure 4. PDFs of polymer elongation for the FENE model at various values of Wi in a
long-correlated flow (Ku = 10). The maximum extension is set to Rmax = 103R0.

towards values close to Rmax (see figure 5a). This behaviour is in agreement with
the theoretical prediction for the δ-correlated isotropic flow (Martins Afonso &
Vincenzi 2005) and with recent experimental measurements of polymer elongation in
a random shear flow (Liu & Steinberg 2010). For long-correlated flows (Ku � 1), the
dependence of p(R) on Wi is very different. In this case, increasing Wi at fixed Ku
rather produces the drop of the peak at R0 and the simultaneous formation of a
second peak near Rmax (see figure 5b). The PDF of the extension is bimodal and the
two maxima are clearly distinct: intermediate extensions are much less likely than in
the small-Ku case.

The shape of p(R) for large Ku can be explained intuitively as follows. If the
Lagrangian correlation time of the velocity gradient is long, a typical trajectory of a
polymer is composed of long portions where the gradient can be thought of as frozen
with a fixed direction of stretching. Some of those portions will be characterised by
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Figure 5. PDFs of polymer elongation for the FENE model, at various Wi numbers, in
a short-correlated flow (Ku = 10−2) (a) and in a long-correlated flow (Ku = 10) (b). The
maximum extension is set to Rmax = 20R0.

a weak stretching rate, some by a strong one. The response of the polymer to the
velocity gradient along one of those portions of the trajectory will be similar to the
response that a polymer would have in an extensional flow with strain rate comparable
to the stretching rate. As mentioned earlier, the PDF of R in an extensional flow
has a sharp peak either at small extensions or at long extensions depending on the
strain rate, and intermediate extensions are very unlikely. Therefore, the evolution of
an isolated polymer at large Ku consists of a sequence of long deformation events,
whose intensity can produce either a coiled or a highly stretched extension, whence
the bimodal shape of p(R).

5. Conclusions
We have studied the influence of long temporal correlations on the dynamics of a

Hookean dumbbell and of a FENE dumbbell in a two-dimensional random renewing
flow. The time correlation of this simple model flow can be changed arbitrarily, and
this property enabled us to obtain semi-analytic predictions for the Kubo-number
dependence of the statistics of polymer elongations. It is known that the PDF of
the elongation of Hookean dumbbells is characterised by a power-law tail and that
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this power law also describes the behaviour of the PDF of FENE dumbbells at
intermediate elongations. We have shown that in the long-correlated limit (Ku → ∞),
the power-law tail becomes almost insensitive to Wi and its slope is not an effective
indicator for the coil–stretch transition. In the case of the FENE model, the long
temporal correlations strongly affect the shape of the PDF, which shows two distinct
maxima corresponding to the coiled and stretched configurations. For Ku � 1, we
have found a new scenario for the coil–stretch transition, which occurs through the
drop of the peak at R0 and the simultaneous rise of the second peak near Rmax .

Our findings can be understood in terms of basic properties of long-correlated
flows, and the underlying mechanism does not rely on the peculiar choice of the
model flow used in our study. It is therefore arguable that the phenomena discussed
here could be observed also in realistic flows. In particular, it would be interesting to
investigate by means of numerical simulations or experimental measurements whether
the presence of long-lived structures in high-Reynolds-number flows could result in
the appearance of the two-peak coil–stretch transition scenario depicted here.

We are grateful to A. Celani and P. Perlekar for fruitful discussions.
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