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Emergence of chaos in a viscous solution of rods
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It is shown that the addition of small amounts of microscopic rods in a viscous fluid at low Reynolds number
causes a significant increase of the flow resistance. Numerical simulations of the dynamics of the solution reveal
that this phenomenon is associated to a transition from laminar to chaotic flow. Polymer stresses give rise to flow
instabilities which, in turn, perturb the alignment of the rods. This coupled dynamics results in the activation of
a wide range of scales, which enhances the mixing efficiency of viscous flows.
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I. INTRODUCTION

In a laminar flow the dispersion of substances occurs by
molecular diffusion, which operates on extremely long time
scales. Various strategies have therefore been developed, par-
ticularly in microfluidic applications, to accelerate mixing and
dispersion at low fluid inertia [1–3]. The available strategies
are commonly divided into two classes, passive or active,
according to whether the desired effect is obtained through the
specific geometry of the flow or through an oscillatory forcing
within the fluid [2]. An alternative method for improving
the mixing properties of low-Reynolds-number flows was
proposed by Groisman and Steinberg [4] and consists in adding
elastic polymers to the fluid. If the inertia of the fluid is low but
the elasticity of polymers is large enough, elastic stresses give
rise to instabilities that ultimately generate a chaotic regime
known as “elastic turbulence” [5]. In this regime the velocity
field, although remaining smooth in space, becomes chaotic
and develops a power-law energy spectrum, which enhances
the mixing properties of the flow. While the use of elastic
turbulence in microfluidics is now well established [6–10],
new potential applications have recently emerged, namely in
oil extraction from porous rocks [11].

In this paper we propose a mechanism for generating
chaotic flows at low Reynolds numbers that does not rely on
elasticity. It is based on the addition of rigid rodlike polymers.
In spite of the different microscopic dynamics, elastic-
and rigid-polymer solutions exhibit remarkably similar
macroscopic behavior at high Reynolds number (see, e.g.,
Refs. [12–15]). In both cases the turbulent drag is considerably
reduced compared to that of the solvent alone. In particular,
when either type of polymer is added in sufficiently high
concentrations to a turbulent channel flow of a Newtonian fluid,
the velocity profile continues to depend logarithmically on the
distance from the walls of the channel, but the mean velocity
increases to a value known as maximum-drag-reduction
asymptote.

Here we demonstrate, by means of numerical simulations
of a dilute solution of microscopic rods at low-Re, that
the orientational dynamics of rigid polymers is sufficient to
originate a chaotic regime similar to elastic turbulence, with
increased flow resistance and power-law energy spectra.

II. RHEOLOGICAL MODEL

We consider a dilute solution of inertialess rodlike poly-
mers. The size of the polymers is small enough for the velocity

field to be linear at the scale of a polymer. The polymer
phase is described by the symmetric unit-trace tensor field
Rij (x,t) = ninj , where n is the orientation of an individual
polymer and the average is taken over the polymers contained
in a volume element at position x at time t . The coupled
evolution of R(x,t) and the incompressible velocity field
u(x,t) is given by the following equations [16,17] (summation
over repeated indices is implied):

∂tui + uk∂kui = −∂ip + ν∂2ui + ∂kσik + fi, (1a)

∂tRij + uk∂kRij = (∂kui)Rkj + Rik(∂kuj )

−2Rij (∂luk)Rkl, (1b)

where ∂k = ∂/∂xk , p(x,t) is pressure, ν is the kinematic
viscosity of the fluid, and f (x,t) is the body force which
sustains the flow. The polymer stress tensor takes the form
σij = 6νηpRij (∂luk)Rkl [16]. The intensity of the polymer
feedback on the flow is determined by the parameter ηp,
which increases with polymer concentration and whose value
is determined by comparing the above constitutive model with
experiments (for example, the relation between ηp and the
concentration C in weight parts per million (wppm) is ηp =
0.011147C1.422 for an aqueous solution of xanthan gum [18]).
The above expression for the polymer stress tensor is based
on a quadratic approximation proposed by Doi and Edwards
[16]. More sophisticated closures have been employed in the
literature (see, e.g., Ref. [19] and references therein); here we
focus on the simplest model of rodlike-polymer solution that
may display instabilities at low Reynolds number. In addition,
we disregard Brownian rotations to ensure that the chaotic
regime arises from the rheological properties of the solution
and not from thermal fluctuations.

For large values of the Reynolds number, the system
described by Eqs. (1) has been shown to reproduce the main
features of drag reduction in turbulent solutions of rodlike
polymers [14,17,18,20,21]. Here we study the same system at
small values of the Reynolds number. Equations (1) are solved
over a two-dimensional 2π -periodic box and f is taken to be
the Kolmogorov force f (x) = (0,F sin(x/L)). For ηp = 0 the
flow has the laminar solution u = (0,U0 sin(x/L)) with U0 =
FL2/ν, which becomes unstable when the Reynolds number
Re = U0L/ν exceeds the critical value Rec = √

2 and even-
tually turbulent when Re is increased further (e.g., Ref. [22]).
Even in the turbulent regime, the mean flow has the sinusoidal
form 〈u〉 = (0,U sin(x/L)), where 〈·〉 denotes an average over
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FIG. 1. Left: Snapshot of the vorticity field ω for ηp = 3 and
L = 1/8. Black (white) represents negative (positive) vorticity.
Right: Snapshot of the component R11. White represents 0, black
represents 1.

the variable y and over time. The Kolmogorov force has
been previously used in the context of non-Newtonian fluid
mechanics to study turbulent drag reduction [23], the formation
of low-Re instabilities in viscoelastic [24,25] and rheopectic
fluids [26], and elastic turbulence [27,28].

III. NUMERICAL RESULTS

Numerical simulations of Eqs. (1) are performed by using
a dealiased pseudospectral method with 10242 gridpoints.
The time integration uses a fourth-order Runge-Kutta scheme
with implicit integration of the linear dissipative terms. The
parameters of the simulations are set to keep Re = 1 fixed
below Rec in the absence of polymer feedback (ηp = 0). The
viscosity is set to ν = 1, the length scale of the forcing is either
L = 1/4 or L = 1/8, and its amplitude is F = ν2/L3. The
feedback coefficient is varied from ηp = 1 to ηp = 5 (ηp = 5
corresponds to a concentration of 73 wppm for an aqueous
solution of xanthan gum [18]). The stiffness of the equations
increases with ηp, limiting the accessible range of parameters.

Initially the flow is a weak perturbation of the ηp = 0
stable solution, while the components of R are randomly
distributed. When the feedback of the polymers is absent
(ηp = 0) the initial perturbation decays and the polymers align
with the direction of the mean shear flow. Conversely, at large
ηp the flow is strongly modified by the presence of the rods.
The streamlines wiggle over time and thin filaments appear in
the vorticity field ω = |∇ × u| (see Fig. 1, left panel). These
filaments correspond to appreciable localized perturbations of
the tensor R away from the laminar fixed point (Fig. 1, right
panel) and are due to the rods being unaligned with the shear
direction. Notably, we find that the mean flow, obtained by
means of long time averages, maintains the sinusoidal form
〈u〉 = (0,U sin(x/L)) also in the presence of strong polymer
feedback (Fig. 2).

The time series of the kinetic energy in Fig. 3 show
that, in the case of a low concentration (ηp = 1), the system
repetitively attempts but fails to escape the laminar regime
in a quasiperiodic manner. The amount of kinetic energy is
initially close to that in the laminar regime. After some time,
the solution dissipates a small fraction of kinetic energy but
quickly relaxes back towards the laminar regime until it restarts
this cyclic pattern. In contrast, for higher concentrations the
kinetic energy is significantly reduced and, after an initial
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FIG. 2. Mean velocity profiles for L = 1/8 and concentrations
ηp = 1 (solid), ηp = 3 (dotted), and ηp = 5 (dashed).

transient, fluctuates around a constant value. We have observed
that different initial conditions for R may give rise to longer
transients that involve a quasiperiodic sequence of activations
and relaxations comparable to that observed for low values of
ηp. Nevertheless, the statistically steady state achieved at later
times is independent of the peculiar choice of initial conditions.

The reduction of the kinetic energy of the flow at fixed
intensity of the external force reveals that the presence of
the rods causes an increase in the flow resistance. This effect
can be quantified by the ratio of the actual mean power P =
FU/2 provided by the external force and the power Plam =
F0U/2 that would be required to sustain a laminar mean flow
with the same amplitude U in the absence of polymers. In
the latter case, the force required would be F0 = νU/L2 and
the corresponding mean power would be Plam = F0U/2 =
νU 2/2L2. Figure 4 shows the ratio

P

Plam
= F

F0
= FL2

νU
(2)

as a function of ηp and indicates that more power is required
to sustain the same mean flow in solutions with higher
concentrations.

The analysis of the momentum budget confirms that the
increased resistance is due to an increase of the amount of
stress due to the polymers. In the steady state the momentum
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FIG. 3. The kinetic energy E for L = 1/8 and concentrations
ηp = 1 (top, solid), ηp = 3 (middle, dotted), and ηp = 5 (bottom,
dashed) divided by the kinetic energy E0 = F 2L4/2ν2 corresponding
to ηp = 0 and the same value of the force F .
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FIG. 4. The normalized mean injected power P/Plam as a function
of ηp. Inset: The amplitudes of the stresses �r (brown �), �ν (blue
•), and �p (red ×) divided by the amplitude of the total stress �tot

for L = 1/8 and different values of ηp (see Table I).

budget can be obtained by averaging Eq. (1a) over y and time:

∂x�r = ∂x(�ν + �p) + fy, (3)

where �r = 〈uxuy〉, �ν = ν∂x〈uy〉, and �p = 〈σxy〉 are the
Reynolds, viscous, and polymer stress, respectively. Remark-
ably, we find that these profiles remain sinusoidal as in the ηp =
0 case, namely �r = −S cos(x/L), �ν = νUL−1 cos(x/L),
and �p = 	 cos(x/L). Equation (3) then yields the following
relation between the amplitudes of the different contributions
to the stress:

S + νU

L
+ 	 = FL. (4)

These contributions are reported in Table I and they are shown
in the inset of Fig. 4.

The results confirm that the polymer contribution to the
total stress increases with ηp, whereas that of the viscous
stress decreases. The contribution of the Reynolds stress is
extremely small (less than 10−2), which demonstrates that
inertial effects remain negligible as ηp is increased. Figures 3
and 4 also suggest the presence of a threshold concentration
for the appearance of fluctuations.

It is interesting to note that the development of a power-law
spectrum is observed for values ηp at which the amplitude of
the viscous stress �ν is still larger than that of the polymer
stress �p (see inset of Fig. 4). This is consistent with the
results of previous numerical simulations that show that elastic
turbulence can start manifesting even for |�ν | < |�p| [27].

TABLE I. Amplitude of the stresses �r , �ν , and �p divided by
the amplitude of the total stress �tot = �r + �ν + �p for different
values of ηp and L.

ηp L �r/�tot �ν/�tot �p/�tot

1 1/8 0.001 0.996 0.004
2 1/8 0.004 0.887 0.110
3 1/4 0.005 0.787 0.209
3 1/8 0.005 0.795 0.200
4 1/8 0.007 0.710 0.284
5 1/8 0.006 0.647 0.347

FIG. 5. The kinetic energy spectrum E(k) for L = 1/4, ηp = 3
(solid red) and L = 1/8, ηp = 5 (dashed blue). The two black dotted
segments represent k−4 and k−5. Inset: The unsigned kinetic-energy
dissipation spectrum 2νk2E(k) (magenta +) and the polymer energy
transfer (solid black) for L = 1/4 and ηp = 3.

However, experimental studies reported that the elastic and
viscous stresses are comparable at the transition to the elastic-
turbulence regime [29].

Further insight into the dynamics of the solution is gained
by examining the energy balance in wave-number space. For
sufficiently large values of ηp, the kinetic-energy spectrum
behaves as a power law E(k) ∼ k−α (Fig. 5). A wide range of
scales is therefore activated, and this results in an enhancement
of the mixing properties of the flow. The inspection of the
spectrum of polymer energy transfer reveals that the excitation
of high modes in the flow is due to the direct injection of
energy from the polymers at each wave number (see inset of
Fig. 5). This process is balanced scale by scale by the viscous
dissipation, whose spectrum 2νk2E(k) coincides with that of
the polymer energy transfer. At variance with the classical
phenomenology of turbulence, here the energy transfer due to
the fluid inertia is negligible.

The spectral exponent α depends both on the concentration
and on the scale of the force and lies between 4 and 5. A
similar variability of this exponent has been observed in the
case of elastic turbulence, in which the exponent α has been
shown to depend on the boundary conditions, on the forcing,
and on the polymer concentration. For elastic turbulence, the
values reported in the literature varies in the range 3 � α � 4.6
[5,27,28,30–34].

IV. CONCLUSIONS

The regime described in this paper has properties compara-
ble to those of elastic turbulence in viscoelastic fluids, namely
with the addition of rods the flow resistance is increased and
the kinetic-energy spectrum displays a power-law steeper than
k−3. In addition, the Reynolds stress and the energy transfer
due to the fluid inertia are negligible; hence the emergence of
chaos is entirely attributable to polymer stresses. Our study
establishes an analogy between the low-Reynolds-number
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behavior of rodlike-polymer solutions and that of viscoelas-
tic fluids, similarly to what is observed at high Reynolds
number.

These results therefore demonstrate that elasticity is not
essential to generate a chaotic behavior at low Reynolds
numbers and indicate an alternative mechanism to enhance
mixing in microfluidic flows. This mechanism presumably
has the advantage of being less affected by the degradation
observed in elastic turbulence [35], since there is experimental
evidence that the degradation due to large strains is weaker for
rodlike polymers than for elastic polymers [36].

We hope that our results will stimulate experimental studies
aimed at investigating the phenomenon proposed in this
paper. Open questions concern the dependence of the mixing
properties of rigid-polymer solutions on the type of force
and on the boundary conditions. Additional insight into the
dynamics of these polymeric fluids would also come from a

stability analysis of system (1), in the spirit of the approach
taken for the study of low-Reynolds-number instabilities in
viscoelastic [24,25] and rheopectic [26] fluids. The orientation
and rotation statistics of microscopic rods in turbulent flows
has recently attracted a lot of attention [37–41]. It would be
interesting to investigate the dynamics of individual rods in
the flow regime studied here as well as the behavior of the
suspension when the rod concentration is high and the rods
are self-propelled as in active nematics [42–44].
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