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Drag enhancement in a dusty Kolmogorov flow

A. Sozza ,1,* M. Cencini ,1,† S. Musacchio,2 and G. Boffetta2

1Istituto dei Sistemi Complessi, CNR and INFN sez. Roma2 “Tor Vergata”, via dei Taurini 19, 00185 Rome,
Italy

2Dipartimento di Fisica and INFN, Universitá di Torino, via P. Giuria 1, 10125 Torino, Italy

(Received 16 June 2020; accepted 2 September 2020; published 17 September 2020)

Particles suspended in a fluid exert feedback forces that can significantly impact the flow,
altering the turbulent drag and velocity fluctuations. We study flow modulation induced by
small spherical particles heavier than the carrier fluid in the framework of an Eulerian two-
way coupled model, where particles are represented by a continuum density transported by
a compressible velocity field, exchanging momentum with the fluid phase. We implement
the model in direct numerical simulations of the turbulent Kolmogorov flow, a simplified
setting allowing for studying the momentum balance and the turbulent drag in the absence
of boundaries. We show that the amplitude of the mean flow and the turbulence intensity
are reduced by increasing particle mass loading with the consequent enhancement of the
friction coefficient. Surprisingly, turbulence suppression is stronger for particles of smaller
inertia. We understand such a result by mapping the equations for dusty flow, in the limit
of vanishing inertia, to a Newtonian flow with an effective forcing reduced by the increase
in fluid density due to the presence of particles. We also discuss the negative feedback
produced by turbophoresis, which mitigates the effects of particles, especially with larger
inertia, on the turbulent flow.

DOI: 10.1103/PhysRevFluids.5.094302

I. INTRODUCTION

Dust and particulate in turbulent flows are common to many natural environments [1], from
aerosol in clouds formation [2,3], particle-driven gravity currents [4], sediment transport in rivers
[5], and volcanic eruptions [6], to planetesimals and protoplanets formation [7–9]. They are also
relevant to many industrial processes dealing with pipe flows and open channel flows [10], as well
as in fluidization processes [11].

Dispersed particles are not only transported by the flow, but they exert forces (e.g., drag forces)
on the fluid that, depending on the mass loading, can modify the flow itself. The coupled system
made of the carrier fluid and the particles is generally referred to as particle-laden flow [12]. The
interactions between the particles and the fluid can significantly alter the flow both at large and small
scales. In particular, heavy particles can attenuate or enhance turbulence depending on their size
with respect to the viscous scale [12,13]. In general, smaller [14,15] and settling [16–18] particles
lead to turbulence attenuation. Less clear is the effect on turbulent drag: Experiments in channel
flows did not find measurable changes on the mean flow [14,15], while simulations reported drag
reduction in a channel flow [19] and drag enhancement in an unstably stratified boundary layer
[20], moreover the effects depend sensitively on many factors including particle shape, size, and
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volume/mass fraction [21,22]. At small scales, effects of particles on the carrier fluid have been
observed in the spectral distribution of the fluid kinetic energy [23–25].

Turbulence in multiphase flows constitutes a formidable challenge even in the dilute regime,
where the fluid-particle interactions causes also the formation of strong inhomogeneities in parti-
cles’ spatial distribution [12]. Fractal clustering of (one-way coupled) particles has been observed
at small scales in chaotic flows [26,27] and within the inertial and dissipative range of turbulence
[28]. In inhomogeneous turbulent flows large-scale clustering of particle occurs because of the
turbophoresis, that is, the migration of the particles in regions of lower turbulence intensity
[29,30]. Due to its importance for applications, turbophoresis is usually studied in the presence
of boundaries, such as in turbulent boundary layers [31–35], pipe flows [36], and channel flows
[37]. Nevertheless, turbophoresis does not require the presence of boundaries, but just the spatial
modulation of the turbulent intensity, and has been observed also in the absence of walls [38–40].

In this paper, we investigate the effects of mass loading and particle inertia on turbulent drag and
turbophoresis in bulk flows without material boundaries, in the regime of low volume fraction. To
this aim we have performed numerical simulations of a two-way coupled fully Eulerian model, first
introduced by Saffman [41], for a dilute suspension of inertial particles in a turbulent Kolmogorov
flow. The Kolmogorov flow is obtained by forcing the Navier-Stokes equations with a sinusoidal
force, and was originally proposed by Kolmogorov as a model to understand the transition to turbu-
lence [42]. It represents a paradigm of inhomogeneous turbulent flows without boundaries, because
the local intensity of turbulent fluctuations is spatially modulated by the presence of a sinusoidal
mean velocity profile. Owing to the spatial variation of the turbulent intensity, the Kolmogorov
flow provides an ideal setup to study the turbophoretic effect in the absence of boundaries [39,43].
Furthermore, the presence of a mean flow allows us to define a drag (or friction) coefficient, as
the ratio between the work made by the force and the kinetic energy carried by the mean flow
[44]. In this regard, the Kolmogorov flow can be thought of as a simplified channel flow without
boundaries, and it has been exploited for numerical studies of the bulk processes of drag reduction
in dilute polymer solutions [45], drag enhancement in dilute solutions of inextensible rods [46], and
in spatially fixed networks of rigid fibers [47].

We find that particles modify the bulk properties of the flow by reducing the amplitude of the
mean flow and the intensity of turbulent fluctuations, at increasing the mass loading. The reduced
mean flow at fixed forcing amplitude implies an increase of the drag coefficient. Surprisingly, we
find that this effect is larger for particles with smaller inertia. Turbulence reduction at increasing
mass loading also results in a reduction of the turbophoretic effect, in agreement with previous
findings in channel flows [48].

The paper is organized as follows. In Sec. II, we describe the Eulerian model for a dusty fluid. In
Sec. III, we detail the numerical implementation of the model and report the parameters used in the
simulations. In Sec. IV, we present the main results of our study. Finally, in Sec. V we summarize
the results and discuss the perspectives of our study. In the Appendix we benchmark the model
against previous Lagrangian simulations (in the passive case) and against different regularization
scheme for the particle velocity and density fields.

II. EULERIAN MODEL FOR A DUSTY FLUID

Theoretical and numerical studies of particle laden flows make use of different models to describe
the interactions between particles and fluid [12], based either on Eulerian-Lagrangian approaches
(see, e.g., Refs. [23,25]) or Eulerian two-phase models (e.g., Refs. [24,41]). Here we adopt an
Eulerian model with two-way coupling appropriate for suspensions with negligible volume fraction,
which was first introduced by Saffman to study the linear stability of a dusty gas [41].

The Saffman model has been used in astrophysical studies, and in particular to describe the
dynamics of protoplanetary disks [8]. Within this context, the coupling between the gas and particle
phases in a rotating Keplerian disk leads to the streaming instability [49], which is one hypothesis
for planetesimal formation, overcoming the small-scale bottleneck of self-gravitation [50].
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We consider a dilute monodisperse suspension of small, heavy, spherical particles with density
ρp and size a transported in a Newtonian fluid with density ρ f and viscosity μ. The particle density
is assumed to be much larger than fluid one, ρp � ρ f . In real systems, the density ratio ρp/ρ f

can easily reach order 103 for grains or water droplets in air and order 10 for metallic particles in
water. We assume the particle size much smaller than the viscous scale of the flow, a � η, where
η = (ν3/ε)1/4 is the Kolmogorov viscous length and ε the fluid kinetic energy dissipation rate.
This assumption implies that the particle Reynolds number is small and we further assume that
the volume fraction of the particles �v = Npvp/V , defined in terms of the volume of each particle
vp ∝ a3 and the number of particles Np contained in the total volume V , is negligible small. Even
for very small volume fraction, the mass loading �m = �vρp/ρ f can be of order unity because
of the large density ratio. As an example, for a dilute suspension of droplets of water in air with
�v ≈ 10−3 one has �m ≈ 1.

Because of the vanishing volume fraction of the particles, the fluid density field can be assumed to
be constant and, therefore, the velocity field of the fluid phase u(x, t ) incompressible (∇ · u = 0).
The solid phase is described by the particles’ velocity field v(x, t ) and the normalized number
density field θ (x, t ) = n(x, t )/(Np/V ), where n(x, t ) is the local number of particles per unit
volume. The normalization gives 〈θ〉 = 1. Here and in the following, the brackets 〈[·]〉 denote the
average over the whole volume V .

For small volume fractions (�v < 10−3) the dynamics of the particle-laden flow can be described
by a two-way coupling, which takes into account the interactions between individual particles and
the surrounding flow, but neglects the interactions between particles (collisions and friction) and
the particle-fluid-particle interactions (fluid streamlines compressed between particles) [51]. In the
two-way coupling regime, the exchange of momentum between the two phases can no longer be
neglected [12]. For small heavy particles, such an exchange is mainly mediated by the viscous drag
force f drag = γ (v − u), which is proportional to the velocity difference between particle and fluid
velocity, γ being the viscous drag coefficient.

Assuming that the interactions conserve the total momentum, Saffman [41] derived the following
coupled equations for the two phases:

∂t u + u · ∇u = −∇p

ρ f
+ ν∇2u + f ext + �m

τ
θ (v − u) (1)

∂tv + v · ∇v = −v − u
τ

(2)

∂tθ + ∇ ·(vθ ) = 0, (3)

where p is the pressure, f ext is the external force, which sustains the flow, ν = μ/ρ f is the kinematic
viscosity, and τ = mp/γ is the particle relaxation time, defined as the ratio between the particle mass
mp = ρpvp and its viscous drag coefficient γ . In the case of a spherical particles of radius a one has
mp = (4/3)πa3ρp and γ = 6πμa, which gives the Stokes time τ = (2/9)a2ρp/ρ f ν. Normalizing
the latter with the Kolmogorov viscous time, τη = (ν/ε)1/2, we obtain the Stokes number St = τ/τη,
which provides a nondimensional measure of particle inertia in responding to the fluid velocity
fluctuations.

It is important to remark that the validity of the model (1)–(3) is limited to small Stokes numbers
St < 1. In a Lagrangian description, nearby particles with large St may exhibit very different
velocities [52], a phenomenon known under the name of caustics formation [53], and sling effect
[54]. Within the Eulerian framework, caustics would imply a multivalued particle velocity field,
breaking the validity of the continuum description. The rate of caustic formation increases with St
[55], therefore the Eulerian description for the particles is valid only for sufficiently small inertia,
when the effect of caustics is negligible. A direct comparison of the model (1)–(3) (for �m = 0)
with Lagrangian simulations has shown that the Eulerian and Lagrangian approaches are equivalent
for St < 1 [56]. Moreover, in Eq. (2) we have neglected the gravity acceleration g on the particles
to avoid additional effects induced by sedimentation.
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Noticing that in the case of spherical particles the Stokes number can be written as St =
(2/9)(ρp/ρ f )(a/η)2, it is easy to realize that the condition St < 1 for the validity of the Eulerian
description can be fulfilled only by very small particles with a � η. In order to obtain finite values
for the parameters τ and �m, the limit of vanishing radius a → 0 can be consistently achieved in
the model (1)–(3) by assuming the scaling ρp/ρ f ∼ a−2 for the density ratio and Np ∼ a−1 for total
number of particles. These scalings ensure the volume fraction to vanish as �v ∼ a2.

We also remark that the two-way coupling used in the above model does not preserve the total
kinetic energy of the fluid and particle phases. Defining the kinetic energy per unit volume as E =
ρ f (〈|u|2〉 + �m〈θ |v|2〉)/2 the energy balance of the model is

dE

dt
= ρ f

[
−ν〈(∇u)2〉 − �m

τ
〈θ |v − u|2〉 + 〈 f ext · u〉

]
, (4)

which shows that a fraction of the energy injected by the external force is removed by the viscous
drag between the particles and the fluid.

In this paper, as for the external force stirring the fluid, we consider the Kolmogorov force
f ext = F cos(Kz)x̂. Under this forcing one has a simple laminar solutions to (1)–(3) given by θ = 1
and u = v = U0 cos(Kz)x̂ with U0 = F/(νK2). In the absence of particles (�m = 0), this solution
becomes unstable to transverse large-scale perturbations (for wave number smaller than K) when
the Reynolds number Re = U0/(νK ) exceeds the critical threshold Rec = √

2 [57]. Remarkably,
even in the turbulent regime, the Kolmogorov flow maintains a monochromatic mean velocity
profile u = U cos(Kz)x̂ with an amplitude U smaller than the laminar solution U0 (here and in
the following the overbar [·] denotes the average over time t and over the x and y coordinates). The
presence of a nonvanishing mean velocity profile allows us to define the turbulent drag coefficient
[44] f = F/(KU 2), in analogy with channel flows.

In summary, the dimensionless parameters, which control the dynamics of the model are the mass
loading �m = �vρp/ρ f , the Reynolds number Re = U/(νK ), defined in terms of the amplitude U
of the turbulent mean profile of the x component of the velocity, and the Stokes number St = τ/τη.

III. NUMERICAL SIMULATIONS

We performed numerical simulations of Eqs. (1)–(3) by means of a 2/3 dealiased pseudospectral
solver with second-order Runge-Kutta time marching in a triply periodic cubic domain of side
L = 2π and grid resolution M = 256. Small-scale resolution of the fields was ensured by requiring
kmaxη � 2.7 (kmax = M/3). We explored three values of Stokes time τ = (0.10, 0.34, 0.58) and
three values of mass loading �m = (0.0, 0.4, 1.0), which compose a data set of nine configurations
in the parameters space. The simulations with �m = 0 correspond to the case with passive inertial
particles, previously studied in Ref. [39] using a Lagrangian scheme, whose results were used to
benchmark the Eulerian model (see Appendix A 1). We notice that the values of dimensionless
parameters Re and St depends also on the mass loading �m and are therefore determined a posteriori
in the simulations. The main parameters of our simulations are summarized in Table I.

In each run we let the simulations evolve to reach a statistically stationary state, discarding
transient behaviors. The particles were initialized with a homogeneous density field (θ = 1) and
velocity field equal to the fluid one (v = u). After the transient, we collected 360 profiles and fields,
over a temporal series of 500 eddy turnover time, in order to ensure statistical convergence. The
statistical uncertainties (represented by the error bars in the figures) have been estimated using the
variations observed by halving the statistics. In order to avoid the development of instabilities due
to strong density gradients, which are unavoidable due to particle clustering, we added a numerical
regularization to Eqs. (2)–(3). In particular, we considered an additional viscous term νp∇2v and
diffusivity κp∇2θ for the particle velocity and density field, respectively. To reduce the number
of parameters, we fixed νp = κp = ν. To check the robustness of our results with respect to the
regularization scheme, we performed additional simulations with an alternative regularization based
on higher-order Laplacian. In Appendix A 2 we compare the results obtained with the two methods.
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TABLE I. Simulation parameters: Run index, Stokes time τ , mass loading �m, amplitude of the mean
flow U , amplitude of the modulation of the particle density profile A, Root mean square (RMS) velocity
fluctuations u′

rms, amplitude of the modulation of the profile of square velocity fluctuations B, RMS particle
density fluctuations θ ′

rms, energy dissipation rate ε = ν〈(∇u)2〉, Kolmogorov time τη = (ν/ε)1/2, Reynolds
number Re = U/(Kν ), Stokes number St = τ/τη, Taylor-scale Reynolds number Rλ = 〈|u|2〉√5/(3νε). In
all runs we used resolution M = 256, kinematic viscosity ν = 10−3, forcing amplitude F = 8 × 10−3, forcing
wave number K = 1.

Run τ �m U A u′
rms B θ ′

rms ε τη Re St Rλ

A1 0.10 0.0 0.232 0.020 0.199 6.53 × 10−3 0.264 9.3 × 10−4 1.04 232 0.10 89
A2 0.10 0.4 0.195 0.016 0.164 4.29 × 10−3 0.185 4.8 × 10−4 1.44 195 0.07 85
A3 0.10 1.0 0.160 0.012 0.134 2.97 × 10−3 0.133 2.7 × 10−4 1.93 160 0.05 76

B1 0.34 0.0 0.233 0.047 0.199 6.62 × 10−3 0.634 9.3 × 10−4 1.04 233 0.33 89
B2 0.34 0.4 0.197 0.039 0.160 4.34 × 10−3 0.444 4.2 × 10−4 1.54 197 0.22 89
B3 0.34 1.0 0.169 0.030 0.131 3.02 × 10−3 0.324 2.4 × 10−4 2.06 169 0.17 83

C1 0.58 0.0 0.233 0.061 0.199 6.68 × 10−3 0.922 9.3 × 10−4 1.04 233 0.56 89
C2 0.58 0.4 0.200 0.048 0.158 4.59 × 10−3 0.634 4.0 × 10−4 1.058 200 0.37 92
C3 0.58 1.0 0.174 0.038 0.129 3.18 × 10−3 0.458 2.2 × 10−4 2.12 174 0.27 87

Finally, we observe that in principle the pseudospectral scheme does not preserve the positivity
of the density field. Indeed, in low-density regions steep gradients and fluctuations of density may
occasionally generate events with negative density. Nonetheless we have checked that, even in the
worst cases corresponding to small �ms and large τ s, the fraction of points with negative density
does not exceed 1–2 %.

IV. RESULTS

We start discussing the numerical results by showing, in Fig. 1, the two-dimensional sections of
the particle density field θ (x, z), and the longitudinal velocity field ux(x, z) for a given Stokes time
τ = 0.34 and different values of the mass loading �m. We notice that the density field is organized
in elongated filaments, which are gradually smoothed for increasing mass loading. Moreover, they
seem to be disposed parallel to the isolines of the longitudinal velocity ux, and correlated with
regions of strong gradients of the velocity field, where the space between isolines is narrowed. Also
the fluctuations of the longitudinal velocity ux appear to be suppressed with respect to the intensity
of the mean flow U at increasing mass loading. Already at a qualitative level, these observations
provide a first indication that turbulence in the fluid phase is reduced by the back reaction of the
solid phase.

Due to the symmetries of the forcing, which depends on the transverse direction z only, we can
define a mean velocity profile u(z) by averaging the velocity field u(x, y, z, t ) over the coordinates
x, y and time t . Alike the forcing, also the mean velocity profile has nonzero component only in the
x direction: u(z) = (ux(z), 0, 0). Furthermore, we decompose the velocity field as the sum of the
mean velocity profile and the velocity fluctuations: u = u + u′.

In Fig. 2(a) we show the average profiles of the longitudinal velocity ux(z) for τ = 0.58. Similarly
to the case of pure fluid (�m = 0) [44], we find that the profile of the mean flow is, with a good
approximation, monochromatic:1

ux(z) = U cos(Kz). (5)

1For �m > 0 deviations from the monochromatic form can appear because of the exchange term θ (v − u).
Expanding the density field as θ = 1 + A cos(2Kz) + o(A) in terms of the small amplitude A of the density
profile, the exchange term is, at leading order, proportional to the velocity difference (v − u), which gives a

094302-5



SOZZA, CENCINI, MUSACCHIO, AND BOFFETTA

Φm=0.0 Φm=0.4 Φm=1.0

 0

 1

 2

 3

θ(
x,

z)

-2

-1

 0

 1

 2

u(
x,

z)
/U

FIG. 1. Visualization of two-dimensional sections in the plane (x, z) (at fixed y = L/2) of the particle
density field θ (top), and longitudinal velocity field ux (bottom) normalized with the amplitude of the mean
flow U . Simulations refer to τ = 0.34 and �m as labeled.

As shown in Fig. 2(b), the amplitude U of the mean velocity profile decreases at increasing the mass
loading �m (of about 30% in the case with �m = 1 and τ = 0.10). Even though the dependence
of U on τ at fixed �m appears to be milder, Fig. 2(b) shows that the mean flow is reduced more at
smaller τ . In other words, particles with small inertia seem to affect more the mean flow, which is
somehow counterintuitive.

The effects of the particles at small St can be explained as follows. When the dust is sufficiently
fine, i.e., τ � τη, particles follow the fluid velocity almost like tracers. From Eq. (2), at the first
order in τ one can write v = u − τDt u + o(τ ) [26], where Dt = ∂t + u · ∇ represents the material
derivative. At zero order in τ , the particle velocity field remains incompressible and therefore the
particle are homogeneously distributed: θ = 1 + O(τ ). Substituting the expansions for v and θ in
Eq. (1), the equation for the fluid velocity at leading order becomes

(1 + �m)Dt u = −∇p + ν∇2u + f ext. (6)

In other terms the fluid density is increased by the presence of particles. At low Reynolds numbers
such as in the case of linear stability problems, as previously discussed by Saffman [41], the
particle-laden flow is equivalent to a Newtonian fluid with a rescaled viscosity ν ′ = ν/(1 + �m)
and therefore particles have a destabilizing effect. Conversely, at high Reynolds numbers, the
viscous term is negligible in the momentum budget and the factor (1 + �m) rescales the amplitude
of the forcing f ′

ext = f ext/(1 + �m). According to this argument, one expects that at small St

monochromatic velocity profile. Deviations from the monochromatic velocity profile appears only at higher
order in A.
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FIG. 2. Averaged profiles and amplitudes of the longitudinal fluid velocity. (a) Mean velocity profile ux (z)
for different mass loading �m = (0.0, 0.4, 1.0) and fixed τ = 0.58. (b) Amplitude of the mean flow U as a
function of �m for different Stokes time as in label.

and large Re the main effect of the particles is to cause a reduction of the external forcing and
consequently of the mean flow intensity, therefore increasing the turbulent drag. We have tested this
prediction by comparing the simulation of the particle-laden flow with τ = 0.1 and �m = 1.0, with a
simulation of a pure fluid (i.e., without particles) and rescaled forcing amplitude: F ′ = F/(1 + �m).
As shown in Fig. 3, the profiles of the mean flow ux(z) and of the velocity fluctuations |u′|2(z)
obtained in the two cases coincide. We will discuss later the consequences of this effect on the
turbulent drag.

Particles impact not only on the mean flow, but also on the turbulent fluctuations u′ = u − u.
At increasing mass loading �m, we observe a reduction of the root mean square (RMS) fluid
velocity fluctuations u′

rms = 〈|u′|2〉1/2 [see Fig. 4(a)]. Actually, fluctuations are suppressed more
than the mean flow, as shown by the ratio u′

rms/U [inset of Fig. 4(a)]. At fixed �m, the depen-
dence of u′

rms on τ is weak (as for U ) and it is opposite to what observed for U : Particles with
smaller τ cause a smaller reduction of u′

rms. In the Kolmogorov flow, the intensity of turbulent
fluctuations is not homogeneous. Turbulence is more intense in the regions where the shear of
the mean flow is maximum, while it is weaker around the maxima of the mean flow [39,44].

FIG. 3. Profiles of the mean longitudinal flow ux (z)) (red circles and solid line) and the square velocity
fluctuations |u′|2(z) (blue squares and dashed line), for a simulation of the particle-laden flow with τ = 0.1,
�m = 1.0 (symbols) and a simulation of a pure fluid with rescaled forcing amplitude F ′ = F/(1 + �m ) (black
lines, data from Ref. [44]).
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FIG. 4. (a) RMS fluid velocity fluctuations u′
rms as a function of �m. In the inset velocity fluctuations are

normalized with the mean flow. (b) RMS particle density fluctuations θ ′
rms as a function of St.

Therefore, the profile of square velocity fluctuations displays a monochromatic spatial modulation:
|u′|2(z) = (u′

rms)2 − B cos(2Kz). As discussed in Ref. [39] (in the case of vanishing mass loading,
�m = 0) the amplitude B of the spatial modulation of turbulence intensity is directly related to the
turbophoresis. The values of B measured in our simulations are reported in Table I. Alike u′

rms, we
find that also B is strongly reduced at increasing �m while it weakly depends on τ .

The turbulence attenuation caused by the mass loading reflects into a reduction of the
turbophoretic effect. In Fig. 5(a) we show that the mean particle density profile displays a monochro-
matic modulation θ (z) = 1 + A cos(2Kz). Note that the wavelength of the modulation of density is
equal to that of the turbulent intensity and it is half that of the mean flow. For �m = 0 the profile
obtained is in agreement with the results of the Lagrangian simulations reported in Ref. [39]. The
amplitude A of the spatial modulation of the mean density profile provides a quantitative measure of
the turbophoretic effect. The values of A are reported in Table I and shown in Fig. 5(b). We find that
A reduces at increasing the mass loading �m. This effect is directly connected with the reduction
of the amplitude B of the variations of the turbulent diffusivity at increasing �m. Furthermore, the
amplitude A increases as a function of St collapsing on a master curve for all the values of �m.
These results shows that the coupling between the particles and the fluid causes a reduction of the
turbophoresis in the Kolmogorov flow, in agreement with what observed in channel flows [48].
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FIG. 5. (a) Mean particle density profile θ (z) for different values of mass loading �m = (0.0, 0.4, 1.0)
and fixed Stokes time τ = 0.58. (b) Amplitude A of the spatial modulation of the density profile θ (z) = 1 +
A cos(2Kz), as a function of the Stokes number St for different values of �m.
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FIG. 6. Momentum budget. Mean profile (a) of the Reynolds stress term and (b) of the momentum
exchange term for different mass loadings as in label, with τ = 0.58. (c) shows the momentum budget for
the amplitudes divided into Reynolds stress term (filled symbols) and exchange term (empty symbols), as a
function of the mass loading �m for different values of Stokes times as in label.

In the Kolmogorov flow, the turbophoretic effect can be observed only by long time averages
of the density profiles, but it is not directly visible in the instantaneous density fields. As shown
in Fig. 1, the latter are characterized by filaments of clustered particles. Clustering intensity can
be quantified by decomposing the particle density field as θ = θ + θ ′ = 1 + A cos(2Kz) + θ ′. The
values of the RMS density fluctuations θ ′

rms are shown in Fig. 4(b). Similarly to what observed for
the amplitude A of the mean density profile, we find that θ ′

rms reduces at increasing mass loading
�m. Again, this is due to the reduction of turbulence at increasing �m, which results in larger values
for the Kolmogorov times τη and hence reduces the particles Stokes number St = τ/τη. Particle
clustering is therefore suppressed by the mass loading.

The effects of the solid phase on the fluid can be further quantified by inspecting the equation for
the local balance of fluid momentum. By averaging (1) over x, y, and t , we obtain the equation

∂zuxuz − ν∂zzux − F cos(Kz) − �m

τ
θ (vx − ux ) = 0, (7)

for the mean profiles of the turbulent Reynolds stress (uxuz), of the viscous stress (ν∂zux) of the
forcing [F cos(Kz)] and of the momentum exchange with the solid phase [�m

τ
θ (vx − ux )]. Because

of the monochromatic forcing, we can assume at first approximation a monochromatic profile for
the terms in Eq (7), i.e., besides (5) we assume

uxuz = S sin(Kz), θ (vx − ux ) = −X cos(Kz), (8)

where S is the amplitude of the Reynolds stress and X is the amplitude of the momentum exchange.
Following Ref. [44], inserting Eqs. (5) and (8) in the momentum equation (7), yields the following
algebraic relation for the amplitudes:

−SK − νK2U + F − �m

τ
X = 0. (9)

In Figs. 6(a)–6(b), we show the profiles of the Reynolds stress and momentum exchange for
different values of �m and τ = 0.58. They are very well approximated by the monochromatic
functional form (8). The amplitudes of the Reynolds stress and exchange terms, normalized with
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FIG. 7. Friction and stress coefficients. (a) Friction factor f (filled symbols) as a function of Re for all
the parameter configurations (�m, τ ) as in legend. The black pentagons are the values of f in the absence of
particles (�m = 0) and the black continuous line is f = f0 + b/Re with f0 = 0.124 and b = 5.75 [44]. Dashed
line represents the curve f = F/(ν2K3Re2). Blue asterisk corresponds to the simulation with imposed uniform
density (θ = 1) at �m = 1 and τ = 0.58 (same parameters of run C3). (b) Stress coefficient σ (solid curves)
and exchange coefficient χ (dotted curves).

the forcing amplitude F , are shown in Fig. 6(c). The amplitude of the viscous term νK2U/F (not
shown) remains small with respect to the other terms (its effect on the total budget is only about
2–3 %). For vanishing mass loading (�m = 0), the exchange term is zero and the Reynolds stress
contribution is maximum, while increasing �m the two terms becomes of the same order. For even
larger mass loading (�m � 1) the coupling term dominates over the Reynolds stress term. Notice
that the dependence on τ is very weak, this is consistent with the observation that, since at leading
order v − u ≈ −τDt u, the amplitude of exchange term X is order τ , meaning that �mX/τF depends
upon τ only at higher orders.

The dimensionless version of the momentum budget is obtained by dividing all the terms of
Eq. (9) by KU 2 and defining the friction coefficient f = F/(KU 2) [44], (quantifying the ratio
between the work done by the force and the kinetic energy of the mean flow) the Reynolds stress
coefficient σ = S/U 2, and the exchange coefficient χ = �mX/(τKU 2):

f = 1

Re
+ σ + χ. (10)

In Fig. 7(a), we show the friction factor f as a function of the Reynolds number. In the absence of
particles (�m = 0) an asymptotic constant value for the friction coefficient is reached for large
enough Reynolds numbers as f = f0 + b/Re (with f0 = 0.124 and b = 5.75) [44]. Figure 7(a)
shows that the presence of particles increases the friction coefficient, by reducing the mean velocity
U . We remark that, since both f and Re depend solely on U and do not depend explicitly on the
particle parameters τ and �m, all the values of f obtained in the simulations at fixed F and ν

lie on the curve f = F/(ν2K3Re2). Not surprisingly, the effect is stronger for larger values of �m

(vanishing in the passive limit �m = 0). Conversely, the dependence of the friction coefficient f on
the inertia is counterintuitive. One could expect that in the limit St → 0 the particles become passive
and they do not affect the flow, while we find that the largest friction is obtained with smaller Stokes
times, in particular for large �m.

We understand the nontrivial dependence on St as resulting from the combination of two
effects. First, in the limit St → 0 at finite mass fraction �m the particles reduce the effective
forcing intensity, causing an increase of the drag coefficient. Second, this increase is mitigated
by the turbophoresis for particles with larger St, thus leading to values of f closer to that of the
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pure fluid. Let us discuss in detail these two mechanisms. As shown above [cf. Eq. (6)], in the
limit of vanishing inertia St → 0 the velocity field u is equal to that of a pure fluid (without
particles), which satisfies the Navier-Stokes equation with rescaled forcing f ′

ext = f ext/(1 + �m)
and viscosity ν ′ = ν/(1 + �m).2 The friction factor of the dusty Kolmogorov flow is therefore:
f = F/(KU 2) = (1 + �m)F ′/(KU 2) = (1 + �m) f ′, where f ′ = F ′/(KU 2) is the friction factor
of the pure fluid with rescaled Reynolds number Re′ = U/(ν ′K ) = Re(1 + �m). For Re � 1 the
friction factor f ′ follows the asymptotic behavior f ′ = f0 + b/Re′. This leads to an expression for
the friction factor of the particle-laden flow at large Re and small St:

f = (1 + �m) f0 + b

Re
. (11)

This explains why we observe an increased drag f in the limit St → 0 at finite �m. Equating the
above relation with f = F/(ν2K3Re2) we get a prediction for Re (valid for Re � 1 and St � 1) in
terms of the parameters F, K, ν,�m:

Re = b

2 f0(1 + �m)

[√
1 + 4

f0(1 + �m)F

b2ν2K3
− 1

]
. (12)

The values of Re obtained in our simulations with the smallest inertia (τ = 0.10) are in agree-
ment (within 5%) with the prediction (12). The mitigation of the drag enhancement (11) that
we observe at increasing inertia, is due to the turbophoresis. Since turbophoresis reduces the
concentration of particles in the regions of higher turbulence intensities, it is expected to reduce,
by a negative feedback, the effect of particles on the turbulent flows. Therefore the resulting
friction coefficient should be closer to that of the pure fluid for particles with larger St. In order
to demonstrate this point, we performed additional simulations of Eqs. (1)–(2) in which the
particle density field is artificially imposed to be homogeneous (θ ≡ 1), thus switching off any
turbophoretic effect. The result of these simulations is shown in Fig. 7(a) for the largest Stokes time
(τ = 0.58) and mass loading �m = 1. It is evident that, at given �m and τ , the simulation with
imposed uniform concentration produces a larger effect (larger friction coefficient) with respect
to the fully coupled model, since it suppress the negative feedback produced by turbophoresis.
Because of this effect, at fixed �m, particles with larger τ , displaying a larger turbophoretic effect,
cause a weaker increase of the drag coefficient than the particles with smaller τ , as observed
in Fig. 7.

We finally consider the behavior of the stress coefficient σ . We remark that in absence of particles
(�m = 0), σ follows the expression σ = f0 + (b − 1)/Re [44], inherited from the Re dependence
of the friction factor f . Increasing the mass loading �m > 0, σ attains values not too far from the
case �m = 0, but slightly shifted below. By considering points at constant τ , they appear to be
disposed in lines that stray from the point at �m = 0 with different slopes. Increasing τ , the lines
gradually deviates from the curve at �m = 0. Increasing the mass loading, σ decreases while χ

grows, similarly to what observed for the momentum budget in Fig. 6(c). Although, the momentum
balance indicates a drastic reduction of the Reynolds stress S, the stress coefficient σ shows a much
weaker dependence on �m, with only moderate variations 20% at most, with respect to the friction
coefficient f , which is increased of about 110%.

V. SUMMARY AND PERSPECTIVES

In this work we have presented the results of numerical simulations of a fully Eulerian model
for a two-way coupled particle-laden turbulent Kolmogorov flow at varying the inertia and mass
loading of the dispersed particle phase. The peculiarity of the Kolmogorov flow is that, while it

2At high Re, the rescaling of the viscosity is negligible in the momentum balance, as confirmed by the data
in Fig. 3.
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has no material boundaries, it is characterized by a well-defined mean velocity profile as well as
persistent regions of low and high turbulent intensity. These features are here exploited to study the
active role of the particles in the phenomena of drag enhancement and turbophoresis occurring in
bulk flow.

We have shown that, at increasing mass loading, the Stokes drag exerted by particles on
the fluid phase induces a reduction of both the mean flow and the turbulent fluctuations. As a
consequence, the presence of suspended particles reduces the Reynolds number and increases the
friction coefficient, defined as the ratio between the work of the external force and the kinetic
energy of the mean flow. Noteworthy, we have found that the drag enhancement is higher in the
case of particles with smaller inertia which, at a first glance, appears counterintuitive because for
vanishing inertia particles are expected to recover the dynamics of fluid elements. While the latter
expectation is true, one must consider that the particles are heavier than the fluid. As a result,
the fluid and the particles, in the limit of vanishing inertia, basically form a denser fluid. Using
this simple idea, originally due to Saffman [41], we could explain the apparently counterintuitive
dependence on the Stokes number in terms of an effective rescaling of the forcing amplitude caused
by the increase in fluid density. The suppression of turbulent intensity at increasing mass loading
causes a reduction of the turbophoresis, quantified by the amplitude of the spatial modulation in the
mean particle density profile. As expected, this effect is more pronounced for particles with large
inertia. Furthermore, because of their preferential migration toward regions of weaker turbulent
intensity, particles with large inertia are less efficient in exerting their drag on the fluid and, therefore,
they cause a weaker drag enhancement with respect to particles with smaller inertia at equal
mass loading.

It is worth comparing the effects of the particle phase in the Kolmogorov flow with those ob-
served in channel flows. The reduction of the turbophoresis at increasing mass loading and turbulent
attenuation are observed both in the Kolmogorov and channel flows [14,48]. Drag enhancement
observed in the Kolmogorov flow seems to be at odds with the observation of Ref. [19] that
reported drag reduction in channel flow simulations, however, other works did not find significant
variations of the mean flow [14,15]. In general, in wall-bounded flows the effects of the particles
in the boundary layers might be sensitive to details and more important than those occurring in
the bulk flow, in this respect the Kolmogorov flow provides a useful numerical setup to investigate
the latter.

Concerning the relative importance of the mass loading and inertia, based on our numerical
simulations of the particle-laden Kolmogorov flow, we found that while the inertia plays a major
role in the particles’ dynamics, it has a weaker influence on the properties of the flow, which are
more critically dependent on the mass loading. We observed, however, that any change in the mass
loading �m results also in a change of the Stokes number St. Indeed, an increase in the mass loading
can be achieved by (i) increasing the material density of the particle ρp, (ii) increasing their size a,
(iii) increasing the number of particles Np. The cases (i) and (ii) directly imply an increase of the
particle response time τ , and therefore of the Stokes number. In the case (iii) τ remains unchanged,
but the viscous time τη is affected by the reduction of turbulent fluctuations, producing again a
change of St.

A variety of open questions and issues here can be addressed using the present model. First
of all, remaining within the settings of the Kolmogorov flow, it would be interesting to study the
effect of particles on the stability properties at the transition from the laminar to the turbulent
regime, where the role of particle inertia can be important. It would also be interesting to exploit the
Eulerian model here discussed for studying modifications of turbulence at small scales extending
the preliminary study of Ref. [24] in two-dimensional turbulence and comparing with the results
obtained with Eulerian-Lagrangian models [23,25]. Moreover, the model can be easily modified
to include gravity allowing to study sediment-laden flows [5] or particle-induced Rayleigh-Taylor
instability [58].
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APPENDIX: DETAILS ON NUMERICAL SIMULATIONS

1. Comparison with Lagrangian scheme

In this Appendix we benchmark the fully Eulerian model (1)–(3), in the absence of back
reaction (�m = 0), with previous numerical results, obtained with one-way coupled inertial particles
integrated with a Lagrangian scheme [39]. In particular, the latter were performed with the same
parameters reported in Table I (see runs A1, B1, and C1), with grid resolution M = 128 and
Np = 4 × 105 particles for each value of the Stokes time τ . In Fig. 8, we compare the mean
particle density profiles obtained with the Eulerian model and with the Lagrangian simulations for
τ = (0.10, 0.34, 0.58). As one can appreciate the two schemes are in in very good agreement.

2. Role of small-scale regularization

As discussed in Sec. III, to mitigate the possible onset of instabilities due to the formation of
strong gradients in the particle density and velocity fields, Eqs. (2)–(3) must be regularized at
small scales. To this aim, as customarily done in numerical simulations, especially when using a
pseudospectral scheme, one can add an artificial hyperviscous term νp(−1)h+1∇2hv to Eq. (2) and a
hyperdiffusivity term κ (−1)h+1∇2hθ to Eq. (3). The power h controls the order of the hyperviscosity
and diffusivity, the higher the value the more the effect of dissipation can be confined to small scales.
However, it is usually convenient to consider low orders of hyperviscosity and diffusivity to avoid
the phenomenon of bottleneck [59].

The results shown in Sec. IV have been obtained with a standard Laplacian term (h = 1) and
moreover, to minimize the number of parameters, we have chosen νp = κ = 10−3 equal to the fluid
viscosity ν. To test the impact of the chosen regularization on the presented results, we performed
a few additional simulations using a higher-order regularization, in particular we used h = 2 with

 0.9

 0.95

 1

 1.05

 1.1

 0 L/2 L

θ_ (z
)

z

τ=0.10
τ=0.34
τ=0.58

FIG. 8. Mean particle density profile θ (z) for different values of Stokes time (see legend) obtained with
the fully Eulerian scheme with �m = 0.0 (dashed curves) and with the one-way coupling Lagrangian scheme
of Ref. [39] (symbols). Lagrangian data have a poorer statistics with respect to Eulerian ones, therefore to
decrease a bit the statistical fluctuations we exploited the symmetry with respect to L/2 to further average the
density profile.
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FIG. 9. Effect of the order of the dissipative regularization (h = 1 and h = 2) on the profile of the mean
longitudinal velocity: (a) and (b) ux (z) vs z for �m = 1 with τ = 0.10 and 0.58, respectively; (c) Amplitude of
the mean flow U as a function of �m for fixed τ = 0.34; (c) same of (b) as a function of τ for fixed �m = 1.0.
Parameters νp = κ = 10−6 for h = 2, for simulations with h = 1 see Table I.

νp = κ = 10−6. In this Appendix, we show that the effect of the regularization is actually very weak
and that the results presented in Sec. IV are robust. For the sake of comparison, we have replicated
two sets of simulations with the higher-order regularization namely, with reference to Table I, we
have fixed τ = 0.34 and explored all value of �m (runs B1–B3), and fixed �m = 1.0 for all the
values of τ (runs A3, B3, and C3). To reduce the computational time, these additional runs have
been performed with half the statistics of the previous ones. Therefore error bars are slightly larger
than the ones considered in the viscous simulations reported in the main text.

In Figs. 9(a) and 9(b) we compare the mean profile ux(z) of the longitudinal velocity for τ = 0.10
and 0.58 with the largest mass loading �m = 1.0, obtained with the viscous and hyperviscous runs.
With hyperviscosity, the profile is found to be increased by a small amount. In Figs. 9(c) and 9(d)
we show the dependence of the mean flow amplitude U on �m for τ = 0.34 and on τ for �m = 1,
respectively. In all cases the differences between the two regularization are within 4–6 %, which is
in the order of the statistical error for the hyperviscous simulations.

In Fig. 10 we report the analysis on the mean profile and amplitude of the Reynolds stress uxuz(z)
for the available configurations of (�m, τ ). As before, with hyperviscosity we found a (very) weak
enhancement of the Reynolds stress amplitude. However, in all cases the effect is very small and
nearly negligible, with relative discrepancies between 2–6 %, which is in the order of statistical
error for the hyperviscous simulations. In conclusion, the results discussed in Sec. IV are robust and
basically independent of the regularization scheme.
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FIG. 10. Effect of the order of the dissipative regularization (h = 1 and h = 2) on the profile of the
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�m = 1.0. Parameters νp = κ = 10−6 for h = 2, for simulations with h = 1 see Table I.
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