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ABSTRACT
Thepresenceof a linear frictiondragaffects significantly thedynamics of turbulent flows in
twodimensions. At small scales, it induces a correction to the slopeof the energy spectrum
in the rangeofwavenumbers corresponding to thedirect enstrophy cascade. Simple argu-
ments predict that this correction is proportional to the ratio of the friction coefficient to
the characteristic deformation rate of the flow. In this work, we examine this phenomenon
by means of a set of GPU-accelerated numerical simulations at high resolutions, varying
both the Reynolds number and the friction coefficient. Exploiting the relation between the
energy spectrumand theenstrophy flux,weobtain accuratemeasurements of the spectral
scaling exponents. Our results show that the exponent of the spectral correction follows a
universal linear law in which the friction coefficient is rescaled by the enstrophy injection
rate.
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1. Introduction

A significant number of natural fluid dynamical systems, such as atmospheric jet streams [1], ocean cur-
rents [2], and planetary flows [3], exhibit turbulent motion. While the turbulent flow is typically a three-
dimensional (3D) phenomenon, many real-world phenomena display characteristics of two-dimensional
(2D) turbulence across various scales. Examples of such 2D turbulence include large-scale patterns in the
Earth’s atmosphere [4], flows confined within thin fluid layers by geometric boundaries [5–9] and the
behaviour of conducting fluids under strong magnetic fields [10]. In contrast to 3D turbulence, where energy
is transferred from larger to smaller scales in a forward cascade [11, 12], 2D turbulence is characterised by a
dual cascade: an inverse energy cascade towards large scales and a direct cascade in which the enstrophy is
transferred towards small scales [13, 14].

Linear friction, also referred to as Ekman friction, is commonly added to the Navier-Stokes (NS) equations
in 2D as an essential ingredient for modelling real-world effects such as boundary layer dynamics, bottom
drag in oceans, atmospheric resistance [1] or the air friction in experiments with of soap films [15]. Linear
friction has an important role in the process of the inverse energy cascade since it provides a sink for the
energy transferred to a large scale, allowing to attain a statistically stationary state [14, 16–19]. The presence
of linear damping significantly affects also the statistical properties of the direct enstrophy cascade. Theoretical
investigations [20, 21] and numerical simulations [22] of the Ekman–Navier–Stokes equations have shown
that the dissipation of enstrophy due to friction at small scales causes a steepening of the energy spectrum.
This results in a correction ξ > 0 to the scaling exponent of the spectrum E(k) ∼ k−(3+ξ) with respect to the
Kraichnan prediction for the direct enstrophy cascade [13]. Theoretical arguments based on the similarities
between the process of the direct enstrophy cascade and the chaotic advection of passive scalar fields [20–22]
have shown that the correction ξ is determined by the statistics of the stretching rates of the flow and it is
proportional to the friction coefficient. More generally, these studies have shown that the friction drag causes
the breakdown of self-similar scaling of the vorticity structure functions in the range of scales of the direct
enstrophy cascade, resulting in anomalous scaling exponents which depend on the friction coefficient [20,
21]. These relationships provide an intriguing link between the chaoticity of Lagrangian trajectories and the
statistical scaling laws in 2D turbulent flows.

CONTACT V. J. Valadão victor.dejesusvaladao@unito.it

© 2025 Informa UK Limited, trading as Taylor & Francis Group

http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/14685248.2025.2490734&domain=pdf&date_stamp=2025-04-15
mailto:victor.dejesusvaladao@unito.it


2 V.J. VALADÃO ET AL.

In this paper, we pursue the investigation of the effects of linear friction on the direct enstrophy cascade
in 2D turbulence by means of a set of high-resolution numerical simulations of the NS equations varying the
Reynolds number and friction coefficient. These achievements are made possible by the development of a
numerical code specifically designed for single Graphics Processing Unit (GPU) which allows us to greatly
speed up the simulationwith respect to traditional CPU-basedmethods. Our findings provide deeper insights
into the relationship between the friction and the slope of the energy spectrum showing that the correction
ξ displays a universal linear dependence as a function of the friction coefficient rescaled by the characteristic
time-scale based on the enstrophy injection rate. We tested the robustness of these results by allowing the
development of the inverse energy cascade for the simulations with the largest Reynolds number. We also
show that fitting the power-law behaviour of the enstrophy flux instead of the energy spectrum provides a
more accurate measurement of the correction ξ . This method overcomes the difficulties arising from the
presence of a logarithmic correction to the spectrum which affects the direct measurement of the correction
ξ in the limit of vanishing friction.

The paper is organised as follows: Section 2 provides an overview of the phenomenology of the direct
enstrophy cascade in the presence of a linear friction drag, both in the limit of vanishing friction and with
finite friction. The results of numerical simulations are discussed in Section 3. Finally, Section 4 discusses the
implications of our findings and suggests directions for future research. Details on the pseudospectral method
and performance benchmarks of our simulations are shown on Appendix 1. In Appendix 2, we discuss the
difficulties of retrieving the scaling exponent from direct measurement of the slope of the energy spectrum,
especially in the frictionless limit.

2. Direct enstrophy cascade in 2D turbulence

The dynamics of an incompressible velocity field u(x, t) in two dimensions can be conveniently written in
terms of the vorticity field ω(x, t) = ∂xuy − ∂yux as

∂tω + u · ∇ω = ν∇2ω − μω + f , (1)

where ν is the kinematic viscosity (with units of length squared over time) andμ is the friction coefficient (an
inverse time). The forcing term f (x, t) = ∂xFy − ∂yFx (inverse time squared) is related to the external force
field F(x, t) which sustains the flow. The forcing field is assumed to be random with a characteristic spatial
correlation length of �f .

In the inviscid, frictionless, unforced limit, the model (1) conserves the kinetic energy E = 〈|u|2〉 /2 and
the enstrophy Z = 〈

ω2〉 /2, where the brackets 〈(.)〉 indicate the spatial average. In the presence of forcing and
dissipation, the energy and enstrophy balances read:

dE
dt

= −2νZ − 2μE + 〈u · F〉 = −εν − εμ + εI , (2)

and

dZ
dt

= −2νP − 2μZ + 〈
ωf

〉 = −ην − ημ + ηI , (3)

where P = 〈|∇ω|2〉 /2 is the so-called palinstrophy that controls the viscous dissipation of enstrophy.
The different terms in (2-3) define, together with the characteristic scales of the forcing �f = 2π

√
εI/ηI ,

the viscous dissipation scale �ν = 2π
√
εν/ην and the friction scale �μ = 2π

√
εμ/ημ. When these scales are

well separated, �ν � �f � �μ, one expects the development of a direct enstrophy cascade in the inertial range
of scales �ν � � � �f and an inverse energy cascade in the scales �f � � � �μ [14].

The central statistical object in the classical theory of turbulence is the energy spectrum E(k) defined as∫
E(k)dk = E or, equivalently, as

∫
k2E(k)dk = Z. The spectral flux of enstrophy
Z(k) in the direct enstrophy

cascade can be related to the energy spectrum according to the following dimensional closure [14]


Z(k) = λkE(k)k3. (4)
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In (4), λk represents the characteristic frequency of deformation of the eddies at wavenumber k which can be
expressed in terms of the energy spectrum as

λ2k =
∫ k

kmin

E(p)p2dp, (5)

where kmin = 2π/�μ is the minimumwavenumber associated with the largest scale of the flow �μ. The upper
limit in the integral reflects the fact that the fluid motion at scales smaller than 1/k acts incoherently, and
therefore its average contribution to the deformation rate of the eddies of size 1/k vanishes. Considering a
scale-invariant energy spectrum E(k) ∝ k−β , the integral in (5) is dominated by the upper limit k provided
that the scaling exponent is in the range β < 3, satisfying the locality condition [12], and therefore λk 	
E(k)1/2k3/2.

In the absence of friction (μ = 0), one can assume that the forcing and dissipation terms are both negligible
in the enstrophy inertial range, and therefore the flux of enstrophy is constant,
Z(k) = η. This assumption,
in combination with the dimensional relation (4) gives the prediction E(k) 	 η2/3k−3. However, this result is
not self-consistent because the spectral exponent β = 3 is at the border of locality. According to Equation (5),
this gives a logarithmic correction for the λk and consequently, a non-constant, log-dependent enstrophy
flux. A solution to this problem was already proposed by Kraichnan [13]. By taking the derivative of (5) and
plugging in (4) one obtains


Z(k) = 2kλ2k
dλk
dk

(6)

from which, assuming a constant enstrophy flux 
Z(k) = η, one obtains a log-dependent deformation
frequency

λk =
(
3
2
η ln

(
k
kf

))1/3
. (7)

Using this expression in (4) one ends with the prediction [13]

E(k) 	 η2/3k−3 [
ln(k/kf )

]−1/3 . (8)

The presence of friction drag changes significantly thewhole process of the enstrophy cascade. In particular,
it excludes the possibility of a constant flux of enstrophy, causing a steepening of the energy spectrum [20,
21]. This phenomenon can be explained by a simple argument. In the presence of linear friction, from (1),
one has the following expression for the rate of enstrophy transfer [14]

d
Z(k)
dk

= −2μk2E(k) (9)

which states that part of the flux is removed in the cascade at a rate proportional to the friction coefficient μ.
This causes the steepening of the energy spectrum, with a spectral slope β > 3 which exceeds the range of
locality. As a consequence, the integral (5) is dominated by the contribution of the wavenumbers kmin ≤ k ≤
kf , while the contribution of the wavenumbers k > kf is negligible, resulting in a constant deformation rate
λk = λ. Using this assumption in Equation (4), one immediately obtains the solution

E(k) 	 η

λ
k−3(k/kf )−ξ (10)

with the correction to the dimensional scaling exponent

ξ = 2μ
λ
. (11)

We remark that the above argument can be made more rigorous in the physical space where the role of λ is
replaced by the stretching rate of the smooth, chaotic flow. By taking into account the finite-time fluctuations
of the stretching rates, one predicts the breakdown of self-similar scaling and the production of intermittency
in the statistics of the vorticity field [20] which has been observed in numerical simulations [22].
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3. Numerical simulations of the direct cascade with friction

We tested the prediction of the previous section, in particular, the correction (10) to the energy spectrum
in the presence of friction by means of extensive direct numerical simulations of Equation (1) at very high
resolutions (up to 163842 gridpoints). To accomplish this, we used a pseudo-spectral code implemented on a
single GPU. A detailed discussion of the code and its performance can be found in Appendix 1.

Simulations are done in a square box of size Lx = Ly = 2π , with regular grid of resolution N = Nx =
Ny. The turbulent flow is sustained by a Gaussian random forcing f (x, t) with zero mean and white-in-time
correlations, acting in a narrow spherical shell of thicknessk centred at kf in the wavenumber space. Such
a forcing provides an average energy and enstrophy injection rate, εI and ηI , respectively, that are related by
ηI ≈ εIk2f whenk � kf .

Three sets of simulations have been done with different resolutions and viscosities ν, each one covering a
large range of friction coefficients μ. By increasing the resolution, we increased the forcing scale to allow the
development of a narrow inverse cascade in the simulations at the highest resolution at low friction. Table 1
reports the most relevant parameters of our simulations in arbitrary units. In all cases, small scales are well
resolved (kmax�ν ≥ 2.77).We remark that since the forcing amplitude is kept constant, the enstrophy injection
rate increases with the forcing wavenumber and therefore with the resolution.

Figure 1 shows a snapshot of the vorticity field taken from Run C, the highest resolution. The size of the
vortices observed in the flow corresponds to the forcing scale, as shown in the upper right panel, which is
reduced by increasing the resolution, as indicated in Table 1.

The enstrophy balance (3) is shown in Figure 2 for all the simulations in stationary conditions. Remarkably,
the curves at different inputs anddissipations collapsewhen the friction coefficient ismade dimensionlesswith
the time-scale associated with the enstrophy injection, i.e. τI = η

−1/3
I . Moreover, we observe from Figure 2

Table 1. Themost relevantparameters of the simulation include kf = 2π/�f and kmax = N/3, sinceweuse the2/3de-aliasing
method.

Run N ν kf ±k ηI Reν kmax�ν μ× 102

A 4096 2 × 10−5 8 ± 1 9.615 65584 4.19 1,4,7,10,20,30,40,50,60,80
B 8192 5 × 10−6 16 ± 1 34.560 100463 3.38 4,6,10,20,30,40,50,60,80,100
C 16384 1.25 × 10−6 32 ± 1 114.750 149877 2.77 6,12,18,36,48,60,72,96,120

Notes: The viscous scale and the Reynolds number are given by �ν = ν1/2η
−1/6
I and Re = (�ν/�f )

2. Both should be taken as lower bound estimates,
since if one considers ην instead of ηI as the proper dimensional quantity, one obtains strictly larger values for �ν and Re, since ην < ηI .

Figure 1. Snapshot ofω(x) for Run C withμη−1/3
I ≈ 0.01. The upper panel illustrates a region where the flow is dominated

by a single, large vortex, approximately the size of the forcing scale. The lowerpanel depicts a regionwithnodominant vortices.
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Figure 2. The ratio of friction dissipation ημ (filled symbols) and viscous dissipation ην (open symbols) to the enstrophy input
ηI for the Runs A, B, and C are represented by red circles, green triangles, and blue squares, respectively. The friction coefficient
is made nondimensional using the timescale associated with ηI .

Figure 3. The left panel shows the energy spectra in arbitrary units, while the right panel shows the enstrophy fluxes, both
for the simulations of Run C. Darker curves correspond to smaller values ofμ.

that forμη−1/3
I � 0.2, the viscous dissipation is negligible, and the entire enstrophy flux that cascades towards

small scales is dissipated by friction before reaching the viscous scale.
Figure 3 (left) shows the time-averaged energy spectra for the different simulations of Run C. In all cases,

in the direct cascade range, the spectrum shows a power-law scaling steeper than the simple dimensional
prediction E(k) ∝ k−3 with increasing scaling exponent β for larger friction μ, as expected. The three darker
curves, corresponding to smaller friction values, display a short inverse cascade at wavenumber k < kf with
an exponent close to the dimensional prediction for the energy cascade, k−5/3.

FromFigure 3, it is clear that fitting the scaling exponentβ directly from the spectrum is problematic due to
the presence of the peak corresponding to the forcing wavenumber. Moreover, in the limitμ → 0, the energy
spectrum has the logarithmic correction (8) to the power-law scaling, and we can expect this to persist for
small values of the friction coefficient μ. Indeed, we found empirically that simply fitting the spectra with a
power law exponent 3 + ξ does not correctly recover the limit ξ = 0 for vanishing friction (see Appendix 2).

To overcome these difficulties, we decided to measure the correction ξ(μ) directly from the power-law
scaling of the flux 
(k), since the two quantities are related by (9). From the theory, we do not expect loga-
rithmic corrections in the enstrophy flux. The right panel of Figure 3 shows the spectral enstrophy fluxes for
Run C, and we observe a clear power-law scaling in an intermediate range of wavenumbers k ∈ [k0, k1] (with
k0 	 3kf and k1 	 9kf ), far from the forcing and dissipation scales.

The spectral correction ξ obtained from the power-law fit of the spectral fluxes in the range k ∈ [k0, k1]
is shown in Figure 4. From the inset of Figure 4, it is evident that the correction ξ(μ) is proportional to the
friction coefficientμ, as predicted by (11), with a different slope for the different Runs characterised by varying
input.We find that, once again, the correct timescale for non-dimensionalizing the friction parameter is based
on the enstrophy input rate. Indeed, as shown in Figure 4, when plotted as a function of the dimensionless
friction coefficient μη−1/3

I , all the data from the different Runs collapse onto a single line. Moreover, in the
limit μ → 0, the spectral correction fitted by the collapsed curve is compatible with zero.

We also show in Figure 4, the results of an experiment in a thin layer of conducting fluid where the spectral
correction has been measured [23]. The experimental setup is a square tank of side L = 50 cm filled with a
fluid of thickness h = 0.8−1.0 cm that provides different bottom friction coefficient varying in the range of
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Figure 4. Spectral correction ξ as a functionμη−1/3
I for Runs A (open circles), B (open triangles), and C (open squares). Filled

symbols represent experimental data from [23]. The dashed line represents the relation ξ = a(μη−1/3
I )+ bwhere a = 4.1 ±

0.3 and b = 0.03 ± 0.05. Inset: spectral correction ξ as a function of the dimensional μ in arbitrary units for all simulations.
Error bars are estimated by varying the fitting range k0 ∈ [3kf , 5kf ] and k1 ∈ [7kf , 9kf ].

μ = 0.037−0.069 s−1. The typical velocities and vorticities measured are in the range vrms = 0.79−1.33 cm/s
and ωrms = 0.60−0.75 s−1, respectively. The agreement between experimental data and simulations again
supports that the spectral correction ξ depends on the rescaled variable μη−1/3

I only. We remark that the
above rescaling is not the only possibility: one could use Z1/2 as an inverse time of the flow, but this would
not lead to the data collapsing as shown in Figure 4.

4. Conclusions

In this study, we examined the effects of linear friction on the direct enstrophy cascade in 2D turbulence using
high-resolution numerical simulations of the Navier-Stokes equations. By profiting from a GPU-accelerated
code, we explored a wide range of Reynolds numbers and friction coefficients μ uncovering key insights into
the dynamics of 2D turbulent flows with linear damping.

Our results confirm that the linear friction introduces a correction ξ to the scaling exponent of the energy
spectrum in the direct enstrophy cascade, steepening the dimensionally predicted slope. Theoretically, this
correction is expected to scale proportionally to the ratio μ/λ where λ is the average deformation rate of
the flow. Our simulations confirmed the scaling ξ ∝ μ, providing robust evidence supporting this scaling
across a broad parameter space, including different forcing scales, friction coefficients and Reynolds numbers.
A precise measure of the correction ξ is obtained from the scaling law of the enstrophy flux and exploit-
ing its relation with the energy spectrum which, in turn, gives less precise results in particular for small
values of the friction coefficient. By this procedure, we find that a consistent measure of the deformation
rate, in the range of parameters explored here, is expressed in terms of the enstrophy input rate ηI and that
λ ∝ η

1/3
I . This latter result is strongly supported by the comparison of our data to the experimental result

from [23].
The present result is obtained in a regime of moderate friction, given by the dimensionless coefficient

μη
−1/3
I < 1. It would be interesting to extend this study to the opposite regime μη−1/3

I > 1, where friction
directly affects the statistics of the velocity field at the forcing scale. In such a regime, it is expected that the
deformation rate λ depends on μ and therefore we expect a non-linear scaling of the spectral coefficient ξ on
the parameters.
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representing a positive-diagonal operator in the Fourier space L̂n,m
ν,μ(k) = ν2nk2(n+1) + μ2mk−2m. Although this paper

is devoted to the study of the direct cascade in 2D NS turbulence, the Equation (A1) contains a whole class of turbu-
lence models known as α-turbulence [24]. The definition of this class of model is better understood through the relation
between the generalised vorticity ω(x, t) and the stream function ψ(x, t), represented in the Fourier space through

ω̂(k, t) = |k|αψ̂(k, t). (A3)

In the following, we will discuss the case α = 2 but the scheme can be adapted to any value of α.
The generalised dissipative operator has the role discussed in Section 2, i.e. to provide stationary states and prevent

condensate formations. For m = n = 0 one recovers the standard friction/viscosity terms. In comparison, for m, n> 0
depending on the orders n and m of the dissipative operator, the coefficients μ and ν have different dimensional roles
and can dissipate over a more narrow range of scales. For example, hyperviscosity (n> 0) is used to diminish the action
of dissipation on the dissipative subrange, leading to extended inertial ranges at the cost of a bigger thermalisation effect
(bottleneck) of high wavenumber [25, 26]. Moreover, one reason to introduce hypofriction (m> 0) instead of normal
friction is to avoid the correction to the enstrophy cascade discussed in Section 2.

We developed and tested an original pseudospectral code to integrate the general model on Nvidia hardware. Pseu-
dospectral schemes are widely used in numerical studies of turbulence because of their accuracy in derivatives and the
simplicity of inverting the Laplace equation. Another practical advantage is that most of the resources in the pseudospec-
tral scheme are used to compute the Fast Fourier Transforms (FFT) necessary to move back and forth from Fourier space
(where derivatives are computed) to physical space (where products and other nonlinear terms are evaluated). Therefore,
to make the code efficient for a given architecture, it is (almost) sufficient to have an efficient FFT.

The numerical code gTurbo2D uses a standard Runge-Kutta (RK) scheme to time advance the solution with exact
integration of the linear terms. In the simple case of a second-order RK scheme, the evolution of the vorticity field in (A1)
from the time t to t+ dt, with dt the timestep of the simulation is given by

ω̂(k, t + dt) = e−L̂dtω̂(k, t)+ e−L̂dt/2N̂
(
e−L̂dt/2ω̂′) dt (A4)

where ˆ(.) represents the Fourier transformed fields and

ω̂′ = ω̂(k, t)+ N̂
(
ω̂(k, t)

)
dt/2. (A5)

It is worth emphasising that the timestep dt � dx/Urms, where dx = 2π/N andUrms =
√〈|v|2〉 is the root-mean-square

of the velocity field generated byω. Such a CFL condition depends strongly on the stability of the time integration scheme.
In our simulations on the main text, Urmsdt/dx is always smaller than 1/10.

The evaluation of the nonlinear term N̂ is partially done in the physical space (to avoid the computation of convo-
lutions). In the present implementation of the code, the evaluation of the nonlinear term is done as follows. From the
vorticity field in Fourier space, the code computes the stream function by inverting (A3). The two components of the
velocity v̂i are then obtained from the derivatives of ψ̂ and then transformed in the physical space together with the vor-
ticity (this step requires 3 inverse FFTs). The products (viω) are computed (and stored in the same arrays of the velocity)
and transformed back in Fourier space (this requires 2 direct FFTs). Finally, the divergence of ˆ(viω) is computed and
stored in the original array. Therefore the evaluation of the nonlinear term requires 5 FFTs and each step of the n-order
RK scheme requires 5n FFTs.

The code gTurbo2D is written in Fortran 90 with OpenACC, which enables the use of Nvidia hardware through
compiler directives. For the FFTs, the code makes massive use of the CUDA FFT library, compatible with the OpenACC
programming paradigm. Simulations are performed on Leonardomachine, a pre-exascale Tier-0 supercomputer where,
each of the 3456 computing nodes is composed of a single-socket processor of 32-core at 2.60GHz, 512 GB of RAM and,
4 Nvidia A100 GPUs of 64GB each connected by NVLink 3.0. The version of gTurbo2D used for this work is a single
GPU code while themulti-GPU version is under development.We remark that the study of 2D turbulence requires much
less memory than 3D (a single scalar field in two dimensions) and the remarkable resolution ofN2 = 327682 grid points
can be reached on a single GPU. However, large resolutions require very small time steps and therefore the resolution is
limited not only by the memory but also by the speed of the code.

The left panel of Figure A1 shows the total GPUmemory usage in Gbwhile the right panel shows computational time,
both as functions of resolution N. For moderate resolution N � 2000 the memory usage is almost independent of the
resolution since most of the memory is used to store the libraries, the kernel, and the resolution-independent variables.
For larger resolutions, the memory used to store the 2D fields dominates and therefore it is proportional to N2. We also
observe a similar behaviour for the mean elapsed time. This can be explained by the relative smallness of the problem
compared to the GPU parallelisation capacity. Indeed, not all the registers on the GPUs are required to fully parallelise
the computation, therefore, increasing the resolution just occupies free registers not increasing the simulation time. For
larger resolution, the computational time grows proportionally to the amount of computation required for the time step,
i.e. to N2.

Figure A2 shows the percentage of time spent on the simulation for each RK cycle at the maximum resolution (N2 =
327682). One should note that the most computationally intensive part is due to the forward and backward FFTs that
account for more than 75% of the computational time. However, the importance of the forward and backward transforms
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Figure A1. Left panel shows GPU’s memory usage while right panel shows mean elapsed time (computed with 1000
timesteps) as functions of the resolution. Red dashed line shows N2 scaling.

Figure A2. Representative graph of the time fraction allocated to each stage in the code.

is different since their subroutines are called with different frequencies. Besides, we decided to move the normalisation to
the forward transform since it has fewer calls per timestep. Although the integrator stability depends intrinsically on the
physical properties of the system in question, we observed some practical advantages of using RK4 in some tested cases
for simulations with fixed physical time T = Ntdt, since higher order schemes can allow one to use larger timesteps.

Appendix 2. The effect of the log correction whenmeasuring spectral correction

To measure the correction ξ(μ), we first analyse the spectrum E(k) under the assumption of a pure power-law scaling,
E(k) ∝ k−3−ξ . The result is shown in Figure A3 where we observe a vertical shift in the y-axis which is incompatible with
the arguments put forward in Sec. 2. In particular, the limit ξ(μ → 0) → 0 is completely missed even when the error
bars are huge, which is the case of low-resolution simulations.

We tested the validity of Equation (4) for the case where λk = λkf . This equation predicts E(k)k3/
Z(k) ≈ const.
in the enstrophy inertial range. Figure A4 shows this relation as functions of the wavenumber k for a simulation with

Figure A3. Same as Figure 4with ξ fitted directly from the spectra. The dashed line represents the relation ξ = a(μη−1/3
I )+

bwhere a = 3.8 ± 0.5 and b = 0.22 ± 0.08.
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Figure A4. Test for the dimensional relation (4) for a simulation on Run C withμη−1/3
I ≈ 0.04.

a small value of μη−1/3
I . The darker curve includes the log correction term ln(k/kf )1/3 as in Equation (9) while the

lighter curve shows simply Equation (4). By Figure A4, one should note that for small friction, there exists an emergent
logarithmic correction to the deformation frequency which is the source of our difficulties in fitting the correct scaling
exponent through the spectrum. Indeed, if one fits the spectrum taking into account the correction the offset vanishes
(not shown). However, this procedure cannot be systematically applied for all values ofμ since we expect the logarithmic
correction to be less pronounced for large friction. Then, we decided to extract the correction directly from the flux

Z(k) since it is not supposed to present the logarithmic term. This procedure also showed to reduce error bars for all
simulations (see Figures 4 and A3).
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