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Introduzione

In questa tesi viene presentata un’analisi degli effetti indotti dalla presenza
di una forza di frizione lineare e dall’aggiunta di piccole quantita di polimeri
sulle proprieta statistiche della turbolenza bidimensionale.

La prima parte della tesi riguarda gli effetti di una forza di frizione li-
neare sulla cascata diretta di enstrofia. Si mostra come la frizione causi un
aumento della pendenza dello spettro di energia, e una forte intermittenza
nella statistica delle fluttuazioni di vorticita a piccola scala.

Questi effetti possono essere previsti e quantificati per mezzo della sta-
tistica lagrangiana. In particolare mostrero che la forza di frizione lineare
riduce le proprieta statistiche della vorticita a piccola scala a coincidere con
quelle di un campo scalare passivo con vita media finita trasportato dallo
stesso flusso.

Le previsioni teoriche ottenute mediante ’approccio Lagrangiano sono
state verificate per mezzo di simulazioni numeriche dell’equazione di Navier-
Stokes e dell’equazione di avvezione-reazione per lo scalare passivo.

Nella seconda parte viene affrontato lo studio di soluzioni diluite di poli-
meri in due dimensioni per mezzo di un modello viscoelastico lineare (Oldroyd-
B).

Nel caso passivo, ossia trascurando la reazione dei polimeri sul flusso, si
dimostra che la distribuzione di probabilita dell’elongazione dei polimeri ha
una coda a legge di potenza, la cui pendenza puo essere calcolata a partire
dalla statistica dei tempi di uscita lagrangiani.

Nel caso attivo mostrerd che ’energia cinetica del fluido ¢ fortemente
ridotta dalla reazione dei polimeri. Questo fenomeno va confontato con il
caso tridimensionale, in cui viceversa ’energia cinetica del flusso medio risulta
aumentata dalla presenza dei polimeri.

Il modello viscoelastico adottato fornisce una chiara spiegazione dell’ori-
gine della riduzione dell energia, che e stata osservata anche in esperimenti
su pellicole di sapone.
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Inoltre mostrero che la presenza dei polimeri causa una forte riduzione del
caos lagrangiano, e influenza il decadimento della turbolenza bidimensionale
cosl come la cascata inversa di energia, che puo venire completamente sop-
pressa qualora ’elasticita dei polimeri sia sufficientemente elevata.

Le due parti della tesi sono strettamente collegate dai metodi utilizzati
per studiare due differenti situazioni fisiche, che sono entrambe ricondotte
al problema generale del trasporto di campi attivi, scalari o tensoriali. La
descrizione lagrangiana del trasporto turbolento, che si e rivelata essere il
pilu potente strumento per la comprensione del problema passivo, viene qui
utilizzata per studiare due casi in cui le quantita trasportate sono attive,
ossia hanno delle ripercussioni sul campo di velocita.

La tesi € organizzata in quattro capitoli. Il primo capitolo vuole essere una
breve introduzione alla turbolenza pienamente sviluppata in due dimensioni.
Riassumero la fenomenologia di base, introducendo i concetti e la terminolo-
gia che verrano utilizzati nella tesi e sottolineando le principali differenze
rispetto al caso tridimensionale.

Il secondo capitolo tratta degli effetti della frizione in turbolenza bidi-
mensionale. Mostrero I’analogia con il problema del trasporto di un campo
scalare passivo con vita media finita, fornando una breve rassegna di re-
centi risultati ottenuti per questo problema, e mostrando come e sotto quali
condizioni essi possano essere applicati al caso della vorticita in turbolenza
bidimensionale in presenza di frizione. Presenterd quindi un confronto fra i
risultati ottenuti per mezzo di simulazioni numeriche e le previsioni basate
sulla statistica lagrangiana.

Nel terzo capitolo presento una breve introduzione alla fisica delle soluzioni
diluite di polimeri, descrivendo alcuni dei fenomeni osservati negli esperimenti
e introducendo il modello viscoelastico utilizzato nella tesi.

Il quarto capitolo contiene i risultati dello studio teorico e numerico delle
soluzioni diluite di polimeri in due dimensioni.



Introduction

In this thesis I present an analysis of the effects induced by the presence of
a linear friction force and by the addition of small quantities of polymers on
the statistical properties of two-dimensional turbulence.

The first part of the thesis deals with the effects of a linear friction force on
the direct enstrophy cascade. It is shown that friction produces a steepening
of the energy spectrum, and a strong intermittency in the statistics of small-
scale fluctuations of vorticity.

These effects can be predicted and quantified by means of Lagrangian
statistics. In particular I will show that a linear friction force reduces the
statistical properties of vorticity at small scale to coincide with those of a
passive scalar field with finite lifetime transported by the same flow.

Theoretical predictions obtained within the Lagrangian approach are val-
idated by the results of numerical simulations of Navier-Stoker equation and
the advection-reaction equation for the passive scalar.

In the second part the study of two-dimensional dilute polymer solutions
is addressed by means of a linear viscoelastic model (Oldroyd-B).

In the passive case, i.e. neglecting the feedback of polymers on the flow,
it is shown that the probability distribution function of polymer elongation
has a power law tail, whose slope can be predicted in terms of Lagrangian
exit-time statistics.

In the active case I will show that the kinetic energy of the fluid is dras-
tically reduced by the polymer back-reaction. This phenomenon should be
contrasted with the three-dimensional case where, on the opposite, kinetic
energy of the mean flow is enhanced by the presence of polymers.

The viscoelastic model adopted provides a clear explanation for the origin
of energy suppression which has been observed also in soap-film experiments.

Moreover I will show that the presence of polymers causes a strong re-
duction of Lagrangian chaos, and influences the decay of two-dimensional
turbulence as well as the inverse energy cascade, which can be completely
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depleted for large enough polymer elasticity.

The two parts of the thesis are strictly connected by the methods used
for studying the two different physical situations, which are both reduced
to the general problem of transport of active scalar or tensorial fields. The
Lagrangian description of turbulence transport, which has revealed as the
most powerful tool for the comprehension of the passive problem is here used
to study two cases where the transported quantities are active, i.e. they have
a feedback on the velocity field.

The thesis is organized in four chapter. The first chapter is intended
as a short introduction to fully developed turbulence in two dimensions.
I will summarize the basic phenomenology, introducing the concepts and
terminology that will be used in the thesis, and stressing the main differences
with the three-dimensional case.

The second chapter deals with the effects of friction in two-dimensional
turbulence. 1 will show the analogy with the problem of transport of a passive
scalar field with finite lifetime, giving a short review of recent results for this
problem, and showing how and under which condition they can be applied to
the case of vorticity in two-dimensional turbulence with friction. Then I will
present a comparison between the results obtained by means of numerical
simulations and the prediction based on the Lagrangian statistics.

In the third chapter I provide a brief introduction to the physics of di-
lute polymer solution, describing some of the phenomena which have been
observed in experiments and introducing the viscoelastic model adopted in
this thesis.

The fourth chapter contains the results of the theoretical and numerical
study of two-dimensional dilute polymers solutions.



Chapter 1

Introduction to turbulence

The complexity of turbulence has attracted for centuries the interest of sci-
entists, philosophers and poets. Images and metaphors of turbulence of im-
petuous rivers and stormy seas are ubiquitous in literature, and the drawings
and scripts of Leonardo da Vinci can be considered the earliest scientific
studies on turbulence, which grasped some realistic details of the problem.

On the other hands, the interest for turbulence is clearly understandable
because of its practical relevance in applications ranging from naval and
aeronautical engineering to climate studies and weather forecast.

In the last century the works of L. Euler, L. M. H. Navier, G. G. Stokes, O.
Reynolds, has given the basis of a research field which is still open nowadays.
Even if the equations which rule the turbulent behavior are well known, a
complete understanding of the matter is still lacking.

In this chapter 1 will present a short introduction to the basic concepts
and phenomenology of the classical theory of turbulence, with a particular
attention to the case of two-dimensional turbulence, stressing the differences
and similarities with the three-dimensional case. The aim is not to provide
a review of the matter which can be found in [1, 2, 3, 4, 5, 6], but just to
introduce, for the sake of self-consistency, the terms and concepts that will
be used in the thesis.
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1.1 Navier-Stokes equation

The dynamics of an incompressible Newtonian fluid is determined by the
celebrated Navier-Stokes equations (1823), supplemented by the incompress-
ibility condition:

P
8tu+u-Vu:—v7+1/Au+f (1.1)

V-u=0 (1.2)

where P is the pressure, p is the density of the fluid, » = £ is its kinematic
viscosity, and f represents the sum of the external forces per unit mass which
sustain the motion.

Let us briefly describe the different terms in Navier-Stokes equation:

e u-Vu the inertial, or non-linear term which characterizes Navier Stokes
equation, and is responsible for the transfer of kinetic energy in the
turbulent cascade.

e —VP/p the pressure gradients which guarantee the incompressibility
of the flow. In absence of external forces they are determined by the

Poisson equation

which is obtained taking the divergence of Eq. (1.1).

e vAw the dissipative viscous term. It is originated by the Reynolds
stresses of the Newtonian fluid, and it is proportional to the viscosity.
It is the dominant term in the laminar regime.

The origin of Egs. (1.1,1.2) is just the conservation of mass and momen-
tum per unit volume:

dp

- . = 1.4
24V (pu) =0 (1.49)
Ppr ~ fit 0z; (15)

where T is the stress tensor of the fluid, which for a Newtonian fluid is linear
in the deformation tensor e;; = 1/2(V,u; + V,u;), and is given by [4]:

2

The incompressibility assumption is consistent until velocities smaller
than speed of sound ¢, in the fluid are considered. Since eventual density
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fluctuations are swept away exactly as sound waves, for small value of the
Mach number which measures the ratio between the typical velocities and
the speed of sound in the considered fluid, the density can be assumed to
be constant in time and space p(x,t) = p and the mass conservation (1.4)
leads to the divergence-less condition on the velocity field V - uw = 0. It is
common to assume the constant density to be equal to unity, or equivalently
to consider dynamical quantities per unit mass of fluid. As an example we
will often refer to the square modulus of velocity as kinetic energy.

Because of the presence of a non-linear term in Navier-Stokes equation,
the space of its solutions does not have an affine structure, and consequently
a generic solution can not be obtained as linear superposition of basic so-
lutions. Moreover, a typical feature of turbulence is the presence of chaos,
i.e. the Navier-Stokes equations display a strong sensitivity to initial condi-
tions, which drastically reduces the interest for their exact solutions. For this
reason the theory of turbulence has a statistical approach, trying to predict
the statistical properties of the flow instead of searching a peculiar analytic
solution.

1.1.1 Reynolds number

A measure of the non-linearity of Navier-Stokes equations is given by the
Reynolds number

Re = vk (1.7)
v

where L and U are respectively the typical length scale and velocity of the
fluid, e.g. in a pipe flow L is the diameter of the pipe and U the mean veloc-
ity. It was introduced by Osborne Reynolds, who showed that a transition
between laminar and turbulent flow occurs when the Re number reaches a
critical value. Different geometries of the flow may change the critical Re
number, but the transition is universally controlled by this adimensional pa-
rameter. The Reynolds number plays a fundamental role in turbulence, since
it gives a dimensional estimate of the relative weight between the inertial term
u - Vu and the viscous term vAu:

[Q[LUAVJ]L] ~ % (18)

Because of its definition, the limit Re — oo in which fully developed turbu-
lence is achieved, can be rephrased as the zero-viscosity limit v — 0.
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1.1.2 Energy balance

The energy balance in absence of external forcing for Navier-Stokes equation
follows from Egs. (1.1,1.2). The total kinetic energy of the fluid is

1
E = /6137'5,0|u|2 (1.9)
and its temporal variation is

dE [, Ou

= /d’l" [—u,-ujajui — uzazp + yuiajﬁjui] (110)

Assuming periodic boundary condition on a cubic volume of size L
u(z+nL,y+mL,z+qL) =u(z,y,2) Vz,y,z € RVn,m,q € Z (1.11)
or null boundary condition on a volume V'
uly, =0 (1.12)
the first two terms in the integral vanishes and using the identity
(Vxu)-(Vxu) = (€xdjur)(€iumOitm)
= 0j(ur0jug) — 0;0k(ujur) — ug0;0;u,  (1.13)
one gets

dE

- = l//d37"puAu = —I//d3rp(V x u)? = —1//d3r,0|w|2 (1.14)

where we have have introduced the vorticity of the fluid w = V x u. Defining
the total enstrophy as

1
7 = /d3r§p\V x u|? (1.15)
the energy balance reads:
E_ oz (1.16)
— = —2u .
dt

which shows that in absence of external forcing and for v = 0 the kinetic
energy is conserved by the dynamics, i.e. it is an inviscid invariant. On the
contrary in the limit v — 0 the energy dissipation rate does not vanish, but
reaches a constant value [7]:

lim2vZ = ¢ (1.17)

v—0
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This phenomenon is known as dissipative anomaly, and implies that in the
limit » — 0 the total enstrophy must grow as Z ~ v~! to compensate the
decreasing viscosity. The unbounded growth of enstrophy in three dimensions
is the physical origin of the dissipative anomaly, and it is possible because of
the vortex stretching, which produces diverging velocity gradient in the limit
Re — oo.

1.1.3 Energy transfer

As shown by the global energy balance (Eq. 1.16) the non-linear term in
Navier-Stokes equation does not change the total kinetic energy. Nevertheless
it plays a fundamental role in turbulence, because it is responsible for the
energy transfer between different modes which is the origin of the turbulent
cascade. To describe how it is involved in the energy transfer it is worthwhile
to consider the energy balance in Fourier space. For the sake of simplicity
we will consider the infinite volume limit, in which the fluid is supposed to
fill the entire space, and the Fourier transform reads

= L 3xe_ik'mu T
wa(k) = (27T)3/d (@) (1.18)

and its inverse is

Uo(x) = /d3keik'mua(k) (1.19)

The reality condition on the velocity fields u),(x) = u,(x) in Fourier space
reads u), (k) = uo(—k), and the derivatives became multiplicative operators
(V — ik), thus the incompressibility assumption is written as k- u = 0. In
Fourier space Navier-Stokes equation has the form:

augik) — —i/d3p (ks — pg)ug(p)ua(k — p) +

kq
+ig | &°p py(ks — pg)us(p)uy(k — p) +
—vk?uy (k) (1.20)

where it is still possible to distinguish the inertial term, the pressure term and
dissipative term, while the forcing has been omitted. The constant density
has been fixed to p = 1.

Using the incompressibility and the symmetry of the integrals for (p, k —
p) — (p — k,p) it is possible to rewrite Eq. (1.20) as

<% + wﬁ) ua(k) = —i (kgém - k"‘lZ—gk”) /d3p ug(p)uy(k —p) (1.21)
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Introducing the tensors

kok
Pap(k) = bog — ~15" (1.22)
Pagy (k) = K Pasy (k) + by Pa (k) (1.23)
Navier-Stokes equation can be written in Fourier space as:
0 1
(a + I/k2> uq (k) = -3 am(k)/d?’p ug(p)u(k — p) (1.24)

Let’s now introduce some notations. The two-point correlation function
is defined as

Qap(r) = (ua(x)us(x + 7)) (1.25)
where (...) stands for the average over the volume V' (f(x)) = + [, d*z f ().
Its Fourier transform is

S.p(k) = / Pre-FTQ, 5 (r) (1.26)

1
(2m)?
and the correlation function in Fourier space reads

(uo(k)ug(k')) = 6(k + k')Sap(k) (1.27)
The assumption of isotropy imposes for the tensor S,z the form
Sap(k) = A(k)koks + B(k)dups (1.28)

where A and B are function of the modulus k& = |k|. Multiplying Eq. (1.27)
by ks and using incompressibility one gets B(k) = —k?A(k), which substi-
tuted in Eq. (1.28) leads to

Sap(k) = P,g(k)B(k) (1.29)

The energy spectrum is defined as the integral of the square modulus of
velocity over a shell with fixed modulus £ in Fourier space:

1
Bk = / 2 d0y (k) (1.30)
and the total energy is its integral E = [° dk E(k). By definition Saa(k) =
(lu(k)|?), but from Eq. (1.29) S,a(k) = 2B(k), thus the following relation

holds
1

- 4k?

B(k) E(k) (1.31)
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which gives the relation between the energy spectrum and the Fourier trans-
form of two-point correlation function:

E(k)

Sap(k) = Tz L o8

(k) (1.32)

The temporal derivative of the two-point correlation function is obtained
from Navier-Stokes equation as

5 .
(& + 21/k2) Sas(k) = —%Paw(k) / &p Tspo(—k, )

1
_§Pﬁpa(_k)/d3p Tapa(kap) (133)
where has been introduced the three-point correlation function
(uo(k)ug(k ) u, (k") = 6(k + k' + k") Top,(k, k') (1.34)

The energy balance is obtained from Eq. (1.33) remembering the rela-
tion (1.32) between the energy spectrum and the two-point correlation func-
tion. Using the antisymmetry P,s,(—k) = —P,3,(k) and the reality condi-

tion Ty, (—k,p) = Ty, (k, —p) on gets

(% + 2yk2) E(k) = T(k) (1.35)

where has been introduced the energy transfer T (k):

T(k) = —4mk?k, Im { / &p T,y (k, p)} (1.36)

Defining the enstrophy spectrum as:

2 = / F2dw (k)2 = K2E(k) (1.37)

and restoring the external force f in Navier-Stoked equation, the energy
balance can be rewritten as

0,E(k) = —2vZ(k) + T(k) + F(k) (1.38)

where F'(k) is the injection energy spectrum:

Fk) = / KRdu(k) - £(k) (1.39)
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F(x)

If the external forcing is a Gaussian process d-correlated in time, whose
statistic is determined by the correlation (f;(z,t)f;(x',t')) = F(Jz—a'|)0;;0 (t—
t'), the input of energy is flow-independent, i.e, the injection energy spectrum
F (k) is uniquely determined by the statistics of the forcing. In the case of a
large scale forcing, with a forcing correlation length L such that

F(z)~Fy for z<L (1.40)
F(z) ~0 for z>1L (1.41)

the injection spectrum will dominate the energy balance at small wave-
numbers £ ~ kf ~ 1/L. On the contrary the viscous dissipation, being
proportional to vZ (k) = vk? E(k) will give strong contribution at large wave-
numbers, where k? is large. In the intermediate range of wave-numbers,
where both injection and dissipation of energy are negligible, the dominant
term in Eq. (1.38) is the energy transfer 7'(k). In this inertial range the en-
ergy is conserved and transferred by triadic interaction between modes with
wave-numbers such that k + k' + k" ~ 0.

Equation (1.24) for velocity involves the two-point correlation function,
and Equation (1.33) for the two-point correlation function requires the tree-
point one. It is easy to understand that the presence of a quadratic term
in Navier-Stokes equation reproduces this closure problem at every order,
i.e. the equation for the n-point correlation function will require the n + 1
one. During the last fifty years several closures have been proposed, i.e.
assumptions on the statistics of velocity which allow to obtain a closed set
of equations for the correlation functions, from the simplest Quasi-Normal
closure in which the fourth-order moments of velocity distribution are ex-
pressed in term of the second-order ones, in the same way of what happens
for a Gaussian variable, to the Eddy-Damped-Quasi-Normal closure proposed
by Orszag [8].
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1.2 Phenomenology of the turbulent cascade

The basic phenomenology of turbulence can be recovered from a simple di-
mensional analysis of Navier-Stokes equations, using the image of the turbu-
lent cascade proposed by Richardson [9].

The kinetic energy is supposed to be injected by an external forcing which
sustains the motion of large scale eddies. This structures are deformed and
stretched by the fluid dynamics, until they break into smaller eddies, and the
process is repeated such that energy is transported to smaller and smaller
structures. Finally at small scales the kinetic energy is dissipated by the
viscosity of the fluid. The whole process of transport of energy from the
large scale of injection to the small dissipative scale, through the hierarchy
of eddies is known as turbulent cascade. It is worthwhile to remember that
the eddies must not be thought as real vortices, but just as a metaphoric
description of the triadic interaction between modes which has been formally
presented in the previous section.

Q @ Q <1 Injection scale L

T IY N

s ss sm 82 88 8s Energy flux &

........................................................... —> Dissipative scale 7

A dimensional analysis of the different terms of Navier-Stokes equation
provides an estimate for the time required to transfer energy from an eddy
of size £ to smaller eddies 7, ~ ¢/uy, where u, is the rms velocity fluctuation
on the scale ¢, and the time required to dissipate the energy contained in the
same eddy by the viscous term: 7% ~ (2 /v.

Three different range of scales can thus be identified:

Injective range which corresponds to the large scales where the forcing
injects the energy.

Inertial range where the time required for energy transfer is shorter than
the dissipative time 7, << 7{'** and the energy is thus conserved and
transported to smaller scales.
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Dissipative range where the energy dissipation overcomes the transfer and
the cascade is stopped.

The hypothesis of a statistically steady state for the turbulent cascade
requires a constant energy flux IT1(¢) in the inertial range, i.e. a constant rate
of energy transfer that must be equal to the energy dissipation rate e:

E (E) Uy
() ~ —= ~uj— =€. 1.42
O~ =~ (1.2
The above relation determines the Kolmogorov scaling for velocities and char-
acteristic times:

ug ~ €33 (1.43)
T o~ € V3R (1.44)

The border between the inertial and dissipative range is identified by
the Kolmogorov scale n, where the dissipative and transfer times are equal
Ty = TS

N~ e A3 (1.45)

Below the Kolmogorov scale, the viscous linear term dominates the evolution
of the fluid, and the resulting velocity field is smooth and differentiable.

1.2.1 Kolmogorov K41

The naive picture drawn above can be formally stated within the K41 theory
in term of the scaling properties of the Structure functions:

Sp(€) = ((0ug)?) (1.46)

which are defined as the moments of the distribution of longitudinal velocity
increments duy(x) = [u(x + £) — u(£)] - £.

The longitudinal velocity increments are easily achievable in experiments,
e.g with hot wire anemometry. Let’s suppose to have a velocity field w which
can be decomposed in a mean flow U = (U, 0,0) and a turbulent fluctuating
part v’ = uw - U whose intensity is assumed to be small compared with
the mean flow (|u'[?)!/2 < U. By putting an hot wire perpendicular to the
mean flow, let’s say in the z direction, and measuring its resistance which is
reduced because of the cooling due to the flow, it is possible to obtain the
time series of the velocity integrated in the direction of the wire, i.e.

ul?

2 UQ
uy = [(ul + U)* + )]/ :U[1+F+O(ﬁ)] (1.47)
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where it has been supposed that amplitudes of fluctuations in the two di-
rection perpendicular to the wire are of the same order u; ~ wu;. Within
Taylor’s hypothesis, i.e. assuming that the turbulent velocity field for short
time delay 7 is almost frozen and it is simply transported through the wire
by the fast mean flow U, the time series u/(¢) can be considered as a space
series

ul (z,t+7) = ul(z — U/T,1) (1.48)

allowing to obtain the longitudinal structure function.

The basic assumption of the Kolmogorov theory is the Similarity Hy-
pothesis. Kolmogorov’s hypothesis assumes that if the inertial range is large
enough, the influence of the large scale forcing and the small scale viscous dis-
sipation can be neglected, and the scale invariance of Navier-Stokes equation
in the inviscid limit:

tr,u—= A A M A eR,hER (1.49)

is recovered by the turbulent velocity field in a statistical sense. The velocity
fluctuations on scale ¢ within the inertial range are supposed to be self-similar

5?1,)\@ ~ /\héu@ (150)

i.e. their probability distribution are supposed to be identical once they are
rescaled according to the scaling exponent h, and the structure functions in
the limit Re — oo are expected to display a power law behavior

Sp(t) = ((0ur)?) ~ £ (1.51)

Starting from the Karman-Howarth-Monin relation [1] Kolmogorov de-
rived an exact result for the third order structure function, the famous

Kolmogorov’s four-fifths law In the limit of infinite Reynolds number the
third order (longitudinal) structure function of homogeneous isotropic
turbulence, evaluated for increments £ small compared to the integral
scale, is given in terms of the mean enerqy dissipation per unit mass €
by

SA@E(@WP>:—§J (1.52)

The four-fifths law allows to fix the value of the scaling exponent A = 1/3
and together with the scaling hypothesis for the structure functions leads to
the Kolmogorov scaling law:

S,(€) ~ C,ePl3 /3 (1.53)
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and to the Kolmogorov energy spectrum
E(k) = 2rk(la(k)|?) = CPE53 (1.54)

A Kolmogorov energy spectrum has been observed in many different phys-
ical situations, from the experiments in tidal channel [10] which gave the first
confirmations of Kolmogorov’s theory, to recent measurements in wind-tunnel
experiments[11].
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Figure 1.1: Kolmogorov’s energy spectrum in the S1 wind tunnel ON-
ERA [11]

1.2.2 Intermittency

The basic assumption of Kolmogorov K41 theory is the self-similarity of
turbulent flow. Indeed experimental data [12, 13| shows that the probability
distribution function (pfd) of velocity increments are roughly Gaussian at
large scales, but when small scales are considered, the tails of the distributions
depart from the Gaussian behavior, and events larger than the standard
deviation have a larger probability to occur than in the Gaussian case.

This anomaly is confirmed by time series of turbulent velocities, which
appear to be roughly self similar, but once they are high-pass filtered reveals
an intermittent behavior, i.e. there is an alternation of periods of quiescence
and periods of intense fluctuations [5]. Within the Taylor’s hypothesis this is
equivalent to state that on small scales the statistic of velocity fluctuations
is strongly intermittent.

A measure of the intermittency is given by the flatness:

LSO ((Gu)
FO= 508 = (Guw?

(1.55)
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Figure 1.2: Probability distribution function o, P(du,) of longitudinal velocity
increments at different scales ¢ normalized with their standard deviations
o¢ = (6u2)}/2. Experiments by Herweijer and Van de Water [1995]

Since the fourth order moment receives contributions from the tails of the
pdf, the flatness gives a measure of how frequent are the events larger than
the standard deviation. While the flatness of turbulent velocity fluctuations
on large scale is close to the Gaussian value F' = 3, it grows on small scale,
as a consequence of the non-similarity of pdf’s of fluctuations at different
scales.

Measurements of the high order structure function[11] have shown that a
power law behavior is indeed observable,

Sp(6) = ((Bue)?) £ (1.56)

but the scaling exponents differ from the dimensional K41 prediction ¢, =
p/3.

In the multifractal approach [14], instead of a global scale-invariance,
a local scale-invariance is assumed, so that the scaling exponent h of the
velocity field can assume a whole range of different values, with a probability
determined by the dimension D(h) of the fractal set with a given exponent
h. The scaling exponents of the structure function of order p are obtained
as Legendre transform of the fractal dimension D(h):

G = i%f[ph + 3 — D(h)] (1.57)
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1.3 Two-dimensional turbulence

The study of two-dimensional incompressible flows at high Reynolds numbers
presents several reasons of interest. A principal reason is provided by its
relevance for geophysics. Indeed, the intermediate-scale dynamics of oceans
and atmosphere, because of the combined effects of their stratification and
the earth’s rotation, can be roughly described as a two-dimensional flow.
An other reason comes from plasma physics, where the presence of a strong
mean magnetic field can confine the turbulent motions of plasma in the plane
perpendicular to the magnetic field, and again the dynamics can be described
by two-dimensional magneto-hydrodynamics (2D MHD) [15].

The classical theory of two-dimensional turbulence originates from the
works of Batchelor, Kraichnan and Leith [16, 17, 18], which showed that the
conservation of vorticity along the streamlines which occurs in two dimen-
sions, produces radical changes in the behavior of turbulence.

Far from being a simplified version of the three-dimensional problem, two-
dimensional turbulence presents a rich panorama of new phenomena, like the
formation of coherent vortices from an initially disordered “sea” of vorticity
which have attracted a large interest.

Finally, Navier-Stokes equation in two dimensions has the appealing fea-
ture to be less demanding on a computational level than the three-dimensional
case, allowing to reach relatively high Re numbers in direct numerical simu-
lation (DNS).

1.3.1 Vorticity equation in two dimensions

In two dimensions, the incompressible velocity field u can be expressed in
terms of the stream-function v as:

u = (9, —0,0) (1.58)

The vorticity field, defined as the curl of velocity, w = V X u, in two dimen-
sions has only one non-zero component which is orthogonal to the plane of
velocity and is related to the stream-function by

w=—Av¢ (1.59)

Thus instead of giving a description of the flow in term of the two components
of velocity, which are not independent because of the incompressibility condi-
tion, it is convenient to rewrite the two-dimensional Navier-Stokes equations
in terms of the vorticity scalar field:

({;—U:—f—u-Vw:l/VQw—au—i-fw, (1.60)
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The linear dissipative term accounts for friction between the thin layer of
fluid which is considered, and the rest of the three dimensional environment.
Its effects will be discussed in the following chapter. The term f, represents
the external source of energy acting on the largest scales — e.g. stirring. This
term counteracts the dissipation by viscosity v and friction « and allows to
obtain a statistically steady state.

To solve Eq. (1.60) it is necessary to specify a set of boundary condi-
tions which are required to solve the Poisson equation (1.59) for the stream
function. In most studies on 2D turbulence, periodic boundary conditions
are assumed in both the two directions. The presence of realistic no-slip
boundaries gives origin to a source of vorticity fluctuations.

1.3.2 Conservation laws

The main difference with the three-dimensional case is the conservation of
vorticity along fluid trajectories when viscosity, friction and external forcing
are ignored.

The origin of this phenomenon is due to the vanishing in two dimensions
of the so called “vortex stretching term” (w - V)v that appears as a forcing
term in the evolution equation for vorticity in the three-dimensional case
where it is responsible for the unbounded growth of enstrophy in the limit
Re — o0.

In the inviscid limit v = 0 and in absence of external forcing and friction,
the vorticity equations simply states that the derivative of the vorticity along
the fluid trajectories vanishes

%jzaa—jiku-Vu):O (1.61)
which means that since the vortex stretching is absent the vorticity of a fluid
parcel is conserved. Thus all the integrals of the form [ f(w)dr are inviscid
invariants of the flow. In particular this properties yields to the conservation
of the circulation I' defined as

r:/Dwd%«:ng u(r,t) - ds (1.62)

where ds denotes the length of an infinitesimal element of the boundary 0D,
and the total enstrophy

1
Z:/d2r§p\w|2 (1.63)

In two dimension the enstrophy is bounded by the energy balance equa-
tion, which is obtained from Eq. (1.60) in absence of external forcing f =0
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and friction o = 0, and assuming periodic boundary conditions:

Z
C(ii_t = —1//d27"p|Vu)|2 (1.64)

Therefore, at variance with the three-dimensional case, in two-dimensional
turbulence the viscous dissipation of energy vanishes in the limit v — 0

lim a_ lim —2vZ =0 (1.65)
v—0 dt v—0
whereas there is dissipative anomaly for enstrophy when friction is not con-
sidered. One of the effects of friction that will be discussed in next chapter
is the regularization of the vorticity field: in presence of friction also the
enstrophy dissipation vanishes in the limit of vanishingly small viscosity [19].

Since the viscous energy dissipation vanishes it the limit Re — oo, in fully
developed two-dimensional turbulence it is impossible to have a cascade of
energy with constant flux toward small scales.

Moreover, the presence of two quadratic inviscid invariant, the energy
and the enstrophy, modifies the picture of the turbulent cascade. Dividing
the wavenumber space into shells of modulus k,, = k¢2" the triad interactions
between wavenumbers which produce the energy cascade in three dimensions
can be thought of as pair interactions between the n-th shell and the (n+1)-th
one. This is inadmissible in two dimensions because pair interaction between
two neighbor shells cannot transfer both energy and enstrophy conservatively
between equal wave-numbers. In order for both energy and vorticity to be
conserved the net transfer by each triad interaction must be out of the middle
wavenumber into both smallest and largest wave-numbers. Starting from the
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Figure 1.3: Schematic double cascading spectrum of forced two-dimensional
turbulence
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hint that the interactions should act toward producing equilibrium, a state
which is never reached because of the viscous dissipation, Kraichnan showed
that in two-dimensional turbulence the enstrophy is mainly transferred to
high wave-numbers where it is dissipated by viscosity, giving rise to the direct
enstrophy cascade. On the contrary, the energy is transported to lower wave-
numbers in the nverse energy cascade.

1.3.3 Inverse energy cascade

The scaling laws in both cascades can be obtained from dimensional analysis
of Navier-Stokes equation as well as in the three-dimensional case.

For the inverse energy cascade, the assumption of a constant flux of energy
I1(¢) = —e toward large scales reproduces 3d-like scaling laws for velocities
and characteristic times:

wp ~ /303 (1.66)

o~ € 3023 (1.67)

This means that the velocity field in the inverse cascade is rough, with scaling
exponent h = 1/3, exactly as in the three-dimensional case. The prediction
for the energy spectrum reads

E(k) = Ce/3k /3 (1.68)

E(k)

108

Figure 1.4: Energy spectrum of the inverse energy cascade E(k) ~ k=°/3,
In the scaling range the energy flux (shown in the inset) is constant and
negative.
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The hypothesis of locality of triadic interactions in the inverse cascade
is consistent with the £=3/% spectrum. The transfer is associated with the
distortion of the velocity field by its own shear. The effective shear at given
wavenumber k£ is expected to be negligibly affected by wave-numbers < k
because the integral fooo k*E(k)dk, which measure the mean-square shear,
converges at £k = 0. Also the contribution by high wavenumber > £ is
negligible because vorticity associated with those wave-numbers fluctuates
rapidly in space and times and gives a small effective shear across distances
of order k1.

In absence of a large-scale sink of energy the inverse cascade can only be
quasi-steady because the peak kg of the energy spectrum keeps moving down
to ever-lower wave-numbers as

kp(t) ~ e Y273/ (1.69)

while the total energy grows linearly in time E(t) = et. If the input of
energy continues for a sufficiently long time, the cascade can eventually reach
the integral scale and energy begins to accumulate in the lowest mode, a
phenomenon which is the analogous of Bose-Einstein condensation [20] of
a finite two-dimensional quantum gas. This pile up of energy can produce
a large scale spectrum steeper than k=3 which violates the hypothesis of
locality of interactions.
The presence of friction stops the energy cascade at wavenumber

kg ~ e 20?2 (1.70)

where the energy dissipation balances the energy transfer 2aF,, = €.

In two-dimensional turbulence it is possible to demonstrate the analogous
of the Kolmogorov’s four-fifths law. In the limit of infinite Reynolds number
the third order (longitudinal) structure function of two-dimensional homo-
geneous isotropic turbulence, evaluated for increments ¢ small compared to
the integral scale, and larger than the forcing correlation length, is given in
terms of the mean energy flux per unit mass € by

S3(0) = ((6up)®) = gez (1.71)

Together with the scaling hypothesis for the structure functions Sp () ~ £
the three-half law allows to obtain the equivalent of K41 theory for the inverse
energy cascade in two-dimensional turbulence.

At variance with the three-dimensional case, where the dimensional pre-
diction for the scaling exponents is modified by the presence of small scale
intermittency, the statistics of velocity fluctuations at different scale ¢ in
the scaling range of the inverse energy cascade are found to be roughly self-
similar [21], with small deviations from gaussianity.
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1.3.4 Direct enstrophy cascade

On scales smaller than the forcing correlation length, the hypothesis of a
constant enstrophy flux I, (¢) = ¢, leads to a different scaling. The enstrophy
contained in the eddies of size £ can be estimated as Z(¢) ~ E({)/¢* ~ ull?,
and its flux

Z()  udu
()~ —~ ——=¢, . 1.72
O~ (1.72)
gives the following scaling for velocities:
up ~ €3¢ (1.73)

Therefore the velocity field in the enstrophy cascade is smooth, at variance
with the velocity field in the inverse cascade. The dimensional prediction for
characteristic times simply tells that there is essentially one single time scale
in the direct energy cascade 7 ~ e ? which provides an estimate of the
inverse of the Lyapunov exponent of the flow. The prediction for the energy

spectrum reads
E(k) = C'éPk 3 (1.74)

10

Figure 1.5: Energy spectrum of the direct enstrophy cascade E(k) ~ k3. In
the scaling range the enstrophy flux (shown in the inset) is almost constant.

A spectrum k™% means that the integral [°k*E(k)dk, which measure
the mean-square shear has a logarithmic divergence in the infrared cutoff.
Thus the hypothesis of locality of interactions in the cascade can be violated
in the direct enstrophy cascade.

In next chapter I will discuss how the presence of a linear drag modifies
this picture. We will show the presence of small-scale intermittency for the
statistics of vorticity fluctuations and its dependence on the friction intensity.
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1.3.5 Coherent vortices

The decay of two-dimensional turbulence has the fascinating property of or-
ganizing into coherent structures from a disordered background. This feature
has been observed in laboratory experiments [22] as well as in numerical simu-
lations [23, 24]. In a first stage the system self-organizes into a set of coherent
vortices containing most of the flow vorticity, surrounded by an incoherent
sea of small scale vorticity. The vortices mutually advect each other and
their dynamics is well represented by the Hamiltonian point-vortex model.
When two vortices of the same sign come close to each other they can merge
in a bigger one, and the total number of vortices decay algebraically [25, 26]
as n(t) ~ t~¢. In the final state remains only a survivor dipole, which decay
diffusively.

Figure 1.6: The formation of coherent structures in decaying two-dimensional
turbulence.

The interest for this process is clearly motivated by its relation with the
formation of large vortices in atmosphere, which play a fundamental role
in our weather and our climate. As I will show, the presence of friction or
polymers strongly modifies the classical picture of decaying turbulence, and
may completely suppress the self-organization into large scale vortices.



Chapter 2

Effects of friction in
two-dimensional turbulence

In order to study the properties of fully developed three-dimensional turbu-
lence, it can be interesting to consider a portion of the fluid far from the
boundaries, such that their interaction with the fluid can be neglected. On
the contrary, when a thin layer of fluid is considered, it is important to in-
clude the effects of the friction between the two surfaces of the layer and the
surrounding three-dimensional environment.

In many physical situations, the incompressible flow of a shallow layer
of fluid can be described by the two-dimensional Navier-Stokes equations
supplemented by a linear damping term which accounts for friction. An
important instance, among others, relevant to geophysical applications is the
rotating flow subject to Ekman friction [27]. Other well known examples are
the Rayleigh friction in stratified fluids, the Hartmann friction in Magneto-
Hydro-Dynamics [28] and the friction induced by surrounding air in soap
films [29].

Understanding the effects of the friction term is thus a fundamental issue
because of their physical relevance. Moreover, in numerical study of forced
two-dimensional turbulence, in order to obtain a statistically steady state, it
is necessary to introduce a large scale sink of energy to stop the inverse cas-
cade and to prevent the Bose-Einstein condensation phenomenon [20]. The
linear friction term is a natural candidate for this purpose, but its presence
can produce strong effects not only on the large scales, but also on scales
smaller than forcing correlation length, in the inner core of the direct enstro-
phy cascade.

In this chapter I will study these effects focusing on the influence of
friction on the statistical properties of small-scale vorticity fluctuations.

I will first show the analogies and differences between this problem and
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the transport of a passive scalar with finite lifetime [30], presenting some
results recently obtained for the passive scalar statistics.

Using a Lagrangian description of the vorticity cascade I will then obtain
the condition for the equivalence between small-scale vorticity and passive
scalar statistics, which allows to extend to vorticity the results of the passive
case.

Finally I will present the results of direct numerical simulations which
confirms the predictions obtained using the Lagrangian approach. In par-
ticular I will show that the statistics of small-scale vorticity fluctuations is
intermittent and that intermittency arises from the competition between the
stretching properties of the flow and the exponential decay induced by fric-
tion.

2.1 Origin of the friction term

A linear friction term naturally arises in a wide range of different physical
situations, and its origin should be considered within each specific context.
Here we will briefly consider the case of thin stratified layers of fluids electro-
magnetically forced [31, 32|, in which the origin of the friction term can be
easily understood starting from the classical three-dimensional Navier-Stokes
equations.

The dynamics of a shallow layer of incompressible fluid, with a thickness
h much smaller than its extension L is described by Navier-Stokes equations:

p
atu—i-u-Vu:—vT—f-uAu—l—f (2.1)

where P is the pressure, p is the density of the fluid, v is its kinematic
viscosity, and f the external forcing.

In the passage from a three-dimensional to a two-dimensional description
the vertical components of velocity u, are neglected, since their magnitude
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with respect to the horizontal ones uy is assumed to be of the same order of

the aspect ratio:

We)rms 1 (2.2)

(U'H )rms L
Then we need to parameterize the vertical dependence of horizontal veloc-
ities. Experimental results [31] suggest that the flow structure within the
layer is close to a Poiseuille flow, so we can assume a laminar viscous profile
of velocities in the z-direction: u(z) —u(h) ~ (2 —h)2. With this assumption
the three dimensional viscous term in eq.(2.1) gives origin to a two dimen-
sional viscous term plus an additional linear damping term, which represent
the effects of the bottom friction of the fluid:

V(0505 + 0,0, + 0,0.)u — (9,0, + 0,0,)u — o (2.3)

The resulting friction coefficient « is proportional to the inverse of the square
of the total thickness of the layer h:

according to the intuitive idea that the thinner is the layer, the stronger it
feels the bottom friction.

2.2 Steepening of the energy spectrum

In absence of friction the requirement of a constant enstrophy flux in the
direct cascade allows to obtain a dimensional prediction for the energy spec-
trum E(k) = C'ef*r3 (see Chapter 1). As already shown by Bernard [33]
and Nam et ol [30], a non-vanishing friction regularizes the flow depleting
the formation of small-size structures and results in a steeper spectrum [30]

E(k) ~ k™3¢ (2.5)

In the range 0 < £ < 2 the exponent & coincides with the scaling exponent (5
of the second-order moment, of vorticity fluctuations S¥(r) = ((§,w)?) ~ ré.
An explicit expression for the correction £ to the spectral slope will be given
in Section. 2.4.

The physical origin of the steepening of the spectrum is clear: part of
the enstrophy which is transported to small scales is removed by the friction
during the cascade process, thus the amplitude of fluctuations which reach
the small scales is reduced. Since the energy spectrum is steeper than F(k) ~
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k=3, the second-order velocity structure function Sp(¢) = (du?) is dominated
by the IR contribution of the spectrum and trivially displays smooth scaling
independently of the value of £. Thus the presence of a non-vanishing friction
term ensures that the velocity fields in the direct enstrophy cascade is smooth.

2.3 Analogies with the passive scalar prob-
lem

The problem of two-dimensional turbulence with a linear friction can be
considered as the active version of the transport of a passive scalar field with
finite lifetime.

Indeed, there is a formal analogy between two-dimensional Navier-Stokes
equation for the scalar vorticity w = V X u, supplemented by the linear
friction term

%—C:-FU-V(U:I/VQUJ—QM-Ffw. (2.6)

and the dynamics of a concentration field 0(x,t) with a finite lifetime T,
transported by the velocity field w(x,t), which is described by the reaction-
diffusion-advection equation

%+u-V0:mV20—%9+fg. (2.7)
where « is the molecular diffusivity and fj is the source of scalar fluctuations.

It is clear that the analogy is just apparent: while Eq. (2.7) is a linear
equation for the field 6(x,t), Eq. (2.6) is strongly non-linear, because vortic-
ity is the curl of velocity. Moreover while the equation for the passive scalar
needs to be supplemented by an equation for the evolution of the advecting
velocity field u(x,t), the equation for vorticity determines also the evolu-
tion of velocity. Indeed the incompressible velocity field can be expressed in
terms of the stream-function ¢ as u = (0,9, —0,¢), and the stream-function
can be obtained from the vorticity solving the Poisson equation w = —Au.
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Figure 2.1: Snapshots of the vorticity field (left) and passive scalar field with
finite lifetime (right) resulting from the simultaneous integration of Eq. (2.7)
and Eq. (2.6). Detail of the simulation are reported in Sec. (2.5)

Nevertheless comparing a snapshot of the vorticity field obtained from nu-
merical integration of Eq. (2.6), with a simultaneous snapshot of the passive
scalar (see Fig. 2.1) obtained by the parallel integration of Eq. (2.7), using
identical parameters k = v and a = 1/7, it is evident that many similarities
exist between the passive and the active field. Both vorticity and passive
scalar fields are characterized by filamental structures, whose thickness can
be as small as the smallest active length-scales. These “active” regions, where
the vorticity experiences relatively strong excursions, are alternated to “qui-
escent” areas, the patches, where vorticity changes smoothly. This is the
visual counterpart of the intermittency phenomenon, which is originated by
the identical mechanism for vorticity and passive scalar.

It is interesting to notice that the forcings f,, and fy used in our simula-
tions are chosen as independent stochastic processes with the same statistics.
Were the two forcings identical f,, = fp they would cancel each other in the
equation for the difference field #(x,t) — w(x,t) which consequently would
decay to 0 in a finite time. This means that if the passive field is forced
exactly in the same way of the vorticity field, after some time it becomes
identical to the active one, although it has no feedback on the fluid. This
trivial observation is revealing of the crucial role played by the correlation
between forcing and fluid trajectories in the passage from the passive to the
active problem.
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2.4 Passive scalar with finite lifetime

The problem of transport of a passive scalar with finite lifetime has seen
in the last years a renewed interest [19, 34, 35, 36] because it is the proto-
type of a wide class of physical problems, ranging from biological processes
like plankton dynamics, to chemical reactions in chaotic flows. It grasps the
basic relevant features of the general problem of transport by a fluid envi-
ronment of substance with an intrinsic dynamics, with the appealing feature
of its simplicity, which in some specific situation allows to obtain analytical
solutions.

In this section I will introduce the passive scalar problem following the
works of M. Chertkov, E. Hernandez-Garcia, Z. Neufeld et al., showing how
the interaction between chaotic advection and linear damping can originates
intermittency and smooth-filamental transition for the scalar field. These
results will be extended in Section (2.5) to the active case.

2.4.1 Chaotic advection

Studying the advection of a passive scalar field is the basic approach for
understanding the general problem of mixing in fluids.

The evolution of a scalar field f(zx, t) diffusing and transported by a given
velocity field u(z,t) is given by the advection-diffusion equation

% +u-V0=kV0. (2.8)
ot

In the passive approach one assumes that it is possible to neglect all the pos-
sible kind of feedback of the transported field on the flow, e.g. the buoyancy
force in the case of temperature field. Moreover Equation (2.8) is obtained
assuming that the trajectories of the advected field coincide with those of
the fluid particle, i.e. neglecting inertial effects [37] which are originated by
difference of density between the solution and the solute or by finite size of
the particle in suspension.

This clearly means that one is just giving an approximate description of
fluid transport, but on the other side this approach has the great advantage
that the behavior of a blob of passive scalar injected in the fluid can be
understood in term of the statistical properties of fluid trajectories, which is
the essence of the Lagrangian description of transport.

Fluid trajectories in realistic flows are typically chaotic, i.e they show a
sensible dependence on initial conditions, thus also the advection of a scalar
field will be chaotic. Chaotic advection contains the essence of the mixing
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properties of fluid transport, that is the characteristic mechanism of stretch-
ing and folding of material elements.

Here we will focus on chaotic advection by a smooth, two-dimensional,
time-dependent, incompressible velocity field, which is the case of the velocity
field in the direct enstrophy cascade in presence of friction, as discussed in
the previous section.

Because of the presence of chaos, nearby fluid trajectories typically sepa-
rate with an exponential rate given by the leading Lyapunov exponent [38]:

o(t)

o1
A= fim Jim 2o == (2:9)

where &y and 0(t) are respectively the initial separation and the separation

/ )

5

at time ¢ of the two Lagrangian trajectories: 6(t) = |2 (t) — @ (t)]. As a
consequence an element of fluid is elongated exponentially in the direction of
the leading Lyapunov vector, resulting in a long filament, which is folded on
itself several times. At the same time, because of incompressibility, the area
of the two-dimensional fluid element is preserved, and so the thickness in the
transverse direction must decrease exponentially fast with the same rate.

Injecting in the fluid a blob of passive tracer with a typical size £, it will
follow the same evolution, and in a time ¢ it will became a filament of length
L = ¢y exp(At) and thickness 7 = ¢ exp(—At). The thinning process is finally
stopped by the diffusion process on the diffusive scale v/ Ak

()=

This means that the original fluctuation of passive scalar which was in-
jected at the scale £y in a time ¢ has been transported down to the small
scale r. This phenomenon is known as the direct cascade of passive scalar, in
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which large scale inhomogeneities of the concentration field are transported
by the flow to the small scales where they are omogeneized by molecular
diffusivity.

Chaotic advection provides a mechanism to transport quickly a large scale
fluctuation to small scale, originating the typical filamental pattern which are
observed in transported fields. The roughness of the concentration field can
be characterized by a Holder exponent h:

160(z,7)| = |0(xz +7) — ()| ~ 7", |r] =0 (2.10)

For a smooth field (i.e differentiable) at  we have A = 1 while the range
0 < h < 1 correspond to an irregular (e.g. filamental) field.

2.4.2 Chaotic advection and linear damping

If the advected field is reactive, e.g. in the case of concentration field of
a chemical product, the resulting structure of the concentration field is de-
termined by the competition between the mixing process and the chemical
reaction. We are interested in the simplest case of reaction, that is an ex-
ponential decay of the concentration field originating form its finite lifetime,
because of its analogy with the friction term in the equation for vorticity.
In this case the two processes in competition are the direct cascade of
scalar fluctuation produced by the flow, and the exponential decay of the
same fluctuation due to the reaction term. The stretching exerted by the
incompressible smooth velocity generates small scale features at exponential
rate (Lyapunov):
r = LeM (2.11)

At the same time fluctuations initially generated by the external forcing at
the large scale L decay at exponential rate given by the inverse of finite
lifetime o = 1/7:

§0(r,t) = 60(L,0)e* (2.12)
Combining the two exponential behavior one has:
r\ o/
56(r,t) = 60(L, 0) (Z) (2.13)

and thus, in stationary conditions one gets the following scaling law for the
structure functions:

S(r) = ((8.0)P) ~ 1% (2.14)

with the scaling exponents:

Cg = min [p%,p] (2.15)
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When the omogeneization produced by the linear damping is stronger
than the stirring o > A the resulting field is smooth with Holder exponent
h = 1, otherwise one obtains a filamental rough field with A = «a/A. This
phenomenon is known as smooth-filamental transition [36].

In the scaling range the prediction for the power spectrum of passive
scalar fluctuations reads:

Ey = 2rk{|0(k)[?) ~ k172 (2.16)

The spectral slope shows an explicit dependence on the linear damping co-
efficient @ = 1/7, and in the limit of infinite lifetime o — 0 the Batchelor’s
k~! prediction is recovered.

2.4.3 Intermittency

The previous results which has been presented with intuitive but not-rigorous
arguments, are formally valid only in a mean field sense, i.e. assuming a
constant stretching rate A. This is not the general case.

While in the limit of infinite time the stretching rate is the same for
almost all trajectories in an ergodic region, and is given by the Lyapunov
exponent, the stretching rates at a finite time ¢ are given by the finite time
Lyapunov exponents vy, which are defined as

1, 6(t)
= lim —In —= 2.17
7 60—0 t (S() ( )
Because of their local character they can assume different values depending
on the initial positions of the trajectories along which they are measured.
For large ¢ their distribution approaches the asymptotic form

P(y,t) ~ '/ exp[-S(7)t] (2.18)

The Cramér function S(y) (also called entropy function) is concave, positive,
with a quadratic minimum in A (the maximum Lyapunov exponent) S(\) =
0, and its shape far from the minimum depends on the details of the velocity
statistics [38, 39]. The quadratic minimum of S(v) correspond to a Gaussian
behavior for the core of the probability distribution of the stretching rate
v, which can be predicted in the general case thanks to the Central Limit
Theorem. In the limit £ — oo the distribution became a J-distribution with
support for v = A.

Local fluctuations of the stretching rates are the origin of the intermittent
behavior of the passive scalar statistic. Indeed, in order to obtain the cor-
rect evaluation of the structure functions of passive scalar fluctuations, it is
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necessary to average over the distribution of finite-time Lyapunov exponents:
0/ — n ﬁ)pa/v N (1)[;0%5(7)]/7 N (£>C;’ 91
s =G0 ~{(7) )~ [dr(3 -)7 . (219)

The scaling exponents are evaluated from Eq. (2.20) by a steepest descent
argument as:

¢ = min {p, [pa+ S/} - (220)

Intermittency manifests itself in the nonlinear dependence of the exponents
¢! on the order p.
In the Gaussian approximation for P(vy), which holds near its core, the
Cramér function has the quadratic expression:
(v = A)?

S() =55 (2.21)

and it is possible to obtain an explicit expression for the scaling exponents

G
¢) = min {p, % (\/ A2 + 2paA — A) } (2.22)

2.4.4 Smooth-filamental transition

The smooth-filamental transition predicted for a = A in the mean field case,
can be recast taking into account the intermittent behavior. According to
Eq. (2.20) the exponent of the p-th structure function is the minimum be-
tween p, which corresponds to the smooth behavior, and min, {[pa + S(7)]/7}
that describes the rough, filamental field.

In the Gaussian approximation the crossover between the linear and non-
linear behavior for the scaling exponent happens for:

. 2
Pt = K(a —A) (2.23)

where the curve 1/A(4/A? + 2paA — X) intersects the line p. Below the
smooth-filamental transition, when a < A, the intersection is for p* < 0,
thus all the positive moments of the distribution of passive scalar fluctuation
follow the non-linear behavior. This means that the filamental part of the
field is dominant. On the contrary, when a > A there is a crossover between
the smooth scaling exponent for the structure functions of order p < p* and
the non-linear behavior for p > p*. In this case only the higher moments of
the passive scalar statistics are able to detect the filamental structures, while
the lower moments are dominated by the smooth behavior of the field.
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It is worthwhile to underline that CI‘;' in the non-smooth case is determined
by the value of S(v;) where -, is the finite-time Lyapunov exponent which
minimizes [pa+S(7y)]/v. Since 7, is a growing function of p (in the quadratic
approximation v, = 1/A? + 2paA ) higher moments of passive scalar fluctu-
ations are determined by the tail of the distribution of the stretching rates,
where the parabolic approximation for S(y) does not hold in general. Thus
the behavior of high order structure functions is extremely dependent on the
detail of the velocity field. Nevertheless the presence of a smooth-filamental
transition is determined by the asymptotic behavior of the exponents for
p — 0 where the Gaussian approximation holds thanks to the Central Limit
Theorem, thus the smooth-filamental transition is always present for a = A,
while for @ > )\ the exact value of the critical moment p* can deviate from
Eq. (2.23).

We notice that relations obtained in the Gaussian approximation are ex-
act for the peculiar case of the Kraichnan-model, that is a smooth veloc-
ity field d-correlated in time, in which the Cramér function S(7) is exactly
parabolic.

2.5 Lagrangian description of the vorticity cas-
cade

In this section I will focus on the statistical properties of vorticity fluctuations
dw = w(x + r,t) — w(xz,t) at scales r smaller than the correlation length
L of the external forcing. The intuitive arguments presented for the passive
scalar will be reformulated in terms of Lagrangian description of the vorticity
cascade, which allows to point out the crucial differences between the active
and the passive problem.

2.5.1 Fluid trajectories and exit-times

We consider the two-dimensional Navier-Stokes equation for the scalar vor-
ticity w =V x v:
ow

E‘FU-V(U:I/VZW—OJW-F]Z,, (2.24)

with the additional friction term —aw.

As already told in Sec. 2.2 the presence of friction regularizes the flow,
removing scale by scale part of the enstrophy which is transported to small
scales by the cascade process. As a consequence, at variance with the fric-
tionless case where the the flux of enstrophy towards small scale is constant



40 2. Effects of friction in two-dimensional turbulence

in the scaling range, in presence of friction it decays as k=¢ (see Figure 2.2).
At viscous wave-numbers kq ~ ! the enstrophy flux is stopped by viscous
dissipation, with a dissipation rate €, ~ v* which vanishes in the inviscid
limit v — 0, since & > 0. In other words, in the limit of vanishingly small
viscosity, there is no dissipative anomaly for enstrophy[19]. The absence of

10t : ‘
107 |

103 |

M,(K)

10 +

Figure 2.2: Enstrophy flux I1,,(k) ~ k¢ forv =5-107% (+) and v = 1.5-10°
(x). Here a = 0.15. Reducing v the remnant enstrophy flux at small scales
tends to zero as v¢, allowing to disregard viscous dissipation.

dissipative anomaly for any « strictly positive allows to disregard the viscous
term in Eq. (2.24) as far as we are interested in the statistical properties in
the scaling range. In the limit v — 0 it is possible to solve Eq. (2.24) by the
method of characteristics yielding the expression:

t
(@, ) = / £(X(s), 5) exp[—alt — 5)] ds (2.25)

where X (s) denotes the trajectory of a particle transported by the flow:
X (s) = v(X(s),s) (2.26)

ending at X (¢) = . The uniqueness of the trajectory X (s) in the limit
v — 0 is ensured by the fact that the velocity field is Lipschitz-continuous *

LA field f(x) is Lipschitz-continuous of order a if Je > 0,3B finite,30 < 3 < a : V|h| <
el f(h) — £(0)| < Blh|’.
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Ti(r)

F’i’l’fo’c

t-T (r)

as it can be seen from the velocity spectrum E(k) ~ k3¢, always steeper
than k3 (see Fig. 2.4).

The physical meaning of Eq. (2.26) is clear: the value of the vorticity field
in a certain position & at time ¢ is just the sum of all the contributions given
by the forcing along the fluid trajectory which ends in  at time ¢, depleted
by an exponential factor because of the linear damping.

Vorticity differences d,w at scale r smaller than the forcing correlation
length L are then associated to couples of fluid trajectories which at time ¢
are at distance | X'(t) — X (t)| =7

t
w(z' t) —w(ze,t) = / [fo(X'(s5),8) — fu(X (5),s)]e = ds  (2.27)
—00
Inside the time integral, the difference between the value of f, at X' and
that at X is negligibly small as long as the two fluid particles lie at a distance
smaller than L, the correlation length of the forcing; conversely, when the pair
is at a distance larger than L, it approximates a Gaussian random variable

2. One then obtains:

t—TL(T)
drw ~ Q/ e~=9) ds ~ QeTL(r) (2.28)

—0o0
where T7,(r) is the time that a couple of particles at distance 7 at time ¢ takes
to reach a separation L backward in time.
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Equation (2.28) simply tells that a fluctuation of vorticity is originated
by the forcing when the two trajectories are at distance larger than the
forcing correlation length, and then it decays exponentially for all the time
T, (r) required to transport by chaotic advection the fluctuation down to the
small scale r in the direct cascade process. At a fixed scale r, large vorticity
fluctuations arise from couples of particles with relatively short exit-times
T1(r) < (Ty,(r)), whereas small vorticity fluctuations are associated to large
exit-times.

2.5.2 Structure functions and scaling exponents

To evaluate the moments of vorticity fluctuations it is necessary to perform
an average over the statistics of forcing which generates the fluctuations, and
over exit-times statistics:

S¢(r) = ((Grw)P) ~ () (e PN () (2.29)

Since the velocity field is smooth, two-dimensional and incompressible,
particles separate exponentially fast and the statistics of exit-times can be
replaced by the statistics of finite time Lyapunov exponents, which measure
the growth rate of the logarithm of the distance between two particle during
a time ¢. The finite-time Lyapunov exponent and exit-times are thus related
in a smooth flow by the condition:

L =ret™em), (2.30)

We remark that this relation does not hold in the case of non-smooth
flows, where the relative dispersion follows a power law [40]. In this case
the growth of the distance ¢ between two trajectories is dominated by the
structure of the flow at the same scale. The scaling law for the intensity
of the eddies of size ¢ characterized by the Holder exponent of the rough
velocity field, gives origin to a power law for particle separation. Thus the
exit-time 77, (r) value is dominated by the eddy at large scale L and is almost
independent from the small initial separation 7.

Replacing the average over the statistics of exit-times with the statistics
of finite-time Lyapunov exponents, and using the asymptotic behavior for
the distribution P(7,t) ~ /2 exp[—S(7)t] (see Section (2.4)), one gets the
following estimate for moments of vorticity fluctuations

Sy(r) ~ () / dyP(y)e "5~ () / dy (%)WW ~ (Df )
2.31
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The scaling exponents are evaluated from Eq. (2.31) by a steepest descent
argument as:

G =min {p, o+ S/} - (232

In the range 0 < (¥ < 2 the scaling exponent of the second order struc-
ture function for vorticity is related to the spectral slope of vorticity power
spectrum

Z(k) = 2rk{|o(k)[>) ~ k¢ (2.33)

by the relation & = (3, which gives the explicit dependence on the friction
coefficient « of the spectral slope of the energy spectrum:

E(k) = Z(k)/k* ~ k¢ (2.34)

2.5.3 From active to passive problem

It has to be noticed that the active nature of w has been completely ignored
in the above arguments: the prediction for the structure function given by
Eq. (2.31) is identical to Eq. (2.29) obtained for the passive scalar with finite
life-time. The crucial hypothesis in the derivation of Eq. (2.31) is that we
have assumed that the statistics of trajectories is independent of the forcing
Jor

(PePTEO) 1y = () e PO ), (2.35

While for the passive scalar this is trivially true, because the forcing of the
passive field has no relation with the velocity field, and cannot influence
fluid trajectories, in the case of vorticity this is quite a nontrivial assumption,
since it is clear that forcing does affect large-scale vorticity and thus influence
velocity statistics, but it can be justified by the following argument.

The random variable 2 arises from forcing contributions along the trajec-
tories at times s < t—T7,(r), when the distance between the two fluid particles
is larger than the forcing correlation length L, whereas the exit-time 77 is
clearly determined by the evolution of the strain at times ¢t — 7%, (r) < s < t.
Since the correlation time of the strain is o', for

T(r) > 1/a (2.36)

we might expect that 2 and T (r) be statistically independent. This condi-
tion can be translated in terms of the finite-time Lyapunov exponent as:

r < Lexp(—v/a) (2.37)

and thus at sufficiently small scales it is reasonable to consider w as a passive
field.
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We remark that, were the velocity field non-smooth, the exit-times would
be independent of r in the limit » — 0 and the above argument would not
be relevant. Therefore, the smoothness of the velocity field plays a central
role in the equivalence of vorticity and passive scalar statistics.

2.6 Numerical results

To directly check the prediction for the steepening of the enstrophy spectrum
and for the statistics of small scale fluctuations of vorticity obtained in the
previous section using the analogy with the passive scalar problem, we have
performed numerical integration of Navier-Stokes equation for the vorticity
field (Eq. (2.6))

The numerical integration is performed by a fully de-aliased pseudo-
spectral code with a second-order Runge-Kutta scheme, on a doubly periodic
square domain of size L = 27 at different resolutions: N? = 5122,10242, 20482
grid points. Simulations have been partially performed at CINECA on IBM
SP3 and SP4 parallel computers.

The vorticity fluctuations are injected by a large-scale forcing f,, which is
Gaussian, d-correlated in time, and limited to a shell of wave-numbers around
ks = 2r/L. Forcing amplitude is chosen to provide an enstrophy injection
rate F' = 0.16. At variance with other choices for f, commonly used (e.g.
large-scale shear) this kind of forcing ensures the statistical isotropy and
homogeneity of the vorticity field.

Figure 2.3: Snapshots of the vorticity field obtained from numerical simu-
lations with two different values of friction: o = 0.15 (left) and oo = 0.23
(right).

Different values of the friction a = 0.15,0.23,0.30 has been tested, and
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a small viscosity (see Table (2.7)) is used to remove the remnant enstrophy
flux at small scales.

2.6.1 Steepening of the vorticity spectrum

The steepening effect on the vorticity spectrum has been investigated by
performing a set of simulations with increasing intensity of the friction oo =
0.15,0.23, 0.30.

According to the picture drawn in Section 2.2, at every every step of the
cascade process, the friction removes part of the vorticity, thus at higher
values of friction the fraction of vorticity which is transported to small scales
is reduced, and the resulting filamental structures are less intense, as it can
be seen in Figure 2.3. Consequently one observes steeper vorticity spectra at
increasing values of friction (see Fig. 2.4), in agreement with Eq. (2.34).

k Z(K)

00 01 02 03 04

a
10-15 L 1

10° 10* 10° 10°

Figure 2.4: The vorticity spectrum Z(k) ~ k~'¢ steepens by increasing the
friction coefficient . Here o = 0.15 (solid line), o = 0.23 (dashed line),
a = 0.30 (dash-dotted line). In the inset, the exponent ¢ as a function of a.

2.6.2 Intermittency

In Figure 2.5 are shown the probability density functions of vorticity fluctu-
ations d,w at various r, rescaled by their rms value {(J,w)2)/2.

As the separation decreases, the probability of observing very weak or
very intense vorticity excursions increases at the expense of fluctuations of
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average intensity. This phenomenon goes under the name of intermittency.
The non-similarity of the probability density functions reflects in the non-
linear behavior for the scaling exponents predicted by Eq. (2.33).

1 T T T T T

5, w<(3, wy2>12

Figure 2.5: Probability density functions of normalized vorticity increments
Srw/{(6,w)?) /2. Here, r = 0.20 (+), r = 0.07 (x), r = 0.02 (v). For
large separations the statistics is close to Gaussian, becoming increasingly
intermittent for smaller 7.

2.6.3 Vorticity vs. passive scalar statistics

To directly check whether small-scale vorticity can be considered as passively
advected by velocity, we integrated at the same time Navier-Stokes equation
for the vorticity field (Eq. (2.6)) and the equation of transport of passive
scalar with a finite lifetime (Eq. (2.7)) advected by the velocity fields resulting
from parallel integration of Navier-Stokes equation.

The parameters appearing in Eqgs. (2.6) and (2.7) are the same (v = x and
a = 1/7 = 0.15), yet the forcings f, and f, are independent processes with
the same statistics. As already discussed the independence of the two forcings
is crucial: were the two fields forced with the identical random process, the
difference field 6 —w would be free-decaying, and after a short time the passive
field would became identical to the active one.

According to the picture drawn in previous section we expect to observe
the same statistics for the fluctuations of vorticity d,w and passive scalar
0,0 = 0(x+7r,t) —0(x,t) on scales r small enough to ensure that the passive
condition (2.37) for vorticity is satisfied.
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10t

10-3 L +

Z(k), Eg(k)

Figure 2.6: Power spectra of passive scalar (x) and vorticity (+). Here
a = 0.15. In the inset we show the ratio Z(k)/FEy(k), which approaches a
constant for large k

In Figure 2.6 we show the power spectra of vorticity, Z(k), and of pas-
sive scalar FEy(k). The estimate of the range of wave-numbers at which the
statistics of vorticity and passive scalar are expected to be coincident, is
k > k* ~ krexp(A/a). With the actual values ky = 8, o = 0.15 and
A = 0.16 (see Figure 2.9) we have k* ~ 23. The two curves in Figure 2.6
are indeed parallel at large k£ (kK > k*), in agreement with the expectation
¢¢ = (Y. At smaller wave-numbers we observe a big bump in Z(k) around
k = k; which has no correspondent in Ey(k). This deviation is most likely
associated to the presence of an inverse energy flux in the Navier-Stokes
equation, a phenomenon that has no equivalent in the passive scalar case.
Due to this effect, the scaling quality of S (r) is poorer than the S)(r) one,
and a direct comparison of scaling exponents in physical space is even more
difficult.

However, we observe in Figure 2.7 that the probability density functions
of vorticity and passive scalar increments, once rescaled by their root-mean-
square fluctuation, collapse remarkably well onto each other. That is suf-
ficient to state, along with the result ¢¢¥ = ¢J obtained from Fig. 2.6, the
equality of scaling exponents of vorticity and passive scalar at any order:
=

The excellent collapse of the probability distribution of fluctuations con-
firms that the underlying mechanism which generates intermittency, that is
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Figure 2.7: Probability density functions of vorticity differences (solid line)
and of passive scalar ones (dashed line), normalized by their respective stan-
dard deviation, at different scales » within the scaling range.

the competition between exponential separation of Lagrangian trajectories
and exponential decay of fluctuations due to the linear damping, is the same
both for vorticity and passive scalar.

2.6.4 Scaling exponents and exit-time statistics

The actual values of the scaling exponents can be directly extracted from the
statistics of the passive scalar, which is not spoiled by large-scale objects. In
Figure 2.8 we plot the exponents Cg as obtained by looking at the local slopes
of the structure functions Sg (r), in comparison with the exponents predicted
by the Lagrangian exit-time statistics, according to

{exp[—apTy(r)]) ~ r% (2.38)

The exit-time statistics has been obtained with the following procedure:

e At time t = 0 2 x 10° couples of Lagrangian particles are located at
random position in the periodicity box (0 < z < L,0 < y < L) of the
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Figure 2.8: The scaling exponents of the passive scalar Cg (+). We also
show the exponents obtained from the exit times statistics (®) according to
(exp[—apTy(r)]) ~ r% with average over about 2 x 10° couple of Lagrangian
particles. The error-bars are estimated by the r.m.s. fluctuation of the local
slope.

velocity field, with initial separation d0 between the two particles of
each couple.

e A set of thresholds {r;} within the inertial range are fixed in geometric
progression 7; = 1o\’

e The trajectories of Lagrangian particles are numerically computed ac-
cording to & = u(x,t) where the velocity field w has been obtained by
parallel integration of Navier-Stokes equation.

e During the integration the distance between the two particles of each
couple is measured, and the time 7; when it reaches the threshold r; is
stored.

e When the distance of a couple reaches the integral scale L at time 77,
the exit-times 77 (r;) are computed as

To(r) =T, —T; . (2.39)

e The distance of the couple is then renormalized to d0 and the procedure
is repeated.
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Exit-times T7,(r;) provide an excellent tool for estimating the scaling ex-
ponent of the field. Since the thresholds can be chosen exactly within the in-
ertial range, the scaling of Lagrangian structure function (exp[—apTy(r)]) ~
r% is not spoiled by contamination of the viscous range, and the excellent
scaling allows for a precise measurement of the scaling exponents, which are
in good agreement with those directly observed from the structure function
of the passive field. Moreover, while the finite-time Lyapunov exponents are
achievable only in numerical simulations, the measure of exit-times can be
performed also in experiments by means of couple of Lagrangian tracers.

From the exit-time statistics it is also possible to recover the right tail
of the Cramér function S(v) as the inverse Legendre transform [41] of the
scaling exponents (j:

G = min {p,[par+ S(1)]/7} - (2.40)

which perfectly matches the Cramér function directly measured from the
statistics of finite-time Lyapunov exponents (see Figure 2.9).

0.14 ; J

012 | % b ]
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Figure 2.9: The Cramér function S(y) computed from finite time Lyapunov
exponents (symbols) and exit-time statistics (line).

2.7 Summary

In this chapter we have analyzed the effects of linear friction on the enstrophy
cascade in two-dimensional turbulence.
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By means of theoretical arguments based on the Lagrangian description
of fluid transport we have shown the analogy between the non-linear problem
described by two-dimensional Navier-Stokes with friction and the linear one
described by the advection-diffusion-reaction equation of a passive scalar with
finite lifetime.

This analogy has allowed to obtain quantitative predictions for the steep-
ening of the enstrophy spectrum and the intermittency of the small scale
statistics, which have been tested by means of numerical simulations.

We have shown that intermittency arises from the competition between
exponential separation of Lagrangian trajectories and exponential decay of
fluctuations due to friction, and can be predicted in terms of exit-times statis-
tics.

LN v [ ]
512 | v=5-10° | 2
1024 | v=15-10"5| 8
2048 | v=5-10 | 2

Table 2.1: Parameters of numerical simulations
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Chapter 3

Polymer solutions: a brief
introduction

The addition of small amounts of polymers to fluids produces a deep rheolog-
ical change, which manifests itself in a wide range of spectacular phenomena.
Because of their molecular structure, polymers have an elastic behavior, so
that once they are added to a Newtonian fluid the resulting solution became
a viscoelastic fluid. While for an ideal Newtonian fluid the stress is pro-
portional to the deformation rate, for a perfectly elastic body the stress is
proportional to the deformation itself. In the first case the proportionality
constant is given by the viscosity in the second case by the Hook modulus.
A viscoelastic solution can be thought of as a mixture of both these idealized
situations.

The structural change in the dependence of the stress on the deformation
properties is the origin of the different behavior of Newtonian and viscoelastic
fluids. As an example, it is an everyday experience that rotating a teaspoon
in a cup full of coffee, the fluids (which is roughly Newtonian) is pushed away
from the rotating object by the centrifugal force, and a dip appears on the
free surface. On the contrary when a rotating rod is inserted in a tank filled
with viscoelastic fluid, the fluid moves in the opposite direction and climbs
up the rod.

The effects produced by polymer addition to a Newtonian fluid cover a
wide range: they can change the stability of laminar motion and the tran-
sition to turbulence, influence the formation or depletion of vortices, and
modify the transport of heat, mass and momentum. The huge bibliography
by Nadolink & Haigh [42] can give an idea of the number of papers devoted
to the understanding of the behavior of viscoelastic fluids.

In this chapter I will introduce the basics of polymers dynamics in fluids
and the simplest models which has been developed to describe viscoelas-
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tic solutions. Finally I will briefly present the phenomenon of drag reduc-
tion [43], which characterize the turbulence of viscoelastic solutions in three
dimension, in order to provide a comparison with the completely different
two-dimensional behavior that will be the topic of next chapter.

3.1 Polymer dynamics in fluids

A polymeric molecule consists in a long chain formed by the repetition of
a large number of single identical units, the monomers, linked by chemical
bonds. For typical polymer used in drag reductions experiments the number
of monomers is very large, N = O(10% — 107) and the polymer can be con-
sidered, following Kuhn, as a freely jointed chain on n segments of length b,
with independent relative orientation.

When a polymer molecule is put into an homogeneous flow, it assumes the
aspect of a statistically spherical coil, because of the thermal agitation. The

average size of the coil, which is also called radius of gyration, can be estimate
as the length of the random walk formed by the n independent segments as
Ry ~ n'/?b, in agreement with the results of light scattering experiments [44].
It is important to notice that the freely jointed segments do not correspond
the single monomers, whose relative orientation is not independent because
of the presence of chemical bonds. Indeed, for flexible linear molecules in
good solvent, according to Flory[45] the radius of gyration is related to the
number of monomers N as:

Ry = N*%q (3.1)

where a is the length of the single monomer. Typical value of Ry are of order
0.1 — 0.2um. The coiled shape must be intended in a statistical sense: it
correspond to the average of all the possible configurations assumed by a
polymer in an homogeneous flow, but it doesn’t mean that a given polymer
at a given time looks like a sphere of radius R.
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Figure 3.1: Images from Perkins Smith & Chu, Science 264, 819 (1994)
of a single DNA molecule ( 40um) tethered to a 1um latex bead. The
bead was trapped using optical tweezers and the DNA was labeled with a
fluorescent dye. The DNA was stretched in a flow and its entropic relaxation
was observed after the flow was turned off (left to right, 5 seconds intervals).
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On the contrary, in a inhomogeneous flow the molecule is stretched into
an elongated shape, that can be characterized by its end-to-end distance R,
which can be significantly larger than Ry. The deformation of the molecules
is the result of the competition between the stirring exercised by the gradients
of velocity, and the relaxation of the polymer to its equilibrium configuration,
as a result of Brownian bombardment. Experiments with DNA molecules [46,
47] show that this relaxation is linear provided that the elongation is smaller
compared to the maximum extension R < Rp,q, (see Fig. 3.1).

This is consistent with the freely jointed chain model, where the equilib-
rium distribution for the end-to-end vector R resulting from the Brownian
motion of the n elements of the chain has a Gaussian core:

Py (R) = (L>3/2e 3 (3.2)

2mnb?

with variance < R®> >= nb? = 3R2. A quadratic entropy function for R
leads, in the framework of the classical Fluctuation-Response theory [48] , to
a linear relaxation R = —R/7.
A convenient measure on the relaxation time for the linear chain is that
introduced by Zimm [49]:
it

= (3.3)
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where kg is the Boltzmann constant, 7" is the solution temperature, y is the
solvent viscosity.

Indeed the relaxation process can be much more complex that the simple
description given by Zimm model. Several microscopic model of the behavior
of polymer molecule has been developed to characterize this process, from
the Rouse chain to the Reptation model. An introduction to these models can
be found in Doi & Edwards [50]. Nevertheless the simple linear relaxation is
able to grasp, at least qualitatively, the basic features of polymer dynamics
and feedback.

The relative strength between the relaxation of the polymer and stretch-
ing exerted by the flow is measured by the Weissenberg number Wi, defined
as the product of the characteristic velocity gradient and 7. When W17 < 1
relaxation is fast compared with the stretching time, and the polymers re-
main in their coiled state. On the contrary, for Wi > 1 the polymers are
stretched by the flow, and they became substantially elongated. This tran-
sition is known as the coil-stretch transition, and has been demonstrated to
occur under general conditions in unsteady flow[51, 52] For the case of steady
flow the transition is always present for purely elongational flow, while can
be suppressed by rotation, because the polymers does not point always in
the stretching direction[53].

In the case of turbulent flows polymers are stretched by a chaotic smooth
flow, because their size is typically smaller than the viscous Kolmogorov scale
of the fluid. The intensity of the stretching due to the gradients of a chaotic
smooth velocity field can be measured by means of the Lyapunov exponent of
Lagrangian trajectories A that is the average logarithmic divergence rate of
nearby fluid trajectories. The Weissenberg number for chaotic smooth flow
thus reads:

Wi= At (3.4)

For a turbulent flow the Lyapunov exponent gives an measure of the char-
acteristic gradients of velocity which are determined by the smallest eddies
of the turbulent cascade. By dimensional arguments it can be thought of
as the inverse of the fastest eddy-turnover time. Within the Kolmogorov
scaling the characteristic time at viscous scale n ~ e /434 is given by
T, ~ € 33 ~ e Y2y2 and consequently as the Reynolds number in-
creases, the Lyapunov exponent grows as A ~ v/ Re as well as the the Weis-
senberg number Wi ~ v/Re. Thus at a critical Re number the coil-stretch
transition occurs.

The stretching of polymers is limited by their back reaction on the fluid.
Indeed the stress tensor for a viscoelastic solution has an elastic component
which is proportional to the polymer deformation tensor. When polymer are
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substantially elongated the elastic stresses can become of the same order of
the viscous stresses, and consequently polymers can modify the flow reducing
the stretching and giving rise to a dynamical equilibrium state characterized
by constant average elongation, which depends on the polymer concentration.

The reduction of the stretching due to polymers back reaction correspond
to a strong reduction of the Lagrangian Lyapunov exponent of the viscoelas-
tic fluid[54, 55], thus for the sake of clearness we will always define the Wi
number a-priori as the product of the polymer relaxation time and the Lya-
punov exponent of the Newtonian fluid Wi = Ay7.

3.2 Dumbbell model

The simplest model to describe the behavior of a molecule of polymer is the
so called Dumbbell model. Tt consists in a couple of massless beads connected
by a spring, which corresponds to the end-to-end vector of the polymer R =
R; — R,. The evolution of R is determined by the sum of three forces: the
hydrodynamic drag force acting on the molecule, the thermal noise, and the
elastic force of the spring. In absence of external flow the equation for R
reads:

(R= _g—IEZ +\/2kgTE (3.5)

where ( is the friction coefficient, F is the potential energy of the spring, and
the thermal noise has been modeled by means of the zero average Brownian
process € with correlation (&;(¢)&;(t')) = d;;0(t —t').

If the polymer is surrounded by a non homogeneous flow, we must add
to Eq. (3.5) the stretching force determined by the difference of velocities of
the external flow between the two beads:

R= ’U(Rl, t) — ’U(RQ, t) (36)

Since the typical size of polymers (order 0.1 — 0.2 pm), is usually smaller
than the viscous scale of turbulence n = (v3/€)/*, the velocity field is smooth
on the scale R and the velocity difference can be estimate by the velocity
gradient UZ'(Rl, t) — ’UZ‘(RQ, t) = VjUiRj + O(RQ)

With the addiction of the stretching term the equation (3.5) became:

. oF
¢|[R-(R- V)v} = — o=+ V/2knTe (3.7)
As long as the elongation is smaller than the maximum length R < R4z,
the polymer can be modeled by an elastic spring of Hook modulus Ky so
that £ = KyR?/2. The value of the elastic modulus is fixed by requiring
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that the zero-shear equilibrium length, estimated from the balance between
elastic end thermal energy E ~ k7', must be equal to the radius of gyration

of the molecule Ry:
Ry = /kT/K, (3.8)

The explicit expression for the Hook modulus kg = KgT/R2 points out the
entropic origin of the “elastic” behavior of polymers.

Substituting the quadratic shape for potential energy into Eq. (3.7) we
get the equation for the elongation R [56]:

1 2R2
R=(R-V)v—-R+ H
T

T

3 (3.9)
where has been introduced the polymer relaxation time 7

Ky kgl

(3.10)

The relaxation time 7 in general is dependent on the elongation R, be-
cause the friction coefficient ( changes with the size of the molecule, and
when the elongation grows to values close to R,,., the elastic potential is
no longer quadratic, so the Hook modulus K, changes with R. To take in
account these effects the Finite Extendible Nonlinear Elastic model (FENE
model) [57] assumes 7  (R2,,, — R?)/(R%,,, — R%). Nevertheless, the linear
model is supported by the experimental evidence of a constant relaxation
time in the regime R < R4z

In the Zimm model, considering the entraining of fluid within the coiled
polymer, the friction coefficient is estimated as ( = 47w Ryu, which substituted
in (Eq (3.10) gives the Zimm relaxation time (Eq (3.3)).
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The dumbbell model retains only the fundamental elastic mode of the
polymer chain, with the slowest relaxation time. Although higher oscillatory
modes, with faster relaxation times, have been observed experimentally [47]
in DNA chains, they can be only weekly excited by the gradients of velocity
in a turbulent flow, thus for a simplified rheological model it is sufficient to
retain only the principal mode.

3.2.1 Coil-Stretch transition

The dumbbell model is able to reproduce the coil-stretch transition, which
occurs when the stretching exerted by the flow overcomes the relaxation of
polymer molecules.

The evolution of the polymer elongation can be obtained following the
trajectories of polymer molecules, and Eq. (3.9) can be solved by character-
istics as:

¢ 2
R(t) = / dsw (¢, s) %g(s)e@s)ﬁ LW 0RO T (3.11)
0

where W (tq, ;) is the evolution matrix of the linearized flow along the fluid
trajectory X (t) from time ¢; to time ts.

We are interested in the tail of the probability distribution function of
elongation R for R < Ry. Following Balkovsky et al. [52], at time large
enough, when the initial condition is forgotten, the events contributing to
the right tail of the pdf are those which have experienced large stretching.
The gradients of velocity field tends to orientate the vector R in the direction
of the leading Lyapunov vector, and its length is determined by the local value
of the finite-time Lyapunov exponent y(s) as

R(t) ~ RO/ e 87 ds (3.12)
0

The values dominating the tail are those where y(s)s — s/7 takes a sharp
maximum at some s, before relaxing to its typical negative values. The
probability of those events is given by the asymptotic form of the finite-time
Lyapunov exponents

P(y(s.)) ~ expS0(-De- (3.13)

where S() is the Cramér function (see Section 2.4). With logarithmic accu-
racy one can then replace y(s,)s, = In(R/Ry) + s./7. The maximum value
X, = (s.) " 'In(R/Ry) is fixed by the saddle-point condition that S — XS’
should vanish at X, + 77! + X. The final answer for the pdf is:

P(R) x R§R™'71 (3.14)
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with
g=S'"(X.+7 "+ )) (3.15)

The convexity of the entropy function ensures that ¢ is positive if A < 1/7.
In accordance with Eq. (3.15), the exponent ¢ decreases when )\ increases,
and it tends to zero as A — 1/7. This means that when the value of the
Weissenberg number Wi = A7 exceeds unity the the integral of the pdf
diverges at large R, and most of the polymer molecule are stretched. Below
unity the pdf is stationary and only high moments of polymer elongation
diverge. This is called “coil-stretch” transition.

The exponent ¢ can be expressed via the equation L, = ¢/, where L, =
max, [¢y — S(7)] is the generalized Lyapunov exponent of order ¢. Its value
indicates the highest converging moment of polymer elongation.

In the coiled state, moments of polymer elongation (R™) with n < g reach
stationary values, while high moments with n > ¢ diverge exponentially in
time as:

< R" >~ elbn=?)t (3.16)
In the Gaussian approximation of the Cramér function S(vy), which holds
near its minimum ( A2

fY p—

=L ‘7 3.17

Sty = (317)
the generalized Lyapunov exponents read

¢

and the exponent ¢ is ¢ = 2(1 — A7) /(TA).

3.3 Oldroyd-B model

In the dumbbell model the behavior of a single polymer molecule in a fluid
is considered, but this microscopic model doesn’t describe the feedback that
polymers have on the flow. To include the feedback effect it is necessary to
move to an hydro-dynamical description for the viscoelastic fluid. Oldroyd-
B model [57] provides a simple linear viscoelastic model for dilute polymer
solutions, based on the dumbbell model.

The passage from the microscopic behavior of the single molecule to a
macroscopic hydro-dynamical description requires to get rid of the micro-
scopic degrees of freedom such as the thermal noise. The macroscopic poly-
mer behavior can be described in term of the conformation tensor:

O'ij = R(;Q(RZR]) (319)
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where the average is taken over thermal noise, or equivalently over a small
volume V' containing a large number of molecules. By construction the tensor
o is symmetric, positive definite, and its trace tro is a measure of the square
polymer elongation.

The equation for the conformation tensor follows from the linear equa-
tion (3.9) for the single molecule:

2

oo+ (u-V)o=(Vu)! -o+o-(Vu)— (o —1), (3.20)
T

where 7 is the polymer relaxation time defined by Eq. (3.10), the matrix

of velocity gradients is defined as (Vu);; = d;u;. The conformation tensor

has been normalized with the equilibrium length Ry such that in absence of

external flow it relaxes isotropically to the unit tensor 1.

Equation (3.20) must be supplemented by the equation for the velocity
field, which is derived from the momentum conservation law:
Dy it
where f is sum of the body forces per unit mass, and T is the stress tensor
of the fluid.

The stress tensor of a Newtonian fluid is linear in the deformation tensor

eij = 1/2(Vu; + V,u;), and is given by [4]:

— 21
o (3.21)

2

where 4 is the dynamic viscosity and p the static pressure.

In the case of a viscoelastic solution, the stress tensor is given by the sum
of the Newtonian stress tensor TV and the elastic stress tensor TP, which
takes into account the elastic forces of the polymers. While for a Newtonian
fluid the stress tensor is proportional to the deformation rate tensor via the
viscosity, in the Hookean approximation for the single polymer the elastic
stress tensor is proportional via the Hook modulus to the deformation tensor
Ti; = KoR;R;. The elastic stress tensor per unit volume of fluid is obtained
summing the average contribution given by each polymer:

TZ =nk, < RzR] >= nKOR(Q)O'ij (323)

where n is the concentration of polymer molecules.

For an incompressible fluid (V - u = 0) with constant density p the equa-
tion obtained from the momentum conservation law (3.21) with the stress
tensor T = TV + T reads:

2
ou+ (u-V)u = —Vp-i—uAu—i—%V-a-l—f (3.24)
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where p is the pressure, f is the external force (per unit mass) driving the
flow. The solvent kinematic viscosity is denoted by v = u/p and 7 is the zero-
shear contribution of polymers to the total solution viscosity v, = v(1 + 7):

_ nKoR3T (3.25)
2u '

Eq. (3.24) is a generalization of Navier-Stokes equation for the viscoelas-
tic solution and together with Eq. (3.20) fully determines the dynamics of
Oldroyd-b model.

3.3.1 Newtonian limit: viscosity renormalization

In the limit 7 — 0 the elastic force originated from the thermal motion keeps
the molecules coiled near their equilibrium configuration, and the polymer
solution is supposed to behave like a Newtonian fluid. Indeed, a perturbative
expansion in 7 for the conformation tensor

0ij = o) + 710 +O(7?) (3.26)

plugged in the equation Eq. (3.20) gives for the zeroth and first order terms:
o) = 8,0 = 1/2(Viu; + Viug) = ey (3.27)

We observe that at first order in 7 the elastic stress tensor is proportional
to the deformation tensor

']I‘f; = nKORgTe,-j +0(1%), (3.28)

which means that the fluid is Newtonian up to higher order corrections O(72).
Anyway the presence of polymers changes the properties of the fluid also in
the Newtonian limit, because the fluid is partially entrapped in the coiled
polymers, producing a change in the total viscosity of the solution p; which
is renormalized as:

1
Mg = 4+ énKoR?)T = p(1+mn) (3.29)

3.3.2 Energy balance

The free energy of the viscoelastic fluid is the sum of kinetic and elastic
contributions:

F= / d3{ ?+ ™ ftro - logdeta']}. (3.30)
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where the last term represents the entropy of polymer molecules. The rate of
change of the different components of the free energy can be obtained from
Egs. (3.24,3.20)

01 nv
§§U,2 = f U — I/(VZ'U/]')2 — 7[aijvj'u,i + aijviuj] (331)
0 2
atl‘d’ = [O'ijVj’U,i + aijV,-uj] — ;tI‘[O’ — 1] (332)
2
%log deto = ;tr[a’l —1]. (3.33)

The forcing provides the input of kinetic energy which is then partially dis-
sipated due to viscosity and relaxation of polymers. The term o;;V;u; +
0i;Viu; has not a definite sign, and represents the exchange between kinetic
and elastic energy which can goes in both direction. Summing together the
different contributions one obtain the rate of change of the free energy:

oF

= /d?’r {f cu —v(Viuy)? — 2:—2]/’51"[0' —-21+ 0'_1]} : (3.34)

Since the conformation tensor o is positive definite and symmetric, it can
always be decomposed as the product of two symmetric matrices S:

Oij = SikSkj (3.35)

so that the last term, which represent the energy dissipation rate due to
polymers, can be rewritten as:

trjo — 214+ o7 = tr[(§ — §71)?] (3.36)

showing that it has a definite sign.
In the statistically steady state the average values of the free energy F is
constant and the energy balance reads:

2nv

F = v{(Viu,)?) + 7((’51"0'} — 2trl + {tro 1)) (3.37)

where F' is the average energy input per unit mass. Assuming that the
average kinetic energy and polymer elongation have statistically constant
values, it follows that the average entropy production rate vanishes

{tre™) —tr1 =0 (3.38)

and the entropy of polymer molecule is conserved.
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3.4 Fene-p

The linear Oldroyd-b model is based on the assumption that polymers can
be modeled as Hookean springs, and consequently it allows for infinite exten-
sion of polymer molecules. This is clearly unphysical, because the polymer
elongation is bounded by their total length R,,,,, moreover the assumption
of linear relaxation is valid only when the polymer elongation is much smaller
than R,,.., while near R,,,, the Hook modulus is no more constant. To take
in account these effects the Finite Extendible Nonlinear Elastic model (FENE
model) [57] assumes that the Hook modulus diverges for R — R,4,:

ernaz — R2
K(R) = K0R27_Rg (3.39)

max
The elastic force is no more linear in the elongation and the resistance of
the polymer to the stretching became infinite when it reaches its maximum
elongation.

F(R)

max
R

Figure 3.2: qualitative behavior of the elastic force F'(R) in the linear model
(solid line) and FENE model (dashed)

Unfortunately the non linearity introduced in the equation for the single
molecule does non allows to obtain a closed equation for the stress tensor
(RiRj), since it involves higher order correlations (R;---Ry). A Gaussian
closure was proposed by Peterlin, so that all correlations can be expressed in
term of the second order one, and the equation for the conformation tensor
can be closed. The FENE model with Peterlin’s closure is referred to as
FENE-P model. The Gaussian assumption is equivalent to a pre-averaging
of the non linear function which modulates the elastic force in FENE model:

R% .. — R?

F(R?) = f((R?)) = RQL_U% (3.40)

max
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The coupled equations for the conformation tensor and velocity field in the
FENE-P model are:

2
Ou+ (u-V)u=—-Vp+rvAu+ ﬂf(tra)v o+ f (3.41)
T

2
0o+ (u-V)o=(Vu) -o+0-(Vu) - ;(f(tra')a -1), (3.42)
where the non linear factor has been rewritten has:

tr —trl
e — tro

(3.43)

with tr,,4, = R2,,./R2.

The FENE-P model provides an improvement of the simple linear model,
because it is able to reproduce some features of polymer solutions like the
shear thinning, i.e. the decrease of the viscosity at increasing shear rates,
which are not included in Oldroyd-B model. Moreover in numerical simula-
tions, a finite molecular extensibility reduces the onset of numerical instabil-
ities associated with strong gradients of the conformation tensor field. For
these reasons FENE-P model is usually adopted in numerical simulations of
viscoelastic channel flows [61, 62].

3.5 Drag reduction

The phenomenon of drag reduction, reported for the first time by the British
chemist Toms in 1949, is probably the effect produced by polymer addiction
in fluids which has attracted the most attention, because of its relevance for
applications. While performing experiments on the degradation of polymers,
Toms observed that the addition of few parts per million of long chain poly-
mers in turbulent flow produces a dramatic reduction of the friction drag.
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The adimensional quantity which is normally used to measure the friction
drag in a pipe flow is the Fanning friction factor f defined as:

f=—2= (3.44)
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MDR asymptote .~

Prandtl-Kamman law

log(ReJ?)

Figure 3.3: A schematic illustrating the onset of drag reduction and the
MDR asymptote in the Prandtl-Karman coordinates. The Prandtl-Karman
law correspond to the turbulent behavior of Newtonian fluids. The dotted
line represent qualitatively the friction reduction in the viscoelastic case.

where R is the radius of the pipe, Ap is the pressure drop measured across a
distance L in the pipe, p is the density of the fluid and V' is the mean velocity
over the section.

The physical meaning of the friction factor is the ratio between the input
of energy provided by an external pressure difference and the kinetic energy
of the resulting mean flow in the pipe, and essentially it gives a measure of
the force that is required to sustain a certain mean flow. Rephrasing the drag
reduction in this terms, it means that the force necessary to pump a fluid
through a pipe can be reduced of a factor 80% with the simple addition of few
ppm of polymers. The relevance for practical applications is thus enormous.

In Newtonian fluids the friction drag is a function of the Reynolds number,
which for the pipe flow reads Re = 2RV /v where v is the kinematic viscosity.
The dependence of the friction drag on the Re number is conventionally
shown in the so-called Prandtl-Karman coordinates: 1/+/f versus log(Rev/f)
(see Figure (3.3)).

In the laminar regime the friction drag decrease as Re™! until the critical
Re number is reached. Transition to turbulence causes a sudden increase
of the friction drag which for fully developed turbulence reaches an almost
constant value with only a weak logarithmic dependence on Re described by
the Prandtl-Karman (P-K) law (a straight line in P-K coordinates).

Dilute polymer solutions deviate from the P-K law: while for Re number
smaller than a critical threshold their behavior is similar to the Newtonian
fluid, for larger Re numbers the friction drag is drastically reduced with re-
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spect to the Newtonian case and it finally reaches a universal asymptote
which is independent on the kind of polymers or the concentration of the so-
lution, and is known in literature as the Mazimum Drag Reduction asymptote
(MDR). A theory based on the elastic behavior of polymers was proposed
by Tabor & de Gennes in 1986[58] to explain both the onset of the drag
reduction and the presence of the universal upper bound, but its validity is
still controversial. An overview of this theory can be found in Sreenivasan
and White[59].

Recent works have provided new insights on the matter. A shell-model
based on the Fene-P model has been proposed by Benzi et al. [64], which
provides a simple and usefull tool for understanding the phenomenon of drag
reduction. Numerical simulations of Oldroyd-B and Fene-P models are able
to reproduce, at least qualitatively, the phenomenology of the problem [60,
62], and and have proved that drag reduction can occurs also in absence of
boundaries [55]. Moreover, some experiments seems to indicate a peel off
from the MDR asymptote at high Re numbers, opening new questions.

The interest for drag reduction is clearly amplified by its possible ap-
plications. Indeed nowadays it is widely applied in oil and water pipelines
and specific polymers have been developed to reduce hydraulic friction for
industrial and petrochemical applications.

3.6 Elastic turbulence

The phenomenon of elastic turbulence in viscoelastic solutions has been dis-
covered very recently [65, 66]. While the drag reduction is a high Reynolds
number phenomenon the elastic turbulence occurs at low Re numbers. The
presence of polymer changes the stability of the laminar flow, and polymers
with large elasticity (i.e. large relaxation time) can be stretched even by a
weak primary shear flow, producing elastic instabilities which causes irreg-
ular secondary flow. This flow stretch further the polymer molecules, and
because of their back reaction becomes increasingly turbulent, until a kind
of saturated dynamic state is reached.

Transition to elastic turbulence has been observed at extremely small
Re numbers (e.g. Re ~ 1073, see [65]). Although the Re numbers can be
arbitrarily small, the resulting flow displays all the main features of developed
turbulence, as the enhancement of mixing and the power law spectrum of
velocity fluctuations.

In some sense this phenomenon acts in the opposite direction of the drag
reduction: at high Re numbers the polymers tend to suppress the small
velocity fluctuations, reducing the turbulent drag, while at low Re number
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they can destroy the laminar flow pumping energy to small scale motions
through elastic instabilities.

Indeed, a linear stability analysis of Oldroyd-B model shows the presence
of elastic instabilities in shear flows at small Re numbers and large Deborah
numbers De = Ut /L. For concentrations of polymer larger than the critical
value p* = 3/7 it can be shown that the critical Re number for elastic
instabilities vanishes at large enough De numbers, allowing for a possible
transition to elastic turbulence at arbitrarily small Re number.

It seems thus that the simple Oldroyd-B model is able to reproduce,
at least qualitatively, both the drag reduction and the elastic turbulence
phenomena, and it constitutes an optimal tool for numerical and theoretical
investigations.



Chapter 4

Two-dimensional turbulence of
dilute polymer solutions

Since the discovery of the spectacular effect of drag reduction, most of the
experimental and theoretical works have been devoted to the study of three-
dimensional dilute polymer solution (see, e.g. Refs. [67, 42, 59]), while the
two-dimensional case is remained quite unexplored.

Indeed, recent experiments on soap films [68] have shown that polymer
addition in two-dimensional flow can give origin to completely different phe-
nomena with respect to the three-dimensional case (see also Refs. [69, 70]).

At variance with the three-dimensional case, where thanks to the drag
reduction effect, polymer addition allows to reduce the external force which
is necessary to sustain a fixed mean kinetic energy in the pipe flow, in two-
dimensional flows polymer injection causes a strong depletion of large-scale
velocity.

It is thus questionable if simple models like Oldroyd-B are able to grasp
also the two-dimensional phenomenology of viscoelastic flows.

In this chapter I will address this question, showing that Oldroyd-B model
indeed describes also these new phenomena and moreover it provides a clear
understanding of the physical origin of the different behavior between the 2d
and 3d case.

I will then show that the presence of polymers causes a strong reduction
of Lagrangian chaos, and influences the decay of two-dimensional turbulence
as well as the the inverse energy cascade, which can be completely depleted
for large enough polymer elasticity.
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4.1 2D Oldroyd-B model

The study of two-dimensional viscoelastic solutions will be addressed by
means of the two-dimensional version of Oldroyd-B model (3.12-3.16), which
is described by the equations:

ou+(u-Viu = —Vp—i—z/Au—i-QnTVV-a'—au-i-f (4.1)
do+(u-V)o = (Vo) -o+o-(Vu)— 2(c—1)  (4.2)
T

The matrix o is the conformation tensor of polymer molecules

and its trace tro is a measure of their square elongation. Because of its
physical meaning the conformation tensor is symmetric and positive definite.
The parameter 7 is the (slowest) polymer relaxation time toward the equi-
librium length Ry, therefore in absence of stretching the conformation tensor
therefore relaxes to the the unit tensor 1. The matrix of velocity gradients
which stretches the polymers is defined as (Vu);; = O;u;. The solvent vis-
cosity is denoted by v and 7 is the zero-shear contribution of polymers to
the total solution viscosity vy = v(1 4+ n). The pressure term —Vp ensures
incompressibility of the velocity field, which can be expressed in terms of the
stream-function ¢ as u = (9,¥, —0,¢). The dissipative term —aw models
the mechanical friction between the thin layer of fluid and the surrounding
environment, and plays a prominent role in the energy budget of Newtonian
two-dimensional turbulence [71]. The energy source is provided by the large-
scale forcing f, which is Gaussian, statistically homogeneous and isotropic,
d-correlated in time, with correlation length L; ~ 4.

The numerical integration is performed by a fully dealiased pseudospec-
tral code, with second-order Runge Kutta scheme, at different resolutions,
N? = 1282 2562 grid points, on a doubly periodic square box of size L = 2.
As customary, an artificial stress-diffusivity term kAo is added to Eq.(4.2)
to prevent numerical instabilities [72]. For the passive case we have adopted
a Lagrangian code which explicitly which preserves the symmetries of the
conformation tensor (see Appendix A).

4.2 Passive polymers

The feedback of polymers included in Oldroyd-B model is proportional to
their concentration n through the parameter 7 o< n in Eq (4.1). In the limit
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n = 0 polymers are passively transported and stretched by Newtonian two-
dimensional turbulence. The flow is driven at the largest scales and develops
an enstrophy cascade towards the small scales, while the inverse energy flux
is immediately halted by friction. The ensuing velocity field is therefore
everywhere smooth. According to Refs.[75, 52, 54] the statistics of stretched
polymers in random smooth flows is expected to depend critically on the
value of the Weissenberg number, here defined as

where Ay is the maximum Lyapunov exponent of the Newtonian flow.

4.2.1 Coiled state

Below the coil-stretch transition, at Wi < 1 the polymer molecules spend
most of the time in a coiled state, and stretch occasionally by a considerable
amount with a strongly intermittent behavior (see Figure 4.1).

Following Balkovsky et al [54] Equation (4.2) for the conformation tensor
can be written in the Lagrangian reference frame as:

&= (Vu)T-O'—I—a'-(Vu)—%(a'—l). (4.5)

where conformation tensor o and the velocity gradients (Vu);; = 0;u; are
valued along the Lagrangian trajectory

X(s) =v(X(s),s). (4.6)
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Figure 4.1: Mean square elongation f tro(x,t) de of passive polymers as a
function of time. Even in the coiled state (Wi = Ay7 = 0.27) polymers may
experience strong elongations.
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The value of the conformation tensor can be obtained following backward in
time the Lagrangian trajectory which satisfies the condition X (t) = « as:

t
oz, t) = g/ W(t,s,2)WT(t,s x)e =)/ (4.7)
T [e.e]

The Lagrangian mapping matrix W, defined by the relations
oW (t,s) = (Vu)W ,W(s,s) =1 (4.8)

describes the deformation of an infinitesimal fluid element along a given La-
grangian trajectory. The meaning of Eq. (4.7) is clear: the value of the
conformation tensor at a given time is determined by the stretching due to
velocity gradients that it has experienced during its past history, modulated
by its exponential relaxation toward the equilibrium configuration.

The matrix W can be decomposed as

W(t,s) = MAN (4.9)

where M and NN are orthogonal matrices, and A is diagonal. Incompress-
ibility of the flow imposes the condition det W = 1, and consequently the
diagonal elements of A can be written as e7~%) and e~ where v is the
finite-time Lyapunov exponent at time ¢ — s. For time larger than the times
correlation of velocity gradients the eigenvectors of the matrix WW 7 tend to
the directions of the Lyapunov vectors, the matrix M became almost time-
independent, and the finite-time Lyapunov exponents v fluctuate around the
value of the leading Lyapunov exponent A. The trace of the conformation
tensor can thus be written as

t
tro(x,t) = g/ trA%(t, s, z)e 29T (4.10)
T o0
This allows to obtain a lower bound for the square polymer elongations.
Since incompressibility imposes det A = 1 the eigenvalues of A? can be writ-
ten as e2* and e 2%, This leads to the inequality trA? = ¢?* + ¢ 2* > 2 which
together with Eq. (4.10) gives the bound for the trace of the conformation
tensor:
tro > trl (4.11)

Moreover Eq (4.10) allows to evaluate the statistics of polymer elonga-
tions in term of the statistics of finite-time Lyapunov exponents P(v,t)

exp[—tS(v)] as:
< (tro)? >~ /d’ye_t[S(V)_zq(V_%)] (4.12)
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where S() is the Cramér rate function (see, e.g., Ref. [73]). Intense stretch-
ing events give contributions to the right tail of the probability density func-
tion of tro leading to the power law prediction:

p(tre) ~ (tre) ™11 for  tro > trl. (4.13)

The exponent ¢ is related to the probability of finite-time Lyapunov expo-
nents via the equation
Loy = 2q/7 (4.14)

where
Loy = max(2qy — S(7) (4.15)

is the generalized Lyapunov exponent of order 2q. The convexity of the
Cramér rate function S(7) ensures the positivity of ¢ for Wi < 1.

Since the distribution of polymer elongations is not accessible experimen-
tally, in order to validate the theory it is necessary to resort to numerical
simulations. Eckhardt et al. in Ref. [77] have given the first evidence of
a power law tail for the probability distribution function of polymer elon-
gation in three-dimensional shear turbulence. As shown in Fig. 4.2, in our
two-dimensional simulations we observe a neat power law as well.

p(tr 0)

Figure 4.2: Power law tail of the probability density function of polymer
square elongation, in the passive case n = 0. The Weissenberg number is
Wi = 0.4, quite below the coil-stretch transition. The power law (tror) !¢
with the value ¢ = 0.66 (numerically obtained from the relation Ly, = 2¢/7)
is drawn for comparison. In the inset, the corresponding Cramér function
S(7y). Its minimum is S(Ay) = 0, with Ay ~ 0.8.
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In order to check whether the observed exponent coincides with the pre-
diction (4.14) we have also performed direct numerical simulations of particle
trajectories, and measured the probability distribution of finite-time Lya-
punov exponents, thereby obtaining the expected ¢q. The numerical result is
in close agreement with theory.

4.2.2 Stretched state

As the Weissenberg number exceeds unity, the linear relaxation of polymers
is no more able to overcome the average stretching of velocity gradients. On
the contrary polymers start to elongate exponentially, and the statistics of
the conformation tensor does not reach a steady state. The pdf of the trace
of conformation tensor becomes unsteady, with a power-law tail which keeps
moving to higher elongations (see Fig. 4.3). All the moments of conformation
tensor statistics ((tre)?) grow exponentially in time, according to

< (tro)? >~ el (4.16)

In Figure (4.4) we show the exponential growth of the mean square elongation
< tro > for Wi = Ay7 = 1.6, compared with the prediction (4.16). Here
7 = 2, and the value of the generalized Lyapunov exponent L, ==~ 3.8 has
been obtained according to L., = max,[2¢y — S(7)]. For comparison we
show also the steady state in a coiled case (Wi = 0.27).
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Figure 4.3: Pdfs of polymer square elongation for Wi = \,7 = 1.60 at
different times: ¢ = 1/27 (solid line), ¢ = 7 (dashed line), t = 27 (dotted
line), ¢t = 47 (dash-dotted line). Above the coil-stretch transition, the pdf of
elongations becomes unsteady
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This “coil-stretch” transition signals the breakdown of linear passive the-
ory. Accounting for the nonlinear elastic modulus of polymer molecules al-
lows to recover a stationary statistics and to develop a consistent theory of
passive polymers at all Weissenberg numbers [78]. In the following we do
not pursue that approach, but we rather focus on a different mechanism that
limits polymer elongation: the feedback of polymers on the advecting flow.

<trc>

15 20

Figure 4.4: Mean square elongation f tro(x,t) de of passive polymers as a
function of time. In the stretched case (Wi = Ay7 = 1.6 solid line) the
mean square elongation grows exponentially according to Eq. (4.16) (dash
dotted line), while in the coiled case (Wi = 0.27 dashed line) it reaches a
statistically steady state.

4.3 Active polymers

At finite value of the concentration, when 7 > 0, the back reaction of poly-
mers can not be neglected. Polymers can affect significantly the velocity
dynamics, provided that they are sufficiently elongated — a condition that
is met at Wi > 1. This strong feedback regime is characterized in two di-
mensions by a suppression of large-scale velocity fluctuations, an effect first
observed in soap film experiments [68]. In Figure 4.5 are reported two images
of soap film experiments from Amarouchene & Kellay. The large vortices in
the polymer-free case are strongly reduced by polymer addition. The same
behavior is observed in numerical simulations of 2D Oldroyd-B model (Fig-
ure 4.6).
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Figure 4.5: Interferograms of the thickness field of a soap film in the polymer-
free case (left) and viscoelastic case (right). Y. Amarouchene, H. Kellay,
Phys. Rev. Lett. 89, 104502 (2002)

Figure 4.6: Snapshots of the vorticity field V x u in the Newtonian (left) and
in the viscoelastic case with strong feedback (right). Notice the suppression
of large-scale structures in the latter case.
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4.3.1 Depletion of kinetic energy

In Fig. 4.7 we present the time evolution of the total kinetic energy of the
system in numerical simulations obtained by numerical integration of the
viscoelastic model described by Eqs (4.1 - 4.2).

50

-5 0 5 10 15

Figure 4.7: Dilute polymers reduce the level of velocity fluctuations
[ lu(z,t)|*de. Polymers are introduced in the flow at ¢t = 0. In the in-
set, the mean square elongation [ tro(x,t) de as a function of time.

We fixed the relaxation time of polymer 7 = 2, such that the Weis-
senberg number Wi = Ay7 = 1.6 is above the coil-stretch transition. In the
inset it is shown the corresponding evolution of the mean square elongation
[tro(xz,t)de. At time ¢ = 0 the polymer are injected in the zero-shear
equilibrium state in the fluid, and they start to be stretched by the flow. In
the initial stage, for time ¢t < 7, their elongation grows exponentially as in
the passive case, but when the back-reaction switches on a drastic depletion
of kinetic energy occurs, and the polymer elongation relaxes to a statistically
steady state. Fluctuations of the mean square elongation are strongly corre-
lated with the kinetic energy and follow its temporal evolution with a small
time delay, revealing the continuous exchange between kinetic and elastic
energy. The strong reduction of kinetic energy should be contrasted with
the three-dimensional case where, on the opposite, velocity fluctuations are
larger in the viscoelastic case than in the Newtonian one [61].
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4.3.2 Energy balance

The suppression of velocity fluctuations by polymer additives in two-dimensio-
nal turbulence can be easily explained in the context of the randomly driven
viscoelastic model. Indeed, the average kinetic energy balance in the statis-
tically stationary state reads

Fee+ 2:—21/((‘51“0') —tr1) + ol [uf?) (4.17)
where € = v{|Vul|?) is the viscous dissipation and F is the average energy
input, which is flow-independent for a Gaussian, d-correlated random forcing
f. To obtain Eq. (4.17) we multiply Eq. (4.1) by u, add to it the trace
of Eq. (4.2) times nv/7, and average over space and time. Since in two
dimensions kinetic energy flows towards large scales, it is mainly drained by
friction, and viscous dissipation is vanishingly small in the limit of very large
Reynolds numbers [71]. Neglecting € and observing that in the Newtonian

case (n = 0) the balance (4.8) yields F' = a(|u|?)y, we obtain
2nv
([ul) = (uf)y = =5 ((tro) — tr1) . (4.18)

According to Eq (4.11), incompressibility of the flow ensures that tro > trl,
and we finally have (Ju|?) < (Ju|?)y, in agreement with numerical results.
This simple energy balance argument can be generalized to nonlinear elastic
models. As viscosity tends to zero, the average polymer elongation increases
so as to compensate for the factor v in eq. (4.18), resulting in a finite ef-
fect also in the infinite Re limit. Since energy is essentially dissipated by
linear friction, the depletion of {|u|?) entails immediately the reduction of
energy dissipation. The main difference between two-dimensional “friction
reduction” and three-dimensional drag reduction resides in the lengthscales
involved in the energy drain, i.e. large scales in 2D wvs small scales in 3D.

4.3.3 Statistics of velocity fluctuations

The effect of polymer additives cannot be merely represented by a rescaling of
velocity fluctuations by a given factor. In Fig. 4.8 we show the probability dis-
tribution of a velocity component, u,. The choice of the z direction is imma-
terial by virtue of statistical isotropy. In the Newtonian case the distribution
is remarkably close to the sub-Gaussian density N exp(—c|u,|®) stemming
from the balance between forcing and nonlinear terms in the Navier-Stokes
equation, in agreement with the prediction by Falkovich and Lebedev [79].
On the contrary, the distribution in the viscoelastic case is markedly super-
Gaussian, with approximately exponential tails. This strong intermittency
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in the velocity dynamics is due to the alternation of quiescent low-velocity
phases ruled by polymer feedback and bursting events where inertial nonlin-
earities take over.
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Figure 4.8: Intermittency of velocity fluctuations induced by polymer ad-
ditives. The probability density function P(u,) of the velocity component
uy for the Newtonian (solid line) and for the viscoelastic case with strong
feedback (dashed line). Same parameters as in Fig. 4.6. Also shown the
distribution T'(2/3)3%2 exp(—c|u,|*)/(4mc) with ¢ = 2.1- 1073 (dotted line).

The sub-Gaussian shape of the pdf of velocities in the Newtonian case can
be predicted from the statistics of the forcing with the following dimensional
argument. The values of velocity can be considered as the result of summa-
tion of forcing contributions during one large-eddy turnover time t;, ~ L/V.

In the case of a slow forcing, with a decorrelation time 7; longer that
the large-eddy turnover time 7; > %, those contributions are correlated,
producing a ballistic growth of velocity V (t) ~ ft up to the time t;, ~ L/V
when the non-linear term starts to transfer energy down in the cascade.
Thus we obtain the dimensional estimate V' ~ ft; ~ fL/V, or equivalently
V2 ~ Lf, which can be used to link the pdf of the forcing to the pdf of
velocities. If the statistics of forcing is Gaussian P(f) = Ne~*/2Fo_ the
resulting pdf for velocities is P(V) = Ne #V*

Since we are using a Gaussian, d-correlated in time forcing, we are in
the opposite limit of fast forcing, with 7y < t;. In this case the different
contributions are independent, producing a diffusive growth V2(¢) ~ f27;t for
t <ty ~ L/V. Substituting the resulting dimensional estimate V3 ~ f27r;L
in the Gaussian pdf of forcing we end with the prediction for the pdf of single
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point velocities: \
P(V) = Ne#V (4.19)

which is consistent with our measurement.

4.3.4 Lagrangian chaos reduction

Dilute polymers also alter significantly the distribution of finite-time Lya-
punov exponents P(7v,t). In Fig. 4.9 the Cramér rate function S(y)
t~11In P(v,t) is shown for the Newtonian and for the viscoelastic case.

08
06

04

S(y)

0.2 -

-0.5 0 0.5 1 15 2 2.5

Figure 4.9: Finite-time Lyapunov exponents decrease in presence of poly-
mers. The Cramér rate function S(7) for the Newtonian (solid line) and for
the viscoelastic case with strong feedback (Wi = Ay1 = 1.6, dashed line).
Viscosity v = 6 - 1073, relaxation time 7 = 2, n = 0.2 (dashed), n = 2
(dotted). For sake of completeness, we also show S(7) for a mild feedback
case (Wi = 0.4, n = 0.2, dash-dotted line). In the latter case, the Lyapunov
exponent is practically identical to the Newtonian value, and polymers af-
fect only the right tail of S(vy) reducing appreciably the probability of large
stretching events v > Ay.

Since in the former situation the Lyapunov exponent Ay is greater than
1/7, were the polymers passive all moments of elongation would grow expo-
nentially fast. However, the feedback can damp stretching so effectively that
after polymer addition A lies below 1/7. This implies a strong reduction of
Lagrangian chaos and a decreased mixing efficiency. Moreover, we find that
L,, is smaller than n/7 for all n, a result which guarantees the stationarity
of the statistics of tror in presence of feedback, while imposing a less restric-
tive condition on S(7) than the one proposed in Ref. [54]. The lowering of
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AT below unity would seem to contradict the statement that strong feedback
takes place only at Wi > 1. Actually there is no inconsistency, since the crit-
ical value Wi = 1 holds for passive polymers only. For active polymers, the
presence of correlations between the conformation tensor and the stretching
exponents can indeed lower significantly the threshold. For a discussion of
the differences between active and passive transport, see Ref. [80]

4.3.5 Decaying turbulence

The organization into coherent vortices, starting from from a disordered back-
ground is a characteristic feature of decaying two-dimensional turbulence
(see Chapter 1). This complex and interesting phenomenology is suppressed
by the presence of a strong friction which halts the flux of energy toward
large scales. Since in this case the energy is mainly dissipated by the linear
friction, the decay of total energy trivially display an exponential behavior
E(t) ~ E(0)e?*** where « is the friction coefficient. (see Fig. 4.10).

The coupling with polymer dynamics changes in a different way the de-
cay of two-dimensional turbulence. Starting from different configuration ran-
domly chosen from the statistically steady state above the coil-stretch tran-

<u?(t)>/<u?(0)>

<tro(t)>/<tro (0)>

Figure 4.10: Decay of mean velocity fluctuation (u?(t)). While in the New-
tonian case (dashed line ) the decay is exponential with a rate fixed by the
friction coefficient (u?(t)) = (u?(0))e~2** the viscoelastic solution shows an
oscillatory behavior with an exponential trend fixed by the polymer relax-
ation time. The oscillations are anti-correlated with those of the mean elastic
energy (see inset). At late stage there is a sharp decoupling of the polymer
and velocity fields which recovers the Newtonian behavior.
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sition Wi ~ 3.2 we turned off the forcing on the velocity field and let the
coupled system decay. In the first stage the balance is dominated by poly-
mer contribution. An oscillatory decay of the kinetic energy is observable (see
Fig. 4.10), with an exponential trend fixed by the polymer relaxation time,
while the friction term in the energy balance seems to be sub-dominant. Thus
the mean square elongation of polymers decay exponentially as tr(o) ~ €2/,
with over-imposed strong oscillations which are anti-correlated to those of the
kinetic energy. In this stage there is a continuous exchange of energy between
the velocity field and polymers and the decay of the two fields is strongly
coupled. Since the trend of decay imposed by the polymers is steeper than
the exponential decay predicted by the friction, at a certain moment the
feedback term which slaves the kinetic energy decay becomes smaller than
friction one. From this point there is a sharp decoupling of the dynamics of
the two fields: the oscillations disappear and each field decays exponentially
with his own characteristic time: 7 for polymers and é for velocity, which in
this late stage recovers the Newtonian behavior.

4.3.6 Inverse energy cascade

The strong influence of polymers on the energy balance pose the intriguing
question of the possible effects on the inverse energy cascade which occurs in
the Newtonian case. Indeed, in absence of friction, the growth rate of kinetic
energy E(t) = 1/2{|u(t)|*) can be obtained repeating the derivation of the
energy balance (4.17) but averaging only over space and over the statistics
of the random forcing f:

—r =F—e= 5 (o) - ur1) (4.20)

As already shown, the polymer contribution has a definite sign, acting as a
dissipative term. Neglecting the viscous dissipation €, which in the limit of
infinite Reynolds number is vanishingly small, it is clear from Eq. (4.20) that
the energy growth rate in the viscoelastic case is reduced with respect to
the Newtonian case where it is essentially given by the input of the random
forcing.

In order to measure the energy growth rate, I performed numerical sim-
ulations of the viscoelastic model using a slightly different configuration: I
turned off the friction term and put the forcing on a smaller scale, allowing
the energy to give origin to an inverse cascade. After an initial growth, the
polymer elongation reaches indeed a statistically steady state, and conse-
quently the energy growth rate is reduced of a constant fraction depending
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on the concentration and the Weissenberg number of the polymer solution,
in quantitative agreement with Eq. (4.20) (see Fig. (4.11)).
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Figure 4.11: Linear growth of kinetic energy growth in absence of friction.
The energy growth rate is reduced by the polymer feedback at increasing W4
number. If the Weissenberg number is large enough the energy growth can
be completely stopped.

We remark the striking fact that at sufficiently high Wi numbers, the
energy growth rate in the viscoelastic case can be reduced to zero when the
polymer dissipation balances exactly the forcing input. This means that the
inverse cascade can be completely suppressed by the polymer feedback even
in absence of friction.

The feedback of polymers reacts on the fluid in order to reduce its veloc-
ity gradients. In the case of two-dimensional turbulence the power spectrum
of velocity gradients is peaked at the forcing length-scale, thus is reasonable
to assume that polymer feedback is essentially localized at the scale of forc-
ing and does not entail the inertial range. Thus we expect to observe also
for the viscoelastic two-dimensional solution the development of the inverse
cascade, with a constant flux TI(k) ~ € reduced of a fraction depending on
the elongation of the polymers:

2nv
€Viscoelastic — €Newtonian — ?((tro’(t» - tI‘].) (421)

A direct measurement of the energy flux requires a large scaling range
in the inverse energy cascade, but at the same time it is necessary to re-
solve also the direct enstrophy cascade whose smooth flow is responsible of
the polymer stretching. Unfortunately this task is unaffordable with actual
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Figure 4.12: Inverse energy cascade in viscoelastic simulations. Increasing
the Wi number the energy flux in the cascade is reduced and consequently
the friction term stops the cascade at smaller scale.

computational resource. Nevertheless it is possible to have an indirect check
of our prediction. The hypothesis of an inverse cascade with constant en-
ergy flux, leads to a Kolmogorov-like scaling law for the velocity fluctuations
up = €'/3¢/3 with the reduced flux given by Eq. (4.21). The friction length
scale £; where the friction term balance the nonlinear term responsible for the
energy transfer, can be estimated by dimensional arguments (see Chapter 1)
as £y ~ €/2a73/2. The reduction of the energy flux in the viscoelastic case
should then reflect in a reduction of the friction length-scale. Restoring the
friction term in our simulations, we checked that at increasing values of W3
number the inverse energy cascade is indeed stopped by friction at smaller
scale as shown in Figure (4.12).

While the mean square polymer elongation (tre(t)) quickly reaches sta-
tistically constant values depending on the value of Wi, the kinetic energy
grows up with different rates until it reaches the steady state fixed by the
energy balance (4.17) (see Figure (4.13))

4.4 Summary

In this chapter it has been presented a theoretical and numerical investigation
of the effects of polymer additives on two-dimensional turbulence by means
of Oldroyd-B viscoelastic model.

In the passive case, i.e. neglecting the polymer feedback, I showed that
for values of the Wi number below the coil-stretch transition the polymer
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Figure 4.13: Average kinetic energy in viscoelastic simulations of the inverse
energy cascade. In the initial stage the energy grows linearly with smaller
rates at larger Wi numbers then it is stopped by the friction term at values
determined by the energy balance (4.17)

elongations reaches a steady probability distribution functions with power-
law tail. Its slope is related to the statistics of finite-time Lyapunov exponents
of the flow, in quantitative agreement with theoretical predictions. Above
the coil-stretch transition the statistics became unsteady.

Restoring the polymer feedback I showed that the kinetic energy of the
fluid is drastically reduced in the viscoelastic case, as observed in soap film
experiments. Oldroyd-B model provides a clear explanations of this phe-
nomenon: part of the energy is converted into elastic energy of polymers,
and consequently dissipated by their relaxation.

I showed that polymers cause a strong reduction of Lagrangian chaos, a
phenomenon which is probably independent on the dimension of the space.

Finally I studied the effects of polymers on the inverse energy cascade,
showing that for large enough elasticity the inverse cascade can be completely
suppressed by the polymer feedback even in absence of friction.
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Conclusions

In this thesis I have presented a numerical and theoretical study of the effects
of friction and polymer additives on two-dimensional turbulence.

The Lagrangian description of turbulent transport has been used to demon-
strate the equivalence between the statistics of small-scale fluctuations of
vorticity in presence of friction and that of a passive scalar field with finite
lifetime transported by the same velocity field. This allowed to obtain quanti-
tative predictions for the steepening of the energy spectrum and the scaling
exponents of the structure functions of vorticity, in terms of the statistics
of finite-time Lyapunov exponents. These results have been validated by
means of parallel integration of Navier-Stokes equation in two dimensions,
supplemented by a linear fiction term, and of the advection-reaction-diffusion
equation for the passive scalar with finite lifetime.

The effects of polymers have been studied by means of the linear vis-
coelastic model Oldroyd-B. A Lagrangian numerical code, which preserves
the symmetries of the model has been developed to obtain accurate measure-
ments of the probability distribution function of polymer elongation, which
validate the predictions obtained within the Lagrangian approach. A strong
reduction of kinetic energy as a consequence of polymer addition has been
observed in numerical simulations of two-dimensional Oldroyd-B model, in
agreement with results of soap film experiments. I showed that this phe-
nomenon can be explained and predicted by means of the energy balance of
Oldroyd-B model.

I have then studied the effects of polymers on the statistics of finite-time
Lyapunov exponents, showing that a strong reduction of Lagrangian chaos
occurs. This phenomenon seems to be independent on the dimensionality of
the flow.

Finally I considered the effects of polymers on the inverse energy cascade,
showing that for large enough elasticity it can be completely suppressed by
polymer feedback.
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Appendix A

Lagrangian code for polymer
dynamics

The numerical integration of viscoelastic models is rather challenging, since
it is necessary to solve at the same time the modified Navier-stokes equation
and the equation for the components of the conformation tensor. As a con-
sequence, the CPU time and memory required by standard pseudospectral
simulation of the viscoelastic model are about 5 times larger in 2D than the
Newtonian case with the same resolution.

Moreover the linear viscoelastic model Oldroyd-B model allows for infinite
elongation, and consequently the stretching exerted by velocity gradients can
generate singularities in the conformation tensor. Indeed the eigenvectors
of the conformation tensor tend to align in the directions of the Lyapunov
vectors, and the eigenvalues can experience exponential growth, leading to
the formation of sharp fronts with diverging gradients which are involved
in the feedback on the velocity fields. The consequence is a sudden rise of
numerical instabilities in the simulations, which typically blow up after a
short time.

Another critical aspect is the fact that the conformation tensor must
remain positive definite because of its physical meaning: its eigenvalues rep-
resent the square axes of the inertia tensor. Since the smaller eigenvalues can
became arbitrarily close to zero, infinitesimal errors arising from the integra-
tion scheme can bring it below zero, producing a new source of numerical
instabilities.

The adoption of finite extensibility of the polymer is not sufficient to
solve these problems. One of the standard trick to avoid the formation of
singularities in viscoelastic simulations is the addiction of an artificial diffu-
sivity in the equation for the conformation tensor [72]. In this way the sharp
gradients are regularized, and simulations can be performed. Nevertheless
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this solution is not completely satisfactory, because the values of diffusivity
that must be used are unrealistic, especially for passive simulations where
the formation of sharp gradients is not prevented by feedback of polymers.
In order to perform accurate simulation of the passive limit for Oldroyd-B
model we developed a numerical code which explicitly preserves the positive
definiteness of the conformation tensor.
In two dimension the symmetric conformation tensor reads:

o= < Oz Tay ) (A1)

Ozy Oyy

Its evolution along a Lagrangian trajectory X (s) is determined by the

equation

(X (1) = (Vo) - o + 0 - (V) — %(a’— 1) . (A.2)

The velocity gradients (Vu);; = 0;u; are valued along the Lagrangian
trajectory
X (s) = v(X(s),s) , (A.3)

by means of standard second order interpolation of the velocity gradient
fields obtained by parallel integration of Navier-Stokes equation, in which
the polymer feedback has been turned off.

Let us write the evolution of the three components of the conformation
tensor along the Lagrangian trajectory in the vectorial form:

o=A&+b (A.4)
with:
Uzz
o=\ o (A.5)
Oyy
2
b= ( 0 (A.6)
2
20U, — % 20y, 0
A= Oply —2 OylUg (A.7)
0 20,uy  20yu, — 2

The discrete evolution at first order accuracy in dt can be obtained as:

&t + dt) = A0 (z(t) + A (1)B) — A (1)b (A.8)
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which explicitly preserves the positive definiteness of the conformation tensor.
This procedure can be immediately extended to higher order integration
schemes. In our simulation we have adopted a Runge Kutta second order
scheme which requires a further evaluation of the matrix A in the mid-point
X (t+dt/2).

To obtain an explicit form for the exponential matrix e it is necessary
to distinguish the case in which the predominant effect of velocity gradients
on the conformation tensor is either the stretching or the rotation, depending
on the sign of the determinant of velocity gradients:

det(Vu) = 0,u,0yuy — Oy, 051y (A.9)

Adt

Indeed since the trace of the velocity gradients tensor vanishes because of
incompressibility, the two eigenvalues must be opposite and either real, when
det(Vu) < 0 or pure imaginary when det(Vu) > 0. In the first case, which
corresponds to regions of intense stretching, the linearized flow is hyperbolic,
while the second case corresponds to elliptic regions where rotation is the
predominant effect.

Introducing the Weiss function @ defined as [81]

Q=5 —w?=—4det(Vu) (A.10)
where w is the vorticity and
1 ou;  Ou;\’
S =~ . ! A1l

the three cases can be distinguished according to the sign of Q:

hyperbolic regions where () > 0
elliptic regions where ) < 0

neutral regions where () =0

A.0.1 Hyperbolic regions

In hyperbolic regions, where the predominant effect of velocity gradients is
the stretching, using the incompressibility 0,u; = —0,u, and defining

A =+/—det(Vu) (A.12)
the matrix A can be diagonalized as

A=NDN' (A.13)
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where
—24+2X 0 0
D= 0 —2 0 (A.14)
0 0 —2-2x

and the eigenvectors matrix N = (4, Ug, U3) is

Otz (Optiy + X)) OyugpOptty,  Oytiy(Optiy — N)
N = | 0Ou0yuy + N 0pu0yuy OpuzOyuy, + A2 (A.15)
Oty (Oytty + ) OptiyOytiy  Optiy(Oyuy — N)

The exponential matrix is thus valued as

62)\dt 0 0
A — o2ap [ g 0 | N (A.16)

e =€ T 1
0 0 6_2)\dt
A.0.2 Elliptic regions
In elliptic regions, using again the incompressibility 0yu, = —0,u, and defin-

ing

6 = /det(Vu) (A.17)

the matrix A can be decomposed in a diagonal part and a pure rotational
part:

A=ND+R)N! (A.18)
where
-2 0 -20
D+R=| 0 -2 0 (A.19)
20 0 -2

The eigenvectors matrix N = (1, U, U3) is

Oytz(Optiy +0) OyugyOptty,  Oyty(Opuy — 6)
N = | 0Opu,0puy — 6? 0OpuyOyu, OyuyOyu, — 6 (A.20)
OzUy (Oyty +6)  OpuyOyuy  Opty(Oyu, — 0)

and the exponential matrix reads

, cos(26dt) 0 —sin(26dt)
eAWit — =2ty 0 1 0 N (A.21)
sin(20dt) 0 cos(26dt)
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A.0.3 Neutral regions

In regions where the relative intensity of rotation and stretching are equal
(e.g. in the case of shear flows) the determinant of the velocity gradients
vanishes. In this case the matrix A has a single eigenvector with multiplicity
3 and its exponential can be evaluated as:

eAWdt — o—2at (1 +(A+ gl)dt + %(A + %1)%2) (A.22)

This numerical scheme allows to perform accurate simulations of the pas-
sive limit of Oldroyd-B model, which are non achievable with standard Eu-
lerian codes.

In principle it is possible to include the feedback of polymers on the
velocity field, by reconstructing at each time step the Eulerian conformation
tensor field on a regular grid from the Lagrangian values obtained along n
simultaneously integrated fluid trajectories.

Unfortunately this mixed Eulerian-Lagrangian code does not solve the
problem of numerical instabilities of Oldroyd-B model, because Lagrangian
particles with different values of the conformation tensor are transported
arbitrarily close to each other during the simulation, and thus the Eulerian
field reconstructed from the Lagrangian one still have diverging gradients,
which are involved in the feedback and cannot be resolved by the Eulerian
part of the code.
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A. Lagrangian code for polymer dynamics
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