The Pierre Auger Observatory

Physics and Detectors

Ezio Menichetti Dip. di Fisica Sperimentale and INFN Torino, Italy

Cosmic Rays and Particle Physics

A long history in common:
Discovery of CR (Hess 1912)
Observation in cloud chamber (Skobelzyn 1927)
Discovery of positron (Anderson 1932)
Discovery of muon (Neddermeyer & Anderson, 1937)
Discovery of π,K,Λ,.. (various up to ~1953)

Astroparticle

Bringing together theory and techniques from

Cosmology, Astrophysics and Particle Physics

The Universe is a Lab

Very large energies Unusual objects Big Bang memories

6/25/2003

E.Menichetti - Int. School on Strong Interactions and Multiparticle Dynamics

This talk

- Focus on highest energy cosmic rays
- Tantalizing experimental results
- (Apparently) clear theoretical picture
- Is there any real conflict?
- To address the issue: Better data!
- The Auger project

The highest energy CR's [aka U(Itra)H(igh)E(nergy)CR's]

By rather simple and safe arguments
 They should not be there Different experiments give
 Contradictory results

Time for new data

6/25/2003

E.Menichetti - Int. School on Strong Interactions and Multiparticle Dynamics

A general argument - I

Just a couple of units: 1 pc = 3.2 light yr 1 EeV = 10^{18} eV = 0.16 J

(Greisen, 1965)

To get accelerated: *no early escape from the source* **Source size** > $\left(\frac{R_{Larmor}}{kpc}\right) = \left(\frac{1}{Z}\right) \cdot \left(\frac{E}{1EeV}\right) \cdot \left(\frac{ZB}{\mu G}\right)$

To get accelerated: synchrotron loss < energy gain $dE/dt \propto B^2$ $dE/dt \propto B$

A general argument - II

$$ightarrow W_B = rac{B^2}{4\pi} rac{4}{3} \pi R^3 \propto \gamma^5_{particle}$$

Ex. $10^{20} eV \rightarrow W_B > 10^{57} erg$

Such humongous source should be a strong radio emitter (like 10^{41} erg s⁻¹) \rightarrow easy to detect!

No deflection @ high E

Little deflection from extragalactic mag field

B not well known $\leq 10^{-9}$ *G* Constant field region: *B*, size λ , *var*[*defl*]= σ^2 Assuming random walk through N regions

$$\theta(E) \simeq 0.04 mrad \left(\frac{d}{\lambda}\right)^{1/2} \frac{1}{\lambda BE}$$
$$\lambda: Mpc, B: nG, E: 10^{20} eV$$

Most interesting observables

The energy spectrum

Shape Composition Anisotropy

6/25/2003

The Spectrum - I

Shape: Power law

Energy: 12 decades+ Flux 31 decades+

Very interesting anomalies Knee, Ankle, Endpoint

Spectrum shape

 $I_{N}(E) \approx 1.8 \ E^{-\alpha}$ nucleons /cm² s - sr - GeV

 α = 2.7, from several GeV to beyond 100 TeV,

(galactic origin)

 $\alpha = 2.8$, 1018 eV < E (above "ankle")

(extragalactic origin)

100 TeV = 1014 eV

6/25/2003

Thermal vs. Power law

(Terasawa, 2001)

No doubt CR's are not thermal!

Huge difference at high energy

6/25/2003

E.Menichetti - Int. School on Strong Interactions and Multiparticle Dynamics

The Spectrum - II Composition

~79% of nucleons are protons

~14% of nucleons are within helium nuclei

Z	element	abundance	
1	н	485	
2	He	26	
3-5	Li-B	0.40	
6-8	C-0	2.20	
9-10	F-Ne	0.30	
11-12	Na-Mg	0.22	

Z	element	abundance		
13-14	Al-Si	0.19		
15-16	P-S	0.03		
17-18	Al-Ar	0.01		
19-20	K-Ca	0.02		
21-25	Sc-Mn	0.05		
26-28	Fe-Ni	0.12		

Above 10 GeV, 10⁻⁴ antiprotons/proton No evidence for primary component of antiprotons

Composition

6/25/2003

14

The Spectrum III - Anisotropy

2 kind of analysis

Harmonic Analysis Aiming to find angular modulations Smaller E, high statistics

Point Sources Doublets, triplets, ... Larger E, small statistics

Point sources - AGASA

No Large Scale Anisotropy. Event Clusters: 1Triplet and 6 doublets P(chance) ~ 0.07%. Interacting Galaxy VV141 in the direction of triplet at 100Mpc.

E.Menichetti - Int. School on Strong Interactions and Multiparticle Dynamics

6/25/2003

Cluster	Exp.	Date	$\log E$	R.A.	Dec.	1	b	S.G.Lng.	S.G.Lat
Triplet #1	НР	810105	19.99	20.00	20.00	132.70	-41.70	318.10	-0.79
	AG	931203	20.33	18.91	21.07	130.48	-41.44	318.11	0.89
	AG	951029	19.71	18.53	20.03	130.18	-42.51	317.02	0.93
Triplet #2	AG	920801	19.74	172.30	57.14	143.20	56.65	56.82	2.04
	AG	950126	19.89	168.65	57.58	145.53	55.10	55.51	0.50
	AG	980404	19.73	168.44	55.99	147.51	56.23	56.84	-0.37
Doublet #1	AG	910420	19.64	284.90	47.79	77.88	18.45	24.95	57.83
	AG	940706	20.03	281.36	48.32	77.58	20.86	29.35	57.20
Doublet #2	AG	860105	19.74	69.03	30.15	170.08	-11.50	3.50.38	-33.33
	AG	951115	19.69	70.39	29.85	171.09	-10.79	3.51.23	-34.31
Doublet #3	HP	860315	19.71	267.00	77.00	108.50	30.10	30.83	27.99
	AG	960513	19.68	269.05	74.12	105.11	29.79	31.09	30.94
Doublet #4	HP	720525	19.65	239.00	79.00	113.30	34.60	35.05	23.27
	YK	911201	19.62	235.40	79.80	114.60	34.60	34.88	22.22
Doublet #5	VR.	610319	19.73	154.10	66.70	143.00	44.30	44.59	0.35
	HP	850313	19.62	157.00	65.00	143.60	46.30	46.63	0.24
Doublet #6	НP	661008	19.67	164.00	50.00	159.00	58.80	61.08	- 5.53
	YK	750317	19.67	163.70	52.90	154.90	56.80	58.45	-4.16
Doublet #7	HP	740228	19.86	264.00	58.00	86.36	32.52	41.02	45.22
	AG	980330	19.84	259.16	56.32	84.39	35.17	45.44	45.35
Doublet #8	НP	760206	19.62	165.00	64.00	140.98	49.43	49.49	2.43
	HP	850313	19.62	157.00	65.00	143.60	46.30	46.63	0.24

Clusters $< 4^{\circ}$

(Uchihori et al., 2000)

6/25/2003

E.Menichetti - Int. School on Strong Interactions and Multiparticle Dynamics

The magnetic mirror

Energy exchange drift→revolution

$$v_{\parallel}^{2}(z) = v_{\parallel}^{2}(0) - v_{\perp}^{2}(0) \left[\frac{B(z)}{B(0)} - 1 \right]$$

Inhomogeneous B field Spiral trajectories around field lines High gradient regions acting like walls

Fermi mechanism - 2nd order

Scattering from inhomogeneous, moving B field

Scattering by B-field

Stochastic process $\Delta E \propto \beta^2 E$ Expect: *Slow, inefficient*

 $E_{1}^{'} = \gamma E_{1} \left(1 - \beta \cos \theta_{1} \right)$ $E_{2} = \gamma E_{2}^{'} \left(1 + \beta \cos \theta_{2} \right)$ $\Rightarrow \left\langle \frac{\Delta E}{E} \right\rangle_{\theta_{1},\theta_{2}} \approx \frac{4}{3} \beta^{2}$

6/25/2003 E.Menichetti - Int. School on Strong Interactions and Multiparticle Dynamics

Fermi mechanism - 1st order

shock wavefront

supernova interstellar medium

Speed= U_1 > Speed= U_2 $\left\langle \frac{\Delta E}{E} \right\rangle_{angles} \sim \frac{4}{3} \frac{R-1}{R} \beta$

6/25/2003

As before, scattering by B-field irregularities Momentum gain:

 $\delta p/p = +2U_1/c$ head-on acceleration $\delta p/p = -2U_2/c$ tail-on deceleration $\rightarrow \delta p/p = 2(U_1 - U_2)/c > 0$ net gain

Expect: *fast, efficient*

-Shock compression ratio

Spectral index, time constant Power law spectrum $N(E) \propto E^{-x}$

Fermi 2nd order:

 $x = 1 + \tau_{acc} / \tau_{esc} \gg 1$

 τ_{acc} >10⁸ yr! KO

Fermi 1st order:

 $x = \frac{R+2}{R-1} \sim 2$ $\tau_{acc} \sim 1 \text{ month! OK}$

Maximum energy

Simple estimate of max. energy (Hillas):

$$E_{\rm max} = Ze\beta BL$$

- β: plasma speedB: mag field
- L: source size

Bounds

By plugging typical supernova numbers *E_{max}<1 10¹⁵ eV*

By assuming multiple shock acceleration E_{max}<1 10¹⁸ eV

 \rightarrow *Very difficult to account for E*>10²⁰ eV

Compact sources

Just meaning: non electromagnetic acceleration

Various mechanisms proposed:

Black hole accretion disks

Gamma ray bursts

Topological defects (monopoles, cosmic strings, ..)

UHE v's from decays of high mass particles

Summary of predictions CR's of E> 10¹⁵ eV are not easy to explain CR's of E>10¹⁹ eV are *difficult* to explain Require either Large source size and/or Strong B-field or **Exotics**

Neither easily available ...

Cosmic Microwave Background

Penzias, Wilson & the Antenna

The CMB spectrum (by FIRAS)

6/25/2003 E.Menichetti - Int. School on Strong Interactions and Multiparticle Dynamics

G(reisen), Z(atespin), K(uz'min) $p + \gamma(2.7K) \rightarrow n + \pi^{+}$ $p + \gamma(2.7K) \rightarrow p + \pi^{0}$ (G, Z&K - 1965) $E_{thresh} \sim 6 \ 10^{19} \text{ eV En.loss} \sim 20\% \text{ /int}$

 $p + \gamma (2.7K) \rightarrow p + e^+ + e^-$ E_{thresh} ~ 1 10¹⁸ eV En.loss ~ 0.1% /int

The moral: CR's above threshold bound to lose energy

The GZK cutoff

So UHECR's just can't propagate beyond, say, 50 Mpc!

Then we should find a suitable source just 'round the corner'. But where?

6/25/2003 E.Menichetti - Int. School on Strong Interactions and Multiparticle Dynamics

Cosmic Rays Detection

Airborne conventional detectors: E<10¹⁴ eV Not suitable to deal with small fluxes

E> 10¹⁴ eV : *E*(xtensive) *A*(ir) *S*(showers) *Different techniques:*

Ground arrays (scintillators, water Cherenkov) Air Cherenkov telescopes Fluorescence detectors

6/25/2003

E.Menichetti - Int. School on Strong Interactions and Multiparticle Dynamics

EAS's - II Data & MCarlo

6/25/2003

A 10 EeV Extensive Air Shower (EAS)

Ground Array

EAS sampled by a number of detector station EM shower Shower core Shower front hard muons Shower front Surface detector stations

Direction of

incoming shower

Ground Array - Direction

Time + Transverse shape Resolution vs. energy:

 $\Delta \theta \sim 2^{\circ} \text{ at } 10^{19} \text{eV} \rightarrow 1^{\circ} \text{ at } 10^{20} \text{eV}$ $\Delta x, y \sim 80 \text{m at } 10^{19} \text{eV} \rightarrow 40 \text{m at } 10^{20} \text{eV}$

Ground Array - Energy

Measured density extrapolated to a reference point Typ. $\rho(600m)$ to $\rho(1000m)$ to minimize fluctuations **Compare to Monte Carlo simulation** Good linearity with Eprimary **Results somewhat depending on : Primary interaction (physics)** Composition (p vs. Iron) E range fixed by detector spacing

Ground Array - Composition

Fluorescence detector EAS: 90 % electrons

Think of atmosphere like a giant calorimeter Air molecules excited by fast electrons Lots of fluorescence light available from N₂ Put large mirrors + PMs watching the sky

But: Need dark, clear nights + clean environment $\rightarrow \sim Desert$ $\rightarrow Low duty cycle \sim 10\%$

Fluorescence detector - I

Nitrogen spectrum Near UV Narrow band 300-440 nm \rightarrow Optical filtering

Light yield ~ 4 γ/m*electron

6/25/2003

E.Menichetti - Int. School on Strong Interactions and Multiparticle Dynamics

Fluorescence detector - II

Shower-detector plane

Each PM sees one segment of the shower \rightarrow Sequence of fast

pulses by adjacent PMs

Photomultiplier array

Impact point/

Fluorescence detector - III

Fluorescence detector - IV

Fluorescence detector - V Unique FD capability: *Iongitudinal profile*

6/25/2003

E=3.2 10²⁰ eV (Fly's Eye)

Composition (Fly's Eye)

Comparison: GA vs. FD

GA **Sampling detector** 100% duty cycle Large number of simple, modular elements **Shower parameters** from x-section Need reliable MCarlo simulation

FD

Integral calorimeter 10% duty cycle Small number of complex stations Shower parameters from full shower track Need good atmospheric monitoring+calibration

Data a	bove 100	EeV
Existing expe	riments sensit	tive >10 ²⁰ eV
Experiment Typ	e Exposure	Surface
Volcano Ranch GA SUGAR GA Haverah Park GA Yakutsk GA	A 63 km ² .sr.yr A A 275 km ² .sr.yr A 428 km ² .sr.yr	8 km ² 60 km ² 12 km ² 58 km ²
AGASAGaFly's Eye (mono)FFly's Eye (stereo)FHiRes1 monoF	A 1268 km ² .sr.yr D 825 km ² .sr.yr D 145 km ² .sr.yr D 1090 km ² .sr.yr	111 km ²

Data from AGASA, HiRes

Comparison

Flux systematics + Clear inconsistency above 5 10¹⁹ E-scale?

E-scale Other?

GZK-compliant, model fit

6/25/2003 E.Menicl

E.Menichetti - Int. School on Strong Interactions and Multiparticle Dynamics

Auger: GA + FD The concept of a *large hybrid* detector

- Cross calibration
 Independent measurements of
 E_{prim}, direction and composition
- Better control of systematic
- Much better identification
 - 3 parameter correlation ρ_{μ}/ρ_{em} ,
 - **T**_{10%-50%}, **X**_{max}.
- Stronger constraints on models ρ_{μ} and ρ_{em} combined to shower profile measurement.

- 100 % duty cycle Ground array is 100% efficient all time (versus 10% FD stereo detectors)
- Reduced cost
 Cost per >10¹⁹eV event
 reduced with hybrid techniques
 than with FD stereo detectors,
 Reduced requirements on
 fluorescence eyes (lower range and less pixels),

The Pierre Auger Observatory

Some geography

6/25/2003 E.Menichetti - Int. School on Strong Interactions and Multiparticle Dynamics

The PAO Southern Site

PAO Performance - I

Expected flux: Integral flux > 10 EeV (> 10^{19} eV) = 0.5/(km².sr.yr) > 100EeV(> 10^{20} eV) ~ 0.01 /(km².sr.yr)

1 year of AUGER, each site

E > 10 EeV E > 40 EeV E > 100 EeV

3000 events(1281)300 events(126)25-45 events(15)

PAO Performance - II

(surface of	detectors); d	istance 1.5 km; 7000 km ² sr
tions (fluc	orescence de	tectors); range 25 km
100%		
10%		
lution (ef	ficiency > 90	% above 10 EeV) :
SD	SD+FD	
15%	10%	
30%	20%	
olution:		
SD	SD+FD	
<i>0.5</i> °	<i>0.20</i> °	
1.0 °	<i>0.35</i> °	
	(surface of ions (fluct 100% 10% 10% Iution (ef SD 15% 30% Olution: SD 0.5° 1.0°	(surface detectors); d ions (fluorescence detectors); d ions (fluorescence detectors); d ions (fluorescence detectors) 100% 10% 10% 10% 15% 15% 15% 10% 30% 20% clution: $5D$ $5D$ $5D$ $5D$ $5D$ $5D$ 10% 10% 10% 10% 10% 10% 10% 10% 10% 10% 1.0° 0.35°

Much improved primary identification with hybrid mode

The SD tank

E.Menichetti - Int. School on Strong Interactions and Multiparticle Dynamics

The FD telescope

PM camera

The Engineering Array

Engineering Array : 1/40 of the Surface Detector

38 tanks + 2 Fluorescence Telescopes

The pampa amarilla,

Co. Ohico

Longitudinal profiles

D=13.1 km $E_{est}= 1.3 \ 10^{19} \text{ eV}$ D=19.5 km $E_{est}= 3.3 \ 10^{19} \text{ eV}$

E.Menichetti - Int. School on Strong Interactions and Multiparticle Dynamics

Hybrid event

Postcard - SD

Postcard - FD

0/23/2003 E.ivienicnetti -

iparticle

Conclusion

E>10²⁰ eV particles exist

They must be produced or accelerated somewhere: GZK point to the 'neighborhood' of our Galaxy

Standard astrophysical mechanisms cannot easily account for *E*>10¹⁹ eV

At such extreme energies, source localization is feasible

Existing data are contradictory above 5 1019 eV

Auger is coming!

6/25/2003

E.Menichetti - Int. School on Strong Interactions and Multiparticle Dynamics