1298

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 24, NO. 10, OCTOBER 2002

Generalized Spatio-Chromatic Diffusion
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Abstract—In this paper, a framework for diffusion of color images is presented. The method is based on the theory of thermodynamics
of irreversible transformations which provides a suitable basis for designing correlations between the different color channels. More
precisely, we derive an equation for color evolution which comprises a purely spatial diffusive term and a nonlinear term that depends
on the interactions among color channels over space. We apply the proposed equation to images represented in several color spaces,

such as RGB, CIELAB, Opponent colors, and IHS.

Index Terms—Color images, scale-space, vector-valued diffusion.

1 INTRODUCTION

EVEN though color information is essential to many vision
tasks, most biological and computational vision models
work exclusively in the luminance domain. As a conse-
quence, research has been focused mainly on sources of
information such as intensity gradients, textural features, or
geometrical cues. However, data from biological vision
systems show that boundary representations do not
segregate achromatic and chromatic signals into different
representations but, rather, they pool signals from all
chromatic and achromatic sources in order to generate the
most accurate boundaries possible in response to any given
stimulus array [1]. Interestingly, a firm theoretical basis for
such a claim has been provided by computer vision [2].
Namely, it has been shown that the effectiveness of
different edge operators, as theoretically measured by
Chernoff information, can improve by using either multi-
scale processing and chromaticity in addition to gray scale.
However, these results leave open the very issue of how to
combine, in a single representation, multiscale processing
and color. In computer vision, multiscale representations of
a gray-level image I have been obtained by fine-to-coarse
transformations that can be modeled, in general, by a
diffusion or heat equation [3], [4],

o, = DV?I, (1)

where D is the diffusivity or conductance, a constant which,
without loss of generality, is usually set equal to 1, 0
denotes the partial derivative 9/0t and V? is the Laplacian
operator. A vast amount of research on diffusion processes
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can be found in the computer and computational vision
literature mostly devoted to monochromatic images (for an
in depth treatment, see [5], [6], [7]).

Avector-valued (multivalued) image is a smooth mapping
from the image domain  C R? to an m-dimensional range,
I:Q — R™;inother terms, itis a set of single-valued images,
or channels, sharing the same domain, i.e., I(r) = (J; (r)7,
wherei =1,...,mand r= (z, y) denotes a point in 2. A color
image can be considered a vector-valued image of three
components (m = 3) or color channels.

A number of authors [8], [9], [10], [11] have addressed
vector-valued diffusion by extending to R™ scalar aniso-
tropic diffusion schemes ([6], [12]). For instance, Whitaker
and Gerig [8] obtain vector-valued anisotropic diffusion
through a system of single-valued diffusion processes,
evolving simultaneously but sharing a common conduc-
tance modulating term d, namely, 0:; =V - (d(||T]|)VL),
where [|J|| is the Euclidean norm of the generalized
Jacobian matrix of I (for notational convenience, we simply
write I;(r) as ;). Analogously, Weickert [9] proposes a
common conductance d which takes into account informa-
tion from all channels as a function of the structure tensor
for vector images, M,(VI,) =", M,(VI,), where
M,(VI,) = K,* (VI;,VI]) is the scalar structure tensor
or second-moment matrix, K, being a Gaussian kernel, p
and o the integration and noise scales, respectively, (p > o).
The function d is designed to allow maximal smoothing
along a coherence direction determined via the eigenvector
corresponding to the smallest eigenvalue of the structure
tensor. A different approach has been proposed in [10] by
considering color images as surfaces. In this case, transi-
tions from fine to coarse scale of resolution can be generated
by a suitable choice of the metric tensor. In particular, the
so-called Beltrami flow is governed by the equation

a[._iii I/Qi /wi[.
tl_glﬂuzlamﬂ g g 81',, i)

v=1

where z1 =z, 3 =y, ¢" is the metric tensor and g is its
determinant. In a similar vein, Sapiro and Ringach [11] choose
d as a decreasing function of (A — A_),where A\, and \_are
the eigenvalues of the metric tensor and diffusion is
constrained to occur normal to the direction of maximal
change. Interestingly, all such anisotropic models relax, in the
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isotropic limit, to a system of single-valued, scalar partial
differential equations (PDEs), each taking place on a separate
channel I;, with 0,1; = V21, (Independent Channel Diffusion
(ICD)). For instance, the Laplace-Beltrami operator reduces to
the ordinary Laplacian when g is the Euclidean metric.
Here, a different perspective to the problem is presented,
founded on the concept of color channel interactions in the
framework of the thermodynamics of open systems. It will be
shown that, by considering the different channels as inter-
acting systems, a generalized diffusion equation can be
derived that determines the evolution in spatio-chromatic
scale space, (Generalized Spatio-Chromatic Diffusion
(GSCD)), without being constrained by a particular form of
diffusivity. As a result, the evolution equation across scales
comprises a purely diffusive term and a nonlinear term that
depends on the interactions between channels. In this respect,
our approach shares some common aspects either with other
approaches, that derive systems of diffusion equations in a
variational framework, for instance [13], [14], the latter being
specifically conceived for chromaticity diffusion, or with
pseudolinear scale-spaces recently introduced by Florack
[15]. The proposed diffusion scheme is intended mainly to
provide a preprocessing step to later specialized stages of
visual analysis; meanwhile, as it will be shown in the sequel, it
exhibits appreciable noise suppression properties. Also, a
possible anisotropic extension of GSCD will be discussed.

2 GENERALIZED DIFFUSION

We consider scale parametrlzed color images, which we
denote by I(r,t) = (Ii(r, t))", where the index i=1,.

defines the ith color channel and ¢ is the scale of resolution:
Small values of ¢ correspond to fine scales, while large
values correspond to coarse scales. A transformation from
one scale to another is given by an operator 7 that takes the
original image I(-,0) to an image at a scale t, namely,
Ty :1(-,0) —» I(-,t). We assume 7 to be a semidynamical
system, that is, a semigroup of transformations for which
TioI(,0) =T (T pI(-,0)) =T pI(-,t), Tol(-,t) = I(-,t),

where ¢t € R". The characterization of 7 as a semidynamical
system ensures that it is a noninvertible or irreversible
transformation which cannot be run backward across scale.
A transformation 7 can be implemented implicitly through
a differential equation and the diffusion equation has been
widely used in this context; then, it would be tempting to
adapt this kind of approach to the case of color images.
Most anisotropic, vector-valued models simplify, in the case
of an isotropic process, to ICD, ie., a system of single-
valued diffusion processes evolving simultaneously:

oI = VI, (2)

Unfortunately, the system specified by (2) does not allow
interactions among different color channels to take place,
whereas there is a general agreement [8], [11], [9], [13], [14],
[15], [16], [17] that the processing and interpretation of color
images cannot be reduced to the separate processing of three
independent channels, but must account, to some extent, for
dependencies between channels, whatever the channels
employed.

Conceptualizations of color diffusion image models can
gain from physical metaphors. In physics, there are many
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instances in which different systems interact with each other.
This is the case, for instance, of thermodynamics of open
systems, where different thermodynamical systems exchange
energy or matter [18]. Insuch cases, the equations determining
the evolution of the processes under observation must take
into account the interactions among different systems and
then they have amore complex form than forisolated systems.
For example, consider diffusion of heat: if the system is
isolated the evolution of the temperature 7" is governed by a
diffusion equation, similar to (1) whereas in case of an open
system a more general equation holds, namely,

oT = —divlJ, (3)

where J is the heat flow [18]. Note that by setting J=—DVT,
where V is the gradient operator, one obtains 9,7 = DV*T,
the usual diffusion equation. Analysis of thermodynamical
opensystems is usually very complex; fortunately, itis known
that, for a large class of transformations, flows can be thought
of as driven by generalized thermodynamical forces of which they
arelinear functions. For instance, Fourier’s law states thatheat
flow is linearly dependent from the gradient of the tempera-
ture. In general, in the linear regime, J=LX [18], where Xis
the generalized force and is of the nature of a gradientand L is
amatrix of phenomenological coefficients [18] not depending on
either X or J. Indeed, this cause-effect relation between X and
J, which is reminiscent of the connection between force and
acceleration in Newtonian mechanics, renders it plausible to
call X a thermodynamical force.

To apply this formalism to color images, any color channel
will be considered as an open system interacting with the
others. Then, for each color channel, the transition from fine to
coarse scales can be modeled through the equation

oI = —divJ;, (4)

(compare (3)) In turn, for each ¢, the flow is given by
J — 2771

In order to model interactions, one has to choose
generalized forces X; and coefficients L;;. In thermody-
namics, there is some freedom in choosing generalized
forces provided that the resulting equations be consistent
with those that hold for isolated systems. In particular, for
heat diffusion X = V(1/T) [18]; then, in our treatment, the
corresponding form is X, = V(1/I;). This choice of X; is
consistent with the definition of the thermodynamic theory,
which we use to shape color channel interactions and, more
importantly, when applied to monochromatic images, that
can be considered as isolated systems, reproduces known
results [19]. As for the coefficients L;;, Onsager’s reciprocity
principle must hold [18], namely, L;; = Lj;. In this case, this
simply assumes that we make no prior assumptions about
biases in the coupling between color channels. In addition,
if there are no interactions among channels, (4) must
become ICD equation (2). Define L;; = xi;f(I;,I;), where
Xij = Xji are symmetric coefficients between channels i and
J whose maximum value is x; = 1; in case of independent
channels x;; = ¢;;. Next, it will be shown that, under these
conditions, the function f must satisfy the relation

[, L) =12 (5)
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By inserting J, = Z?:l LU-X" ; into (4),

8tli——div<ZL¢ij> Zv (x”f L, 1) ); (6)
V- (F0L 1)),

if xij = 04, the equation is simply 9,1; =
which can also be written as

2
ol = f v21 +3 Vf(I“L) \JF If(w)
This equation is the same as (2), if
f 1 f
ﬁvzl = V%I, 7 VI 1) - VI = (VI) (7)

The first part of (7) holds if and only if f (Ii, I;) = I?.Next, it
is straightforward to check that, if f(I;,I;) = IiZ, the second
equation is automatically satisfied. Thus, the simplest form
for f satisfying (5) is then f(I;, I;) = I;I; and we have chosen
to study couplings of the form L;; = xi;/i1;.

By using (6), we obtain the following system of coupled
evolution equations

VI >
j )

I = Zv (X”

that, after some computations, becomes:

8tIi :Vzlz' +Z XL/( VZI +t5 12 ( J (81L8LI/ +8UIL8UI/)

i (8)
=1 (arfjarfj+5y1j3z/fj)>> :
This set of PDEs can be written in matrix form as:
27
oI =V2I,; +ZXUI]V
J#i (9)
e o alle]
Z I L6 Lo.L; 0,01 Lo,1; )

Because of the nonlinear interactions occurring between
channels, the average gray level of each channel needs not to
be preserved. In this sense, the behavior of each PDE has
qualitative relation to affine scale spaces, based on Gaussian
kernels with arbitrary covariance matrices [20], [21]. Here,
smoothing control in each channel is provided by the other
channels. The system of equations (9) can be written in a more
compact form which also makes clearer the meaning of the
different terms. For a given index ¢, denoting the channel
under consideration and for each j # i, define h;; =

Sr o Xig | I T_
Ti; =T A
f ;

denote by ¥; the gradient [0,1;,9,1;] of the channel j and,
finally, define the vector field ;; = [L;7 1 ]-]. Then,

XZ][/

oL 9,1,
9:I; 0yl
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is the Jacobian matrix Du;; and, hence,

O I 0,1 || 0,15
Ol Oyl5 | | O,1;
is the derivative of #;; in the direction %, i.e., V. In
conclusion, (9) takes the form
Ol = V2L + Y[V + BV (10)
J#

Then, GSCD equations comprise a purely diffusive term
and a nonlinear term that depends on the interactions
among channels. The first term, V2I;, is the Laplacian
accounting for isotropic diffusion within the channel :
under consideration. The second term is due to interaction
among channels: The Laplacian V?I; represents diffusion
weighted by hy, taking place in the channel j, while Vy i;;
gauges the effect of the rate of change of the field %;;, along
1. Using a vector notation, the system (10) can be written as

(11)

The vector equation (11) can be considered a particular
type of reaction-diffusion (R-D) system of equations, where
V21, is the diffusion term, whereas the nonlinear reaction
term F(I) = F(I;, I;) is givenby 3, [h;V°I; + @],V d;5]. In
this sense, GSCD is related to pseudohnear scale -spaces
which appear to provide natural multiscale representations
in the context of early vision, as they potentially account for
nonlinearities that are essential when dealing with vector-
valued images [15]. R-D systems of equations are known to
generate patterns, that is, spatially nonuniform states [22]; in
our case, these states correspond to nonuniform color
intensities in the three channels. In some sense, since R-D
equations preserve and enhance structures (cf. Fig. 8), they
seem to share some properties of anisotropic diffusion [12].
Systems of equations of the reaction-diffusion type have been
derived, from the theory of variations, and used in studies of
evolution of either monochromatic images at different scales
[23] or vector-valued images [14], [13]. For instance, Proes-
mans et al. [13] have discussed in detail a principled way to
design a system of anisotropic diffusion equations to be used
in multispectral analysis (briefly PPV method). Their equa-
tions have been obtained by introducing a Perona-Malik
nonlinearity [24] in a system of R-D equations derived via a
variational approach, which then reads

o1 =V I+ F(I).

O = c(y) VI +V(v,7)
Oip = pViu+ d(y)
Oy =V + G(I),

(12)

where v,v are the coupling parameters, p and ¢ are
tunable numerical parameters. In particular, G(I) =
G(max(V||Iz|l, V| Ic|l, V|II5]|)) ensures the coupling among
the different RGB channel gradients [13].

In order to provide an anisotropic extension of GSCD
system of equations (briefly GSCAD) and to compareitto PPV
method, we rewrite Onsager’s coefficients L;;, that modulate
the thermodynamical forces X jsas Lij = gxijf(1;, I;). Here, gis
avariable conductance function which, like Perona-Malik’s, is
a nonnegative, monotonically decreasing function of the
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magnitude of local image gradients in channels I; and I;
namely, g = g(i;(|| VL, |VL|])), where ¢;;(-) is a suitable
combination function; further, tobe consistent with Onsager’s
reciprocity conditions we assume ¢;; = ¢;;. There are several
possible choices of ¢;;(-): Here, to allow comparisons between
GSCAD and PPV, we use ¢;; = max(|V1;], }VI]- | ). Note that, if
i =j,9=g(]|V1L]|), thus reducing (11) to a system of Perona-
Malik equations independently applied to each channel. By
inserting the modified L;; coefficients in (6), the general case
can be obtained as 0,1; = ¢gV2I; + >z glhi;V2I; + wgv@ﬁij]
or, in R-D form,

o1 =gVI+ F(1,g). (13)

Some differences must be noted between the PPV system
and GSCAD: As remarked, the approaches used to derive the
equations were very different, namely, a variational approach
and a thermodynamical framework, respectively; moreover,
our approach seems to be more economical from a computa-
tional point of view in that it employs a system of three scalar
differential equations versus five differential equations
(compare (13) and (12)).

3 EXPERIMENTS

Different color spaces can be used to deal with color images,
there is a variety of spaces and no theoretical method has
been developed to choose the most appropriate with respect
to a problem at hand; the number of variables involved in
practical applications makes such choice unfeasible. For this
reason, we have not restricted our analysis to a specific
space, but rather, we have carried out experiments in a
variety of spaces.

3.1 Color Spaces and Transforms

A color space is a geometrical and mathematical representa-
tion of color and there is a variety of such representation
either derived from hardware considerations (e.g., RGB,
YCrCb, NTSC, YIQ, CMYK, etc.), or colorimetry issues (e.g.,
XYZ, UCS, CIELAB, CIELUV), or visual perception motiva-
tions (Opponent colors, IHS, HSV, etc.) A survey can be found
in [25], [26], [27]. We will consider, as representative of such
three classes of spaces, RGB, CIELAB, Opponent, and IHS.

The original RGB (red, green, blue) color space is widely
used to representimage data, primarily due to the availability
of such data as produced, for instance, by a color video
camera which analyzes the collected light with three broad-
band filters transmitting in the red, green, and blue regions of
the spectrum. Formally, this process generates a 3D vector
Iras(r) = (R(r),G(r), B(r))" for each pixel, where each
component has a value ranging from 0 to 255. All of the color
spaces described below are mathematical transformation
based on this original RGB data. The CIE 1976 color space,
abbreviated CIELAB, is a uniform color space defined by CIE
(Commission Internationale de 1’Eclairage) for use in colori-
metry. It is based on the intermediate CIE XYZ tristimulus
space derived from RGB as follows [26]:

X(r) = 0.41245R(r) 4 0.35758G (r) + 0.18042B(r)
Y (r) = 0.21267R(r) + 0.71516G(r) + 0.07217B(r)
Z(r) = 0.01933R(r) + 0.11919G (r) + 0.95023 B(r),

(14)
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where the triplet (E, G, E) is the normalized version of
(R, G, B), and takes values in the [0, 1] range. The CIELAB
equationis then applied to the tristimulus values to obtain the
CIELAB vector I.,(r) = (L*(r),a*(r),b*(r))" ,where L* re-
presents an achromatic lightness value, a* and b* two
chromatic values,

L*(r) = 116f(Y(r)/Y,) — 16
a’(r) = 500[f(X(r)/Xn) = f(Y(r)/Y2)] (15)
b*(r) = 200[f (Y (r)/Yn) — f(Z(x)/ Z0)]-

Here, X,,Y,,Z, are the tristimuli of a reference “white
stimulus” as defined by a CIE standard illuminant, D65, in
this case, and are obtained setting R = G = B=1. Func-
tion f reads

1/3 when ¢ > 0.008856
ﬂ@-{q “

7.787q + 1%, when ¢ < 0.008856, (16)

where ¢ € {X/X,,,Y/Y,,Z/Z,}. The Opponent color model
argues for the existence of three channels produced by
linear combinations of the RGB channels. More precisely,

we have used the Opponent color space as defined in [25],
that is, Ip,,(r) = (WB(r), RG(r), BY (r))", where

WB(r) = R(r) + G(r) + B(r)
RG(r) = R(r) - G(r)
BY (r) = 2B(r) — R(r) — G(r).

r (17)

W Brepresents light-dark variations, whereas RG and BY are
called the opponent colors, and denote the red-green and
blue-yellow hue pairs, respectively. The IHS system is a
simplified version of the Munsell system. The I component,
intensity, corresponds roughly to the brightness of the signal.
The H component, hue, is approximately proportional to the
wavelength of the color. The S component, saturation,
measures the amount of white that is in the color (e.g., pink
is an unsaturated red). This space can be modeled mathema-
tically in polar coordinates, where the hue is specified by the
angle, saturation as radial component, and intensity vertical to
hue/saturation plane. More precisely, the conversion from
the RGB color space to IHS is done in two steps [27]. First, the
RGB coordinates are rotated to form the coordinate system
(IV4 V) whose axis is the line R = G = B:

I(r) = V3/3R(r) + V3/3G(r) + V3/3B(r)
Vi(r) = 1/vV2G(r) — 1/v2B(r)
Va(r) = 2/V6R(r) — 1/vV6G(r) — 1/V6B(r).

Then, the rectangular coordinates (V;V3) are transformed to
polar coordinates,

(18)

H(r) = tan™ ! (Va(r)/Vi(r))
S(r) = \/Vi(r)* + Va(r),

thus obtaining I;55(r) = (I(r), H(r), S(r))". The hue coor-
dinate range is [0, 2] or, equivalently, [0,360] degrees.

(19)

3.2 Experimental Setup

The data set used in our work consisted of 50 images, natural
and man-made/artificial object images. They were collected



1302

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 24, NO. 10,

OCTOBER 2002

(@)

(b)

Fig. 1. (a) The “Mandrill” image and (b) the same image degraded with additive Gaussian noise.

from various sources and do not rely upon any specific
acquisition, illumination, resolution, or format constraint. The
original images are given in RGB components. In this paper,
due to space limitation, we will illustrate results obtained by
using the “Mandrill” image (Fig.1a) which is a standard test
image and, meanwhile, is particularly critical due to the
combination of fine textural features and hue variations.
Equation (9) was implemented using a finite difference
form [24]. In order to avoid division by zero, which would
occur in (9) when I; = 0, values of I; < ¢, where e = 1.07°
were replaced by I; =e. In the case of diffusion in IHS
space, the angular range of the hue component suggests a
careful implementation of (9), as regards gradient computa-
tions since, in this case, the finite difference of the values of
two pixels, say H(r) and H(r’), cannot be simply computed
as H(r) — H(r'). In fact, for two nearby values on the hue
circle (e.g., 360 and 1) the straightforward difference would
suggest a maximum distance between two colors that are
actually similar. Thus, we adopt the following rule [28]:

if |[H(r) — H(r'")| > Hypax/2 then dH =
else dH = |H(r) — H(r')|mod(H ),

where dH denotes the difference d(H(r),H(r')) In the
general case Hy.x = 2w, for practical purposes, we have
used scaled values of H and I to the range [0, 255]. Note also
that this procedure is sufficient for our purposes and we are
not considering specific problems related to orientation
diffusion which have been investigated in other works [14],
[29], but that are out of the scope of this paper.

The two kinds of diffusion were obtained by setting x;; =
0 for ICD and 0 < x;; < 1 for GSCD. In regards to the latter
case, the following values where chosen, based on either
prior considerations related to the specific color space and
experimental tuning. For RGB space, xi2 = x13 = X23,
namely, xi2 =0.4,x13 = 0.4, x23 = 0.4, because of equal
importance of the three channels. CIELAB space separates
achromatic and chromatic information and a minor interac-
tion should be allowed between the chromatic channels a*

and b*, since such interaction gives rise to a mean
chromaticity error increasing with x23 (cf. following section);
thus, in general, xi2 = x13 > X23 and, specifically, xi2 =
0.7,x13 = 0.7, x23 = 0.2. In regards to the Opponent color
space, parameters y;; should satisfy the condition
X12 > X13 > X23; namely, we set xi2 = 0.7, x13 = 0.5, x23 =
0.3. This constraint allows for a major informational
influence of the RG channel with respect to the BY one
[17], while ensuring a minor interaction between the two
opponents, as opposed to the intensity/chromaticity inter-
action. For what concerns IHS space, x13 > x12 > X23; such
choice endows the saturation channel major informational
properties with respect to the hue component. This may
seem counterintuitive, at a first sight; however, the rationale
stems from the fact—first discussed in [28]—that, if
saturation is low, hue is very noisy or unstable, thus
conveying irrelevant information; for instance, in determin-
ing gradient information, the H channel is in some respect
complementary to I and S information. Meanwhile,
information exchange between S and H channels, should
be limited in order to keep a low-chromaticity error. In the
experiments, we use 12 = 0.2, x13 = 0.7, x23 = 0.1.

3.3 Experiment |

To evaluate the denoising efficiency of the proposed
method, actual images corrupted by Gaussian white noise
have been considered, which is a standard experiment in
the literature [14], [30], [21].

Anexampleis provided in Fig. 1, where the noisy Mandrill
image has been obtained by corrupting each RGB channel
with Gaussian noise (02 = 400). Generalized spatio-chro-
matic diffusion has then been compared against independent
channel diffusion, for each color space previously introduced.
The procedureis as follows: 1) transform the noisy RGBi image
1 into the chosen color space, 2) produce two diffused versions
of Iby application both types of diffusion, and, finally, 3) back
transform the two diffused images to RGB space. It is worth
noting that evaluation in the RGB space after back transfor-
mation has the disadvantage of lowering performance, but it
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TABLE 1
Denoising Performance
RGB CIELAB Opp IHS
Y12, Yis. X | (04,04,04) | (0.7,0.7,0.2) | (0.7,0.5,03) | (0.2,0.7,0.1)
NSNR (1=10) 14.42 14.46 14.42 14.39
14.01 15.24 14.94 14.96
MCRE (t =10) 6.22 6.07 6.25 6.27
6.24 5.99 6.28 5.82
NSNR (t=30) 13.70 13.75 13.70 13.70
13.44 14.51 14.05 14.18
MCRE (t=30) 6.73 6.50 6.75 6.67
6.52 6.30 6.65 5.83

is more meaningful from a practical standpoint, because,
eventually, devices like, for instance, computer screens,
produce an RGB image. For objective comparison, two
different figures of merit have been adopted, which are
standard in the literature [30]. The first measure is the
Normalized Signal to Noise Ratio,

NSNR = 10log,,(1/NMSE), (20)

where NMSE = ZrEQHI(r) — T{I\(r)Hz/ ZrGQHI(r)H2 is the
normalized mean square error [30], I(-) and 7 ti() denote
the original image vector and the image vector obtained at
scale t after diffusion has been performed on the noisy
image I. The measurement unit is dB (decibel).

The second measure is the Mean Chromaticity Error
defined as the distance between the two points which are
the intersection points of I(r) and T I(r) with the Maxwell
triangle [30]; formally,

MCRE = Zc[I(r), Tj(r)] /19,
reQ
= = = 2
where C[I(x), 7,5r)] = | (T1()/|TA0)]) - 1)/ 1))
is the chromaticity error between vectors I(r), 7:I(r), |||
and |-| being the L? and L' norms, respectively, and |(2| the

(21)

dimension of the image domain Q. MCRE gives an exact
indication of the vectors’ divergence from the original
directions which can be qualitatively interpreted as the
chromaticity error [30]. Results are reported in Table 1, for
10 and 30 iterations of the diffusion process. In each square of
Table 1, the number on the top refers to ICD and the other to
GSCD; obviously, a better performance is quantified by an
higher value of NSNR and a lower value of MCRE.

It should be noted that, with the exception of RGB space,
GSCD achieves, in general, better denoising performance
with respect to both NSNR and MCRE. In particular, the
best performance, as the best trade-off between NSNR and
MCRE at increasing iterations, is attained in IHS space
(specifically with reference to MCRE). The results of ICD
and GSCD can be appreciated in Fig. 2.

In Figs. 3 and 4, magnified details of Mandrill’s eyes and
whiskers are provided. These examples show that GSCD, in
both cases, removes the noise present in the top row images
while achieving better preservation of details and semanti-
cally important singularities, with respect to ICD.

It is worth pointing out that, given an initial MCRE value
of 5.91 for the degraded image I, THS is the only space in
which a lower MCRE is gained by GSCD. Also, MCRE

(@)

(b)

Fig. 2. The degraded “Mandrill” image after diffusion (¢t = 10) in IHS space: (a) ICD. (b) GSCD.
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(©)

Fig. 3. (a) Magnified details of the eyes from the degraded image, (b) ICD, and (c) GSCD.

exhibits very low increase when increasing the number of
iterations. This result can be partially determined by the
setting of the x parameters, which privileges the
S component, consistently with the fact that, in such space,
due to the nonlinear transformation from RGB, the noise
sensitivity of H component is not homogeneous in the
chrominance plane; however, when S is high, H sensitivity
to the image noise can be even lower than that of intensity
[28]. Eventually, the tuning of the x23 parameter in GSCD
allows for a suitable control of the chromaticity error, which
is a crucial problem when dealing with color images [30],
usually overlooked in other models.

3.4 Experiment II

To provide a qualitative, visual assessment of the two
methods for pattern analysis purposes, we have used the
outputs of ICD and GSCD at 30 diffusion iterations to
perform image segmentation. The same region extraction
method was applied to all images. In this case, we used a
simple split-and-merge procedure [25] in order to easily
control the merge step. Visualization of these results was
made easier by an application of Canny’s algorithm [31]
(with ¢ = 1) on each channel’s (/;) segmentation output, so
that the colored edge map could be transformed into a gray-
scale edge map. It must be emphasized that we have used
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Fig. 4. Magnified details of the nose and whiskers. The organization of the figure is the same as in Fig. 3.

rather simple procedures for segmentation and region
boundary identification since they were intended to
provide just a simple way to visualize the results yielded
by the two diffusion process; the focus here is on the
comparison of the two diffusion models and not on
segmentation per se. For instance, to effectively address
the segmentation issue, a natural choice could be the
extension to the proposed framework of entropy-based
procedures previously presented in [19], [32]. Indeed, both
region extraction and edge detection were run with
minimum thresholds to allow for oversegmentation and to
visualize better differences between the two diffusion
processes. Fig. 5 shows examples in RGB (top row) CIELAB
(second row), Opponent (third row), IHS (fourth row)
results. In each figure, the left image is obtained after ICD,

while the right one after GSCD. Finally, the last row shows
IHS segmentation for 100 iterations.

It can be seen that, in general, edge maps obtained after
GSCD retain more significant features than those provided by
ICD (note, for instance, the right eye of the Mandrill, which is
missed by ICD, in CIELAB, Opponent spaces, and IHS at
100 iterations). It is worth remarking that again, for the
majority of images of our data set, it is indeed the IHS space
which has provided best qualitative results. From the last row
of Fig. 5,itis clear that GSCD provides a more stable behavior
(in the scale-space sense, [3]) as regards image structures,
with respect to ICD.

3.5 Experiment lll
One way of quantitatively explaining the differences between
the two diffusion models, as regards the results presented



o P
o L -~

Fig. 5. The figure displays the edge maps images obtained after ICD (left
column) and GSCD (right column) for the different color spaces (see text
for details).

above, is to measure, for a given image, the total variation
along scales of image uniformity with respect to the difference
between the original and diffused picture (discrepancy or

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 24, NO. 10, OCTOBER 2002

error). What is obtained is a type of FROC (free receiver
operating characteristic) curve where the free parameter is
represented by the number of iterations (scales t). Clearly, one
expects that, when ¢ increases, the GSCD curve keeps below
the ICD curve. In fact, the former type of diffusion should
better preserve relevant features (e.g., spatio-chromatic
edges) over the different color channels as scale changes, thus
allowing less uniformity at a given error/discrepancy level.
Formally, define the discrepancy or error £ as:

E(t) =Y d(r,0)/|,
reQ
where d(r,t) = 37" (I(r,t) — I;(r,0))*, d(r,t) being the
Euclidean distance of the color vector between the diffused
image and the original one of each pixel r in the domain €.
By adapting and generalizing to color a uniformity measure
previously proposed [33], define

Ut)y=1-> & (xr,1)/K[Q,

reQ)

(22)

(23)

where K is a normalization factor, 6°(r,t) = > I", o?(r, ),
with

2
0—12(1‘7 t) = Z (Ii(rv t) — i N(r) (t)> )

reN(r)

N(r) being a neighborhood of the point r and
i) (1) = D peq Li(r, 1) /IN(r)]. Fig. 6 shows the plots of
U(t) versus E(t) for GSCD and ICD (¢t =30) in the
different color spaces. In general, the area below the curve
describing the ICD process is always larger than that one
below the GSCD curve. Such difference is greater in
CIELAB, Opponent, and IHS spaces than in RGB. In
particular, a remarkable difference can be observed for the
behavior of IHS, which is rather stable when ¢ increases.

3.6 Experiment IV

The last experiment visualizes some results obtained by
implementing the anisotropic extension discussed at the
end of Section 2 and formalized through GSCAD equation
(13). The results obtained have been compared with results
achieved by implementing the PPV method. Fig. 7a shows
the Mandrill image after 50 iterations with PPV and Fig. 7b
shows GSCAD in RGB space.

We have measured MCRE and NSNR for both images:
with a comparable chromaticity error (0.49 for PPV method
and 0.44 for GSCAD), GSCAD improves NSNR of about 2 dB
(precisely 22.09 dB versus 19.85 dB). In practice, at compar-
able smoothing capabilities, GSCAD seems somehow to
retain better fine details of the image. That can be better
appreciated in Fig. 8, which also shows the persistency of this
property across scales in that details of mouth and whiskers
are preserved in the images obtained after 100 diffusion
iterations of both methods.

4 CONCLUDING REMARKS

In the framework of open systems thermodynamics, we have
proposed an evolution equation based on the assumption that
a multivalued image is a complex isolated system, whose
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Fig. 6. Uniformity U plotted against error E, as a function of diffusion iterations on the “Mandrill” image in RGB, CIELAB, Opponent, and IHS spaces.

components, namely, the color components, interact with
each other through a generalized thermodynamical force.
Experiments show that, when the multichannel system
evolves in the way we propose and cross-effects between
channels are suitably controlled via the y;; parameters,

(@)

diffusion takes place while image structures are better
retained—and in the absence of any explicit anisotropic
biasing.

By taking into account outcomes obtained on our data set,
main results achieved can be summarized as follows: 1) GSCD

(b)
Fig. 7. (a) Results obtained on the Mandrill image by 50 iterations of the PPV method (b) and GSCAD.
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Fig. 8. (a) Details of Mandril's nose and whiskers after 100 iterations of the PPV method and (b) GSCAD.

generally provides a better performance with respect to
ICD, in regards to both denoising and image structure
preservation, 2) the difference in performance between
images is closely related to the amount of background texture,
and is less sensible for man-made objectimages, and 3) using
a color space where intensity and chromaticities are repre-
sented independently (Opponent, CIELAB, IHS) usually
leads to a better behavior of GSCD, provided that parameters
Xij are carefully chosen to modulate interactions between
channels; in particular, such effects are remarkable in
IHS space, where the complex interplay between saturation
and hue is effectively accounted for. From a global point of
view, this trend can be quantitatively evaluated via ROC
curves.

It is worth remarking that results 2) and 3) are consistent
with theoretical and experimental results obtained in [2] and
[28]. In general, it can be said that nonlinearities derived in
(10) are essential when dealing with vector-valued images as
argued by Florack [15]. As concerns comparisons with
methods based on anisotropic diffusion our method provide
comparable results, with a better signal-to-noise ratio, and,
furthermore, it is computationally less expensive.

Most of the discussion provided here refer to color images,
which are a special kind of vector-valued image. An
interesting extension of this work can be the use of (10)
for diffusing higher dimensional vector fields, such as
multi-spectral or hyperspectral images. The only require-
ment is to provide suitable x;; parameters, so as to mirror the
physics of the problem.

The derivation of diffusion equations in the framework of
open systems thermodynamics has a potential impact both
from the theoretical and experimental standpoints, and can
represent a viable alternative to classical or variational
approaches to this problem. An example has been given by
deriving a simple anisotropic extension of (10). Eventually,
the generalization of diffusion to multivalued images con-
ceived in such framework opens an interesting connection
with information-theoretic measures based on entropy
production, which have been recently proposed for single-
valued images [19], [32].
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