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Number of times a site is visited in two-dimensional random walks
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In this paper, formulas are derived to compute the mean number of times a site has been visited in a random
walk on a two-dimensional lattice. Asymmetric random walks are considered, with or without drift, for
different boundary conditions. It is shown that in case of absorbing boundaries the mean number of visits
reaches stationary values over the lattice; comparisons with a Monte Carlo simulation are also presented.
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[. INTRODUCTION the probability that aftek steps the walker, starting from the
origin, is at the sites. In what follows, the notation is the
The theory of random walks on lattices, besides being aame as in Ref6]; denote byﬂg’)(s) the probability that, at
central part of Markov chain theory, has applications in atime n, the sites has been visited exactlytimes.
variety of research fields, such as theory of potertid) It is immediately seen tha8{"”(s) must satisfy the rela-
statistical field theory2], biophysicq 3], and population bi- tion
ology [4,5], just to name a few.
An interesting class of problems in the random walk BI(9)=BY"P(9)Py(s)+ BN (9[1-Py(9)], (2.1)
theory arises by considering the statistics of the visits of a
random walker to the sites. For instance, one can look at théius8’(s) can be computed iteratively once the initial con-
number of distinct sites visited by astep walk,[6]; this ditions have been fixed, which for a walker starting frem
problem has been studied in detail by Larraédeal. [7—9]. =(0,0), arefS=(1—8y) and B3= 6.
A different, but complementary, approach is taken here, The mean number of visits is
and it consists of looking at the number of times a site is
visited by a random walker. Some general definitions and _ )
properties of the mean number of times a site is visited can Ma(s) zr FAn(9), 22
be found in Ref[1], whereas in case of simpleymmetrig
random walk, asymptotic results have been provided by Refind hence, from Eq2.1)
[6]; furthermore, results from a Monte Carlo simulation have - -
e ot e o 2 AN ()b (o 09 1191, (0
In this paper exact formulas will be derived for the mean (2.3
number of times a site has been visited if the random walk is
not symmetric, i.e., the transition probability depends on the Note that=7_or 8\ (9 =M, _1(9); by settingr=1+1,
direction of the step. In particular, random walks with drift and making use again of E(R.1) one obtains
and random walks with different diffusion coefficients along .
the coordinate axes will be considered.
The number of visits to a site is closely related to poten- Mi(8) =[1=Pn(9)IMn_1(5)+ P”(S)Zb Iﬂﬂ),l(s)
tial theory[1]; furthermore, it is interesting to note that it can

be interpreted as a trace, or a memory, left by the random ” 0
walk on the lattice. On the other hand, asymmetric random + Pn(S)EO BnZ1(9). (2.4
walks are relevant in many natural phenomena as, for in-
s_tanc?, in anllmql taxs_ and d|_spersal ;n blolcir]tjw]g(j?; mo- Since Eflolﬂg),l(S)= M, (9 and, furthermore,
tion of particles in sedimentation or electrophorddis]. ETZOBQ),l(S):l, Eq.(2.4) becomes
Il. PRELIMINARIES Mn(S)=Mp_1(5) + Py(9). (2.9
The random walk takes place on a latti® Let s Equation(2.5) can be easily solved and the result is
=(X,y) be a site oSwith coordinatesX,y) and letP,(s) be N
M (s)= kZO Pu(9), (2.6)
*Email address: ferraro@ph.unito.it
"Email address: zaninetti@ph.unito.it where it is assumey(s) =M (S) = ds0-
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Finally, we define whereu,=(8x), u,=(Jdy) are the averages afx and 8y,

respectively, andré=02(5x), o5=a?(3y) the correspond-
M=I1lmM,. (2.7  ing variances.
n—oo The mean number of visits, computed with the Gaussian

approximation, will be still denoted biyl,,, whereas in the

Equation(2.6) does not depend on any specific form of case of the diffusion approximatiokl,(s) is replaced by
the probabilityP, , and can then be applied to different types M (x,y;t) defined as
of random walks. t

In the sequel it will be supposed that in a single step the ey )
walker can move from a site= (x,y) to any of the sites with MOxyit) = fo Pyindr, 219
coordinates X,y+1),(x,y—1)(x+1y),(x—1y). Single
steps of the walker will be denoted i or &y, as appro- and it is clear thatM exists if and only if lim _P(-;7)7
priate: thusox,dy==1. The transition probabilities are as- —q |t must be noted that Eq€2.6) and (2.11) operate at
sumed to be independent from time and denotedply ifferent time scales and thitcan be considered a continu-
—1yIxy), p(x+1ylxy), p(x.y=1x.y), p(x.y+1[xY).  ous variable only when large enough: thé(x,y,t) is a
For simplicity, sometimes the compact notatiops=p(X  good approximation oP,(s) only whenk is large. At points
—1yIxy), pe=p(x+1ylxy), da=p(%y—=1[X.y), du  close to the origirP(-;7) andP, contribute toM(-:t) and
=p(x,y+1|x,y) will also be used. . M,,, respectively, also fok and 7 small, and, therefore, the

The probabilityP,(s) can be computed by a straightfor- agreement between Eqg.6) and(2.11) should be poor. On
ward generalization of the one-dimensional case. At ime he contrary, a closer agreement should be expected at points
letry, r; be the steps taken by the walker, in the positive angy from the origin, wheré®, andP(-;7) contribute sensibly

negative direction, respectively, of tkeaxis; similarly letl; {4 M, andM(-:t), respectively, only fok and r large.
andl, be the steps taken along thexis. For the walker to

it?sef}:(';.the sites= (X,y) the following conditions must be sat- Ill. UNRESTRICTED RANDOM WALK
Consider an unrestricted random walk without drift, i.e.,
X=r1—To, y=li—l,, k=ri+r,+l;+1,. (2.9 with u,=u,=0; Eq. (2.9 can be approximated by

2 2
Then the formula forPy(s) in the case of unrestricted Pu(s)= exp— < YL 3.0
random walks is 2mkoyoy 2kof  2ko
K! e It is well known that the Gaussian approximation agrees
F’k(S):r ;‘1 | mprlFJ.unlqdz, (2.9  with Eq. (2.9 only for largek (see, for instance]1,13)),
L, Tl !

hence one must expect thislt, computed via Eq(3.1) be-

) o ) comes an accurate approximation of the mean number of
where the sum is taken on all, |; satisfying relation$2.8). visits only whenn is large.

ObviouslyPy(s)=0 if [x| +|y|>k or if kand|x| +|y| do not The case oM ,(0) will be first dealt with. Preliminarily
have the same parifyl2]. note that, sinceP,(0)=0 if k is odd, Mo,=M,,,, and,

If the random walk is restricted, i.e., takes place on &nerefore, the mean number of visits at the origin is
bounded domain, the appropriate boundary conditions must

also be taken into account. L&$ be the boundary d&. if 9S n

is absorbing, the random walk stops once the walker has M,,(0)= 2 P, (0); (3.2
reached the boundary, whereas if it is reflecting the walker is k=0

forced to return to the last position occupied before hitting

the boundany13]. by using the Gaussian approximation

In any case Eq(2.9) is not very useful in practice, since 1 n
Py is very difficult to calculate even for moderately large M, (0)=1+ P P—— > 2K’ M2 (0)=My,:1(0).
values ofk. Fortunately, there exist well-known approxima- TOxTy k=1

tions to Eq.(2.9: for instance in the case of unrestricted @33

random walks the Gaussian, or normal, approximation i
widely used[1,13], whereas, by using, in place &f the
continuous variablé and by assuming continuity of y, the n

diffusion approximation14] allows to replaceP,(s) with > —~Inn, (3.9
the solutionP(x,y;t) of the Fokker-Planck equatiofil3] =1k

that, in the present case, is [15]: then

Forn large

P 1 PP 1 ,°P 9P P

—_— _+ —_— — [ R ~
7 ZGX&XZ Zay&yz ux&x uy(?y’ Inn/2

210 Ma(0)~ 4moyoy Amoyoy,

Inn. (3.5
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Consider nows#0 and supposgx|+|y| to be even. De- whereL=2a [18,19 .

fine r?=x%/205+y?205; My, is given by the formula Then, by using Eq(2.11), it is immediate to obtain, for
n =,
M (s)=; > iexp—(r2/2k) (3.6) 2\2 [ux uy) <
2V 2moyoy &1 2K ’ Mxy)=|—| exp —5+-2] > ki
L )2( 0-3 m,il=1 ’
that can be written as
.r{mw(era) [mmal  [la(y+a)
n i sin si
1 L L L
= _ 2
Mnl = 2| 24 kol )}. (3.7 .
xsir{— , (4.2
where L
n g where
2y — 2
Fo(r®)= 2, fl1-exp-(r#24)]. @8 =217 [(M2a2+1202) w2+ 2L 2 (Ul 02+ uZ o).
4.3

M,, decreases a< increases, as expected, and the function
Fn(r?) takes into account the delay with which the walker Equation(4.2) shows that there exists a stationary distri-

reaches sites different from the origin. bution of the mean number of visits on the lattiSeThe

Moreover, existence of a bounded functiowt is an important property

of this type of random walk and it makes straightforward to

o ) 1 ) compare numerical results obtained by means of (B®
F(ro)=lim Fq(r ):kZl E[l—exp—(r 12K)], (3.9  with “experimental” values, generated by a Monte Carlo

e - simulation.

exists and is finite for every finite?, as can be verified by it consider an asymmetric random walk without drift

performing a power series expansionfai 2) and by noting  Put with different variancesr; o . A possible model for
that =P_ k- U+D=¢(j+1), where¢ is the Riemann zeta such a random walk is given by the transition probabilities

]

function[16]. ) P(x.y—1x,y)=p(xy+1lxy)=}+}e,
Thus, also at points# 0 the mean number of visits scales
logarithmically asn—« [see Egs.(3.4 and (3.7)]. The p(x+1y|x,y)=p(x—1y|x,y)=%—3a, (4.4

boundless growth in the case of unrestricted random walks . .
with no drift should be expected because the simple randoffn€rea €[0,1] is a parameter determining the asymmetry of

: : : : the motion. It can immediately be observed thatu,=0
walk in two dimensions, i.e., the present case when Y
=2, is recurren{17] P and o2=(1/2—1/2q), cr§=(1/2+ 1/2a), hence by fixinga
y? :

in EqQ. (4.4) one also determines the corresponding values of
o%,0,in EQ.(2.1. In the simulationM(x,y) was the num-
ber of visits at sites=(x,y) averaged ovel= 1000 walkers.

The graph ofM obtained with formulg4.2) is shown in

Let the random walk take place on a finite dom&s Fig. 1. The agreement between Ed.2) and the Monte
[—a,a]X[—a,a]CR? In this case, the most straightfor- Carlo simulation can be seen in detail by considering one-
ward way to compute the mean number of visits is via thedimensional cuts along the andy axes, respectively. The
solution of Eq.(2.10, since the analytic form of the prob- results, shown in Fig. 2 for a cut along thexis demonstrate
ability P depends directly on the characteristics of the boundthat indeed Eq(4.2) provides a good approximation of the

IV. RESTRICTED RANDOM WALK: ABSORBING
BOUNDARIES

ary. process; the same result has been found for cuts along the
If the boundarysS is absorbing, the solution of ER.10  axis.
is A similar comparison has been carried out for the case of
a random walk with drift, i.e., withu,,u,#0. The Monte
2\2 UX Uy uzt uit Carlo simulation used the transition probabilities
P(X’y?t):([) el T 2| |zt 2 L1
Ix 9y Ox Oy p(xy—1x,y)=2—zu,
. POX—Ly[x.y)=5—3v,
X Y, exp-[(m2ol+1202)w2t/2L?] | v
= POX+1ylxy)=5+5v,
m(X+a mma I +a
Xsir{ W(L lsin a sir{ W(yL ) POy+1lxy)=F+3u, (4.5
hereu,=1/2v, u,=1/2u, andof=o5=1/2.

4.1) As before, the graph oM is presented in Fig. 3. The

| ra
X sin — ) . ) A :
r{ L comparison with the Monte Carlo simulation is shown in the
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FIG. 1. Graph ofM computed with Eq(4.2), with L =201 sites FIG. 3. Graph ofM computed with Eq(4.2), with L=201, and

and m, | ranging from 1 to 1000. Parameter values are=u, m, | ranging from 1 to 400. Parameter values are-0.02, v
=0, a=0.6, so thav2=0.2, a§=0.8. The ripples on the graph are =0.02,u,=0.01,u,=0.01 . The ripples on the graph are an artifact
an artifact due to the numerical approximation. due to the numerical approximation.

cut along the direction of the drifsee Fig. % both figures ~Variant distribution(13]: that is,

show that, even for small values of,u,, the effect of the

drift results in a large deviation from the symmetric case. 1
The analytical formulas derived from the Fokker-Planck lim Py(s)= —, (5.1
equation are in good agreement with the results obtained by koo Kl

the Monte Carlo simulation, but for points close to the ori-

gin, as should be expected by the properties of the diffusion ) . )
approximation discussed earlier. where|S| is the number of sites of the lattic® Then, as-

ymptotically, M, increases linearly witm.

This result can be generalized to the case of asymmetric
random walks by solving the Fokker-Plank equation, with
the appropriate boundary conditions. Only the one-
dimensional case will be considered here, since the results

If Sis a square lattice and the boundary is reflecting aan be easily extended to two dimensions.
simple, or symmetric, the random walk has an uniform in- The solution of the Fokker-Planck equation is now

V. RESTRICTED RANDOM WALK: REFLECTING
BOUNDARIES

-80 —40 —20

[']
% 100 sites

0
sites o _ o
FIG. 4. Cuts along a vertical liney(axis, the direction of the
FIG. 2. Cuts along a vertical liney(axis) of the graph ofM, drift) of the graphs ofM, as obtained with Eq4.2) (broken ling
obtained with Eq(4.2) (broken ling and the Monte Carlo simula- and the Monte Carlo simulatiotsolid line). Here u,=0.01, u,
tion (solid line). HereL =201 and the range of, | is [1,10Q. =0, L=101, and the range oh, | is [1,3000.
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[3,17]; then,

B 1{t+[1—exp—(uzt/o-z)]}
2 L X X

M(x,y;t)zexp(

Ox

UX) —
+exp( —2) > api[l—exp—(amat)]
1

Oy ) M=
CO{ CO{

with ap, ,=(m?aZm?+ 2L2u2/02)(2L2) 1. Equation (5.3)
shows clearly that, fot large, M(x,-) increases linearly in
time, the rate of growth depending an

mmr(X+a)
L

mma
L

: (5.3
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2
w312
Oy Oy

X |20 exp—[ (21 +1)(120m?t/2L2)]Cy 4 (Y),

(5.9

C,, 1 being a product of cosind8]. It is then apparent that
P(x,y;t)t—0 ast—» and M is, again, a bounded function
of x andy that can be easily computed.

VI. CONCLUSION

The results of this note clarify how the mean number of
times a sites=(x,y) is visited by a random walker moving
on a square lattice depends on the type of walk considered
and on the boundary conditions.

In the case of an unrestricted random walk, scales
logarithmically withn. If the random walk is restricted by a
reflecting boundaryM(x,y;-) grows at a faster rate, as
should be expected since the walker moves on a finite do-
main and thus the probability of a given site to be visited is
greater.

The case of absorbing boundaries is more interesting in
that there exists a stationary state, characterizedhyln-
deed,M,,, or M, can be thought of as a memory left by the
random walk on the lattice. If no part of the boundary is
absorbing, all sites will be visited infinitely often and that
can be interpreted as a loss of memory, in that all informa-
tion about the characteristics of the random walk is lost as
time increases, whereas this information is retainedupyf
at least one side of the boundary is absorbing.

The results obtained so far make the case of mixed bound-

aries easy to deal with. Suppose that one of the sides of

parallel to, say, they axis is absorbingP(x,y;t) can be
written asP(x,y;t) = ¢(x,t) ¢(y,t), [18], wherey is given
by Eq. (5.2, whereas
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