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Number of times a site is visited in two-dimensional random walks
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In this paper, formulas are derived to compute the mean number of times a site has been visited in a random
walk on a two-dimensional lattice. Asymmetric random walks are considered, with or without drift, for
different boundary conditions. It is shown that in case of absorbing boundaries the mean number of visits
reaches stationary values over the lattice; comparisons with a Monte Carlo simulation are also presented.
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I. INTRODUCTION

The theory of random walks on lattices, besides bein
central part of Markov chain theory, has applications in
variety of research fields, such as theory of potential@1#,
statistical field theory@2#, biophysics@3#, and population bi-
ology @4,5#, just to name a few.

An interesting class of problems in the random wa
theory arises by considering the statistics of the visits o
random walker to the sites. For instance, one can look at
number of distinct sites visited by an-step walk,@6#; this
problem has been studied in detail by Larraldeet al. @7–9#.

A different, but complementary, approach is taken he
and it consists of looking at the number of times a site
visited by a random walker. Some general definitions a
properties of the mean number of times a site is visited
be found in Ref.@1#, whereas in case of simple~symmetric!
random walk, asymptotic results have been provided by R
@6#; furthermore, results from a Monte Carlo simulation ha
been reported in Ref.@10# in the case of a two-dimensiona
simple ~symmetric! random walk.

In this paper exact formulas will be derived for the me
number of times a site has been visited if the random wal
not symmetric, i.e., the transition probability depends on
direction of the step. In particular, random walks with dr
and random walks with different diffusion coefficients alo
the coordinate axes will be considered.

The number of visits to a site is closely related to pote
tial theory@1#; furthermore, it is interesting to note that it ca
be interpreted as a trace, or a memory, left by the rand
walk on the lattice. On the other hand, asymmetric rand
walks are relevant in many natural phenomena as, for
stance, in animal taxis and dispersal in biology@5,4# or mo-
tion of particles in sedimentation or electrophoresis@11#.

II. PRELIMINARIES

The random walk takes place on a latticeS. Let s
5(x,y) be a site ofSwith coordinates (x,y) and letPk(s) be
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the probability that afterk steps the walker, starting from th
origin, is at the sites. In what follows, the notation is the
same as in Ref.@6#; denote bybn

(r )(s) the probability that, at
time n, the sites has been visited exactlyr times.

It is immediately seen thatbn
(r )(s) must satisfy the rela-

tion

bn
(r )~s!5bn21

(r 21)~s!Pn~s!1bn21
(r ) ~s!@12Pn~s!#, ~2.1!

thusbn
(r )(s) can be computed iteratively once the initial co

ditions have been fixed, which for a walker starting froms
5(0,0), areb0

05(12ds0) andb0
15ds0.

The mean number of visits is

Mn~s!5(
r

rbn
(r )~s!, ~2.2!

and hence, from Eq.~2.1!

Mn~s!5Pn~s!(
r 50

`

rbn21
(r 21)~s!1@12Pn~s!#(

r 50

`

rbn21
(r ) ~s!.

~2.3!

Note that( r 50
` rbn21

(r ) (s)5Mn21(s); by settingr 5 l 11,
and making use again of Eq.~2.1! one obtains

Mn~s!5@12Pn~s!#Mn21~s!1Pn~s!(
l 50

`

lbn21
( l ) ~s!

1Pn~s!(
l 50

`

bn21
( l ) ~s!. ~2.4!

Since ( l 50
` lbn21

( l ) (s)5Mn21(s) and, furthermore,
( l 50

` bn21
( l ) (s)51, Eq. ~2.4! becomes

Mn~s!5Mn21~s!1Pn~s!. ~2.5!

Equation~2.5! can be easily solved and the result is

Mn~s!5 (
k50

n

Pk~s!, ~2.6!

where it is assumedP0(s)5M0(s)5ds,0 .
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Finally, we define

M5 lim
n→`

Mn . ~2.7!

Equation~2.6! does not depend on any specific form
the probabilityPk , and can then be applied to different typ
of random walks.

In the sequel it will be supposed that in a single step
walker can move from a sites5(x,y) to any of the sites with
coordinates (x,y11),(x,y21)(x11,y),(x21,y). Single
steps of the walker will be denoted bydx or dy, as appro-
priate: thusdx,dy561. The transition probabilities are as
sumed to be independent from time and denoted byp(x
21,yux,y), p(x11,yux,y), p(x,y21ux,y), p(x,y11ux,y).
For simplicity, sometimes the compact notationspl5p(x
21,yux,y), pr5p(x11,yux,y), qd5p(x,y21ux,y), qu
5p(x,y11ux,y) will also be used.

The probabilityPk(s) can be computed by a straightfo
ward generalization of the one-dimensional case. At timk
let r 1 , r 2 be the steps taken by the walker, in the positive a
negative direction, respectively, of thex axis; similarly letl 1
and l 2 be the steps taken along they axis. For the walker to
be at the sites5(x,y) the following conditions must be sa
isfied:

x5r 12r 2 , y5 l 12 l 2 , k5r 11r 21 l 11 l 2 . ~2.8!

Then the formula forPk(s) in the case of unrestricte
random walks is

Pk~s!5 (
r 1 ,r 2 ,l 1 ,l 2

k!

r 1! r 2! l 1! l 2!
pr

r 1pl
r 2qu

l 1qd
l 2 , ~2.9!

where the sum is taken on allr i , l i satisfying relations~2.8!.
ObviouslyPk(s)50 if uxu1uyu.k or if k anduxu1uyu do not
have the same parity@12#.

If the random walk is restricted, i.e., takes place on
bounded domain, the appropriate boundary conditions m
also be taken into account. Let]S be the boundary ofS: if ]S
is absorbing, the random walk stops once the walker
reached the boundary, whereas if it is reflecting the walke
forced to return to the last position occupied before hitt
the boundary@13#.

In any case Eq.~2.9! is not very useful in practice, sinc
Pk is very difficult to calculate even for moderately larg
values ofk. Fortunately, there exist well-known approxim
tions to Eq.~2.9!: for instance in the case of unrestricte
random walks the Gaussian, or normal, approximation
widely used@1,13#, whereas, by using, in place ofk, the
continuous variablet and by assuming continuity ofx, y, the
diffusion approximation@14# allows to replacePk(s) with
the solutionP(x,y;t) of the Fokker-Planck equation@13#
that, in the present case, is

]P

]t
5

1

2
sx

2]2P

]x2
1

1

2
sy

2]2P

]y2
2ux

]P

]x
2uy

]P

]y
, ~2.10!
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whereux5^dx&, uy5^dy& are the averages ofdx and dy,
respectively, andsx

25s2(dx), sy
25s2(dy) the correspond-

ing variances.
The mean number of visits, computed with the Gauss

approximation, will be still denoted byMn , whereas in the
case of the diffusion approximationMn(s) is replaced by
M (x,y;t) defined as

M ~x,y;t !5E
0

t

P~x,y;t!dt, ~2.11!

and it is clear thatM exists if and only if lim
t→`

P(•;t)t

50. It must be noted that Eqs.~2.6! and ~2.11! operate at
different time scales and thatk can be considered a continu
ous variable only when large enough; then,P(x,y,t) is a
good approximation ofPk(s) only whenk is large. At points
close to the originP(•;t) and Pk contribute toM (•;t) and
Mn , respectively, also fork andt small, and, therefore, the
agreement between Eqs.~2.6! and~2.11! should be poor. On
the contrary, a closer agreement should be expected at p
far from the origin, wherePk andP(•;t) contribute sensibly
to Mk andM (•;t), respectively, only fork andt large.

III. UNRESTRICTED RANDOM WALK

Consider an unrestricted random walk without drift, i.
with ux5uy50; Eq. ~2.9! can be approximated by

Pk~s!5
1

2pksxsy
exp2H x2

2ksx
2

1
y2

2ksy
2J . ~3.1!

It is well known that the Gaussian approximation agre
with Eq. ~2.9! only for large k ~see, for instance,@1,13#!,
hence one must expect thatMn computed via Eq.~3.1! be-
comes an accurate approximation of the mean numbe
visits only whenn is large.

The case ofMn(0) will be first dealt with. Preliminarily
note that, sincePk(0)50 if k is odd, M2n5M2n11, and,
therefore, the mean number of visits at the origin is

M2n~0!5 (
k50

n

P2k~0!; ~3.2!

by using the Gaussian approximation

M2n~0!511
1

2psxsy
(
k51

n
1

2k
, M2n~0!5M2n11~0!.

~3.3!

For n large

(
k51

n
1

k
; ln n, ~3.4!

@15#; then

Mn~0!;
1

4psxsy
ln n/2;

1

4psxsy
ln n. ~3.5!
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Consider nowsÞ0 and supposeuxu1uyu to be even. De-
fine r 25x2/2sx

21y2/2sy
2 ; M2n is given by the formula

M2n~s!5
1

2psxsy
(
k51

n
1

2k
exp2~r 2/2k!, ~3.6!

that can be written as

M2n~s!5
1

4psxsy
F (

k51

n
1

k
2Fn~r 2!G , ~3.7!

where

Fn~r 2!5 (
k51

n
1

k
@12exp2~r 2/2k!#. ~3.8!

M2n decreases asr 2 increases, as expected, and the funct
Fn(r 2) takes into account the delay with which the walk
reaches sites different from the origin.

Moreover,

F~r 2!5 lim
n→`

Fn~r 2!5 (
k51

`
1

k
@12exp2~r 2/2k!#, ~3.9!

exists and is finite for every finiter 2, as can be verified by
performing a power series expansion ofF(r 2) and by noting
that (k51

n k2( j 11)5z( j 11), wherez is the Riemann zeta
function @16#.

Thus, also at pointssÞ0 the mean number of visits scale
logarithmically asn→` @see Eqs.~3.4! and ~3.7!#. The
boundless growth in the case of unrestricted random w
with no drift should be expected because the simple rand
walk in two dimensions, i.e., the present case whensx

2

5sy
2 , is recurrent@17#.

IV. RESTRICTED RANDOM WALK: ABSORBING
BOUNDARIES

Let the random walk take place on a finite domainS5
@2a,a#3@2a,a#,R2. In this case, the most straightfo
ward way to compute the mean number of visits is via
solution of Eq.~2.10!, since the analytic form of the prob
ability P depends directly on the characteristics of the bou
ary.

If the boundary]S is absorbing, the solution of Eq.~2.10!
is

P~x,y;t !5S 2

L D 2

expF S uxx

sx
2

1
uyy

sy
2 D 2S ux

2t

sx
2

1
uy

2t

sy
2 D G

3 (
m,l 51

`

exp2@~m2sx
21 l 2sy

2!p2t/2L2#

3sinFmp~x1a!

L GsinFmpa

L GsinF lp~y1a!

L G
3sinF lpa

L G , ~4.1!
05610
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whereL52a @18,19# .
Then, by using Eq.~2.11!, it is immediate to obtain, for

t→`,

M~x,y!5S 2

L D 2

expS uxx

sx
2

1
uyy

sy
2 D (

m,l 51

`

km,l
21

3sinFmp~x1a!

L GsinFmpa

L GsinF lp~y1a!

L G
3sinF lpa

L G , ~4.2!

where

km,n5~2L2!21@~m2sx
21 l 2sy

2!p212L2~ux
2/sx

21uy
2/sy

2!#.

~4.3!

Equation~4.2! shows that there exists a stationary dist
bution of the mean number of visits on the latticeS. The
existence of a bounded functionM is an important property
of this type of random walk and it makes straightforward
compare numerical results obtained by means of Eq.~4.2!
with ‘‘experimental’’ values, generated by a Monte Car
simulation.

First consider an asymmetric random walk without dr
but with different variancessx

2 ,sy
2 . A possible model for

such a random walk is given by the transition probabilitie

p~x,y21ux,y!5p~x,y11ux,y!5 1
4 1 1

4 a,

p~x11,yux,y!5p~x21,yux,y!5 1
4 2 1

4 a, ~4.4!

whereaP@0,1# is a parameter determining the asymmetry
the motion. It can immediately be observed thatux5uy50
and sx

25(1/221/2a), sy
25(1/211/2a), hence by fixinga

in Eq. ~4.4! one also determines the corresponding values
sx

2 ,sy
2 in Eq. ~2.11!. In the simulationM(x,y) was the num-

ber of visits at sites5(x,y) averaged overN51000 walkers.
The graph ofM obtained with formula~4.2! is shown in

Fig. 1. The agreement between Eq.~4.2! and the Monte
Carlo simulation can be seen in detail by considering o
dimensional cuts along thex and y axes, respectively. The
results, shown in Fig. 2 for a cut along they axis demonstrate
that indeed Eq.~4.2! provides a good approximation of th
process; the same result has been found for cuts along tx
axis.

A similar comparison has been carried out for the case
a random walk with drift, i.e., withux ,uyÞ0. The Monte
Carlo simulation used the transition probabilities

p~x,y21ux,y!5 1
4 2 1

4 m,

p~x21,yux,y!5 1
4 2 1

4 n,

p~x11,yux,y!5 1
4 1 1

4 n,

p~x,y11ux,y!5 1
4 1 1

4 m, ~4.5!

hereux51/2n, uy51/2m, andsx
25sy

251/2.
As before, the graph ofM is presented in Fig. 3. The

comparison with the Monte Carlo simulation is shown in t
7-3
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cut along the direction of the drift~see Fig. 4!; both figures
show that, even for small values ofux ,uy , the effect of the
drift results in a large deviation from the symmetric case

The analytical formulas derived from the Fokker-Plan
equation are in good agreement with the results obtained
the Monte Carlo simulation, but for points close to the o
gin, as should be expected by the properties of the diffus
approximation discussed earlier.

V. RESTRICTED RANDOM WALK: REFLECTING
BOUNDARIES

If S is a square lattice and the boundary is reflecting
simple, or symmetric, the random walk has an uniform

FIG. 2. Cuts along a vertical line (y axis! of the graph ofM,
obtained with Eq.~4.2! ~broken line! and the Monte Carlo simula
tion ~solid line!. HereL5201 and the range ofm, l is @1,100#.

FIG. 1. Graph ofM computed with Eq.~4.2!, with L5201 sites
and m, l ranging from 1 to 1000. Parameter values areux5uy

50, a50.6, so thatsx
250.2, sy

250.8. The ripples on the graph ar
an artifact due to the numerical approximation.
05610
by
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n

a
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variant distribution@13#: that is,

lim
k→`

Pk~s!5
1

uSu
, ~5.1!

where uSu is the number of sites of the latticeS. Then, as-
ymptotically, Mn increases linearly withn.

This result can be generalized to the case of asymme
random walks by solving the Fokker-Plank equation, w
the appropriate boundary conditions. Only the on
dimensional case will be considered here, since the res
can be easily extended to two dimensions.

The solution of the Fokker-Planck equation is now

FIG. 3. Graph ofM computed with Eq.~4.2!, with L5201, and
m, l ranging from 1 to 400. Parameter values arem50.02, n
50.02,ux50.01,uy50.01 . The ripples on the graph are an artifa
due to the numerical approximation.

FIG. 4. Cuts along a vertical line (y axis, the direction of the
drift! of the graphs ofM, as obtained with Eq.~4.2! ~broken line!
and the Monte Carlo simulation~solid line!. Here ux50.01, uy

50, L5101, and the range ofm, l is @1,3000#.
7-4
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P~x,y;t !5expF S uxx

sx
2 D 2S ux

2t

sx
2 D G

3H 1

L
1S 2

L D (
m51

`

exp2~m2sx
2p2t/2L2!

3cosFmp~x1a!

L GcosFmpa

L G J , ~5.2!

@3,17#; then,

M ~x,y;t !5expS uxx

sx
2 D 1

L
$t1@12exp2~ux

2t/sx
2!#%

1expS uxx

sx
2 D (

m51

`

am,n
21 @12exp2~am,nt !#

3cosFmp~x1a!

L GcosFmpa

L G , ~5.3!

with am,n5(m2sx
2p212L2ux

2/sx
2)(2L2)21. Equation ~5.3!

shows clearly that, fort large,M (x,•) increases linearly in
time, the rate of growth depending onx.

The results obtained so far make the case of mixed bou
aries easy to deal with. Suppose that one of the sidesS
parallel to, say, they axis is absorbing;P(x,y;t) can be
written asP(x,y;t)5c(x,t)f(y,t), @18#, wherec is given
by Eq. ~5.2!, whereas
H

H

05610
d-

f~x,t !5
2

L
expF S uyy

sy
2 D 2S uy

2t

sy
2 D G

3(
l 50

`

exp2@~2l 11!~ l 2sy
2p2t/2L2!#Cl 11~y!,

~5.4!

Cl 11 being a product of cosines@3#. It is then apparent tha
P(x,y;t)t→0 ast→` andM is, again, a bounded functio
of x andy that can be easily computed.

VI. CONCLUSION

The results of this note clarify how the mean number
times a sites5(x,y) is visited by a random walker movin
on a square lattice depends on the type of walk conside
and on the boundary conditions.

In the case of an unrestricted random walkMn scales
logarithmically withn. If the random walk is restricted by
reflecting boundaryM (x,y;•) grows at a faster rate, a
should be expected since the walker moves on a finite
main and thus the probability of a given site to be visited
greater.

The case of absorbing boundaries is more interestin
that there exists a stationary state, characterized byM. In-
deed,Mn , or M, can be thought of as a memory left by th
random walk on the lattice. If no part of the boundary
absorbing, all sites will be visited infinitely often and th
can be interpreted as a loss of memory, in that all inform
tion about the characteristics of the random walk is lost
time increases, whereas this information is retained byM if
at least one side of the boundary is absorbing.
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