Dall'antichita': Osservazioni su materiali capaci di attirare il ferro/esercitare forze su materiali simili (pochi casi, anche se diffusi su tutto il pianeta)

Forze fra materiali magnetici descritte in termini del campo magnetico

Es: Bussola & C. geomagnetico

Descrizione originariamente basata sull'ipotesi dell'esistenza di un'ulteriore proprieta' dei corpi, analoga alla carica elettrica: *carica magnetica*

Carica magnetica puntiforme: Polo magnetico (N/S)

Interazione fra poli: simile a quella coulombiana fra cariche puntiformi Magnetismo come una seconda interazione, separata e indipendente da quella elettrica

Ma: Poli magnetici liberi mai osservati - Corpi magnetizzati hanno sempre polo N e polo S, non separabili → Ipotesi KO

Di fatto: interazione fra corpi magnetizzati ~ interazione fra dipoli elettrici In seguito: Osservazione di effetti magnetici delle correnti elettriche = cariche in movimento(es. deflessione ago magnetico)

→Campo magnetico: origine da materiali magnetici e cariche in movimento Ipotesi di Ampere per spiegare le proprieta' dei materiali magnetici: correnti microscopiche → Costituenti atomici carichi in movimento orbitale + Effetti di spin

→Unica origine per il c. magnetico: cariche in movimento = correnti elettriche
 Campo magnetico: azioni sulle cariche in movimento → Forza di Lorentz

$$\mathbf{F} = q\mathbf{v} \times \mathbf{B}$$

Quindi: Forza magnetica → Interazione aggiuntiva a quella elettrica, fra cariche *in movimento*

In presenza di c. elettrico e magnetico:

 $\mathbf{F} = q(\mathbf{E} + \mathbf{v} \times \mathbf{B})$, espressione generale della f. di Lorentz

Problema ovvio: in movimento rispetto a cosa? →Origine relativistica

Forza magnetica: piu'complicata di quella elettrica

C. magnetico: $\mathbf{B}(x, y, z; t)$

Definito in ogni punto dello spazio, eventualmente funzione di t

$$[B] = [F] [q^{-1}] [v^{-1}] = [F] [I^{-1}] [L^{-1}], \text{ unita' di misura } 1 \ T = 1 \ NA^{-1}M^{-1}$$

Proprieta' principali della forza magnetica:

Proprieta' principale: $\mathbf{F} \perp \mathbf{v}$

$$\rightarrow W = 0$$

- → La forza magnetica non compie lavoro sulle cariche in movimento
- → Unico effetto variazione della direzione della velocita' della carica in moto

Principio di sovrapposizione

Forza su una corrente

$$\mathbf{j} = Nq \langle \mathbf{v} \rangle, i = jS$$

$$\mathbf{F}_{q} = q\mathbf{v}_{q} \times \mathbf{B}$$

Forza su elemento di filo di volume Sds

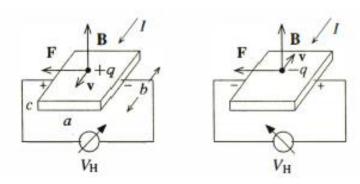
$$\rightarrow d\mathbf{F} = \sum_{Sds} q\mathbf{v}_{q} \times \mathbf{B} = q \left(\sum_{Sds} \mathbf{v}_{q} \right) \times \mathbf{B} = q \left\langle \mathbf{v} \right\rangle NSds \times \mathbf{B} = \mathbf{j}S \times \mathbf{B}ds$$

Poiche $|\mathbf{j}| d\mathbf{s}$

 $\rightarrow d\mathbf{F} = id\mathbf{s} \times \mathbf{B}$, 2a legge elementare di Laplace

Moto di particelle cariche in campi magnetici, forze su circuiti percorsi da corrente Esempi

a) Effetto Hall



Conduttore percorso da corrente immerso in un c. magnetico

F. di Lorentz sui portatori

$$F_m = qvB, \quad \mathbf{F}_m \perp \mathbf{v}$$

F. trasversale → Accumulo iniziale di carica (opposta) sui bordi

→ C. elettrico trasversale:

$$E = \frac{F_m}{q} = \left| \left\langle \mathbf{v} \right\rangle \right| B$$

→ Diff. di potenziale trasversale (di Hall)

$$V_H = Ea = |\langle \mathbf{v} \rangle| Ba$$

$$I = jac = Nq \left| \left\langle \mathbf{v} \right\rangle \right| ac$$

$$\rightarrow \left| \left\langle \mathbf{v} \right\rangle \right| = \frac{I}{Nqac}$$

$$\rightarrow V_H = \left| \left\langle \mathbf{v} \right\rangle \right| Ba = \frac{IBa}{Nqac} = \frac{IB}{Nqc}$$

Misure di $V_{\scriptscriptstyle H} \to {\sf Segno}$ dei portatori

Possibile misurare B nota la calibrazione del conduttore (sonda Hall)

A parita' di IB, effetto maggiore con:

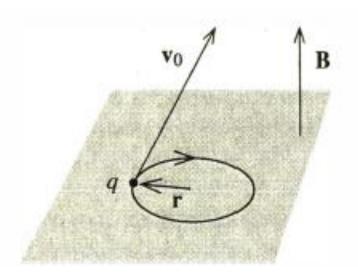
Spessore ridotto

Concentrazione ridotta

Effetto molto piu' marcato nei semiconduttori:

Concentrazioni molto piu' piccole rispetto ai metalli

b) C. uniforme, vel. iniziale $\perp B$



$$\mathbf{F}_{iniz} = q\mathbf{v}_0 \times \mathbf{B}, \quad \mathbf{v}_0 \text{ vel. iniziale } \perp \mathbf{B}$$

 $\rightarrow \mathbf{F}_{iniz} \perp \mathbf{v}_0, \mathbf{B}$

$$\frac{d\mathbf{v}}{dt} = \frac{q}{m}\mathbf{v} \times \mathbf{B} \to \mathbf{v} \cdot \frac{d\mathbf{v}}{dt} = \frac{q}{m}\mathbf{v} \cdot (\mathbf{v} \times \mathbf{B}) = 0$$

$$\rightarrow$$
 a \perp v

$$|\mathbf{v}| = \mathsf{cost} = |\mathbf{v}_0| \rightarrow |\mathbf{F}| = \mathsf{cost} = |\mathbf{F}_{iniz}|$$

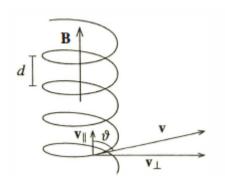
- \rightarrow F forza centripeta
- → Moto circolare uniforme
- $\rightarrow \mathbf{v} = \mathbf{\omega} \times \mathbf{r}$, r posizione rispetto al centro dell'orbita

$$\rightarrow \mathbf{a} = \mathbf{\omega} \times \mathbf{v} = \frac{q}{m} \mathbf{v} \times \mathbf{B} = -\frac{q}{m} \mathbf{B} \times \mathbf{v} \rightarrow \mathbf{\omega} = -\frac{q}{m} \mathbf{B}$$
, indipendente da r

$$T = \frac{2\pi}{\omega} = \frac{2\pi m}{qB}, \quad v = \frac{qB}{2\pi m}$$

$$|\mathbf{v}| = \omega r \rightarrow r = \frac{|\mathbf{v}|}{\omega} = \frac{m|\mathbf{v}_0|}{aB}$$
, raggio dell'orbita

c) Generalizzazione al caso in cui $\mathbf{v}_{\scriptscriptstyle 0}$ non e' $\perp \mathbf{B}$:



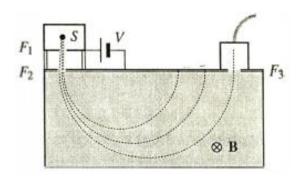
$$\begin{aligned} \mathbf{v}_0 &= \mathbf{v}_\perp + \mathbf{v}_\parallel \\ \left| \mathbf{v}_\perp \right| &= \left| \mathbf{v}_0 \right| \sin \theta \\ \left| \mathbf{v}_\parallel \right| &= \left| \mathbf{v}_0 \right| \cos \theta \end{aligned}$$

- ightarrow Moto circolare uniforme nel piano \perp B
- \rightarrow Moto rettilineo uniforme || **B**
- → Traiettoria = Elica cilindrica

Raggio: $r = \frac{m|\mathbf{v}_0|\sin\theta}{qB}$, come prima

Passo: $d = |\mathbf{v}_0| \cos \theta T = \frac{2\pi m |\mathbf{v}_0| \cos \theta}{qB}$, distanza in z percorsa in un periodo

d) Spettrometro di massa di Dempster



Vel. raggiunta dallo ione dopo la 2a fenditura:

$$qV = \frac{1}{2}mv^2 \to v = \sqrt{\frac{2qV}{m}}$$

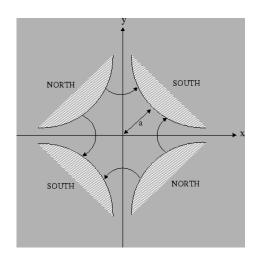
Raggio orbita in B:

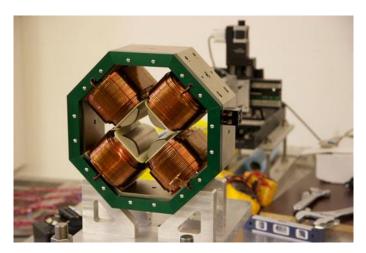
$$R = \frac{mv}{qB} = \frac{1}{B}\sqrt{\frac{2mV}{q}} \propto \sqrt{\frac{m}{q}} \rightarrow \text{Possibile separare isotopi}$$

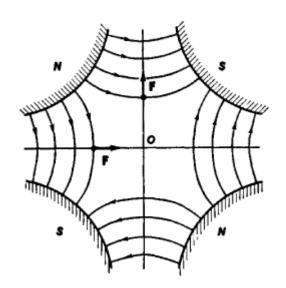
e) Moto in un campo di quadripolo

C. di quadripolo: 4 'poli magnetici' di segno alterno; profilo = iperbole; posti ai vertici di un quadrato

Elemento magnetico molto usato negli acceleratori e nelle linee di fascio







Con la geometria della figura:

$$\mathbf{B} = \frac{B_0}{a} \left(y \hat{\mathbf{u}}_x + x \hat{\mathbf{u}}_y \right), \text{ non dimostrato}$$

$$\mathbf{F} = q\mathbf{v} \times \mathbf{B} = \frac{qB_0}{a} \mathbf{v} \times \left(y\hat{\mathbf{u}}_x + x\hat{\mathbf{u}}_y \right)$$

Per particella con v a un piccolo angolo rispetto all'asse $z: \mathbf{v} \approx v \hat{\mathbf{u}}_z$

Traiettoria nel piano
$$yz: x = 0 \rightarrow \mathbf{F} \approx \frac{qB_0}{a} yv\hat{\mathbf{u}}_z \times \hat{\mathbf{u}}_x = \frac{qB_0}{a} yv\hat{\mathbf{u}}_y$$

$$\rightarrow m \frac{d^2 y}{dt^2} \approx \frac{qB_0 v}{a} y \rightarrow y = Ae^{+\sqrt{\frac{qB_0 v}{am}}t} + Be^{-\sqrt{\frac{qB_0 v}{am}}t}$$

- → Allontanamento indefinito dall'asse z
- → Proprieta' defocalizzanti

Traiettoria nel piano $xz: y = 0 \rightarrow \mathbf{F} \approx \frac{qB_0}{a} xv\hat{\mathbf{u}}_z \times \hat{\mathbf{u}}_y = -\frac{qB_0}{a} xv\hat{\mathbf{u}}_x$

$$\to m \frac{d^2 x}{dt^2} \approx -\frac{qB_0 v}{a} x \to x = A \sin\left(\sqrt{\frac{qB_0 v}{am}}t\right) + B \cos\left(\sqrt{\frac{qB_0 v}{am}}t\right)$$

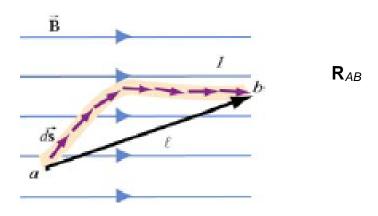
- → Oscillazioni armoniche attorno all'asse z
- → Proprieta' focalizzanti
- → Focalizzazione lungo un asse, defocalizzazione lungo l'altro

Forza su circuiti percorsi da corrente a) Circuito immerso in un c. uniforme Forza su un segmento (A,B) di circuito:

$$d\mathbf{F} = id\mathbf{s} \times \mathbf{B}$$

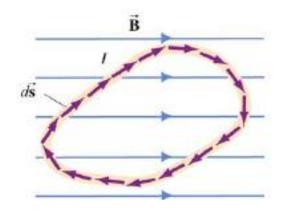
$$\rightarrow \mathbf{F} = i \int_{A}^{B} d\mathbf{s} \times \mathbf{B}$$

$$\rightarrow \mathbf{F} = i \left(\int_{A}^{B} d\mathbf{s} \right) \times \mathbf{B} = i \mathbf{R}_{AB} \times \mathbf{B}$$



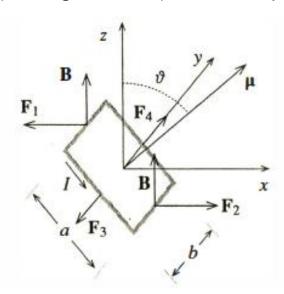
Se
$$A \equiv B$$

 $\rightarrow F = 0$



→ Forza su un circuito chiuso percorso da corrente in un c.magnetico uniforme: nulla

b) Spira rettangolare ($\leftarrow \sim$ ogni circuito) in un campo **B** uniforme:



 $\mathbf{F}_3, \mathbf{F}_4$: forze uguali e opposte \rightarrow coppia con braccio = 0

 $\mathbf{F}_1, \mathbf{F}_2$: forze uguali e opposte \rightarrow coppia con braccio = $a \sin \theta$

$$F_1 = F_2 = IBb$$

→ Forza totale:

$$\mathbf{F}_{tot} = 0$$

 \rightarrow Mom. meccanico totale:

$$\mathbf{\tau} = \mathbf{\tau}_{34} + \mathbf{\tau}_{12} = 0 + \tau_{y} \hat{\mathbf{j}} = -Iba \sin \theta \hat{\mathbf{j}}$$

Definendo:

 $\mu = Iba\hat{\mathbf{n}}$ mom. di dipolo magnetico della spira

$$\rightarrow \tau = \mu \! \times \! B$$

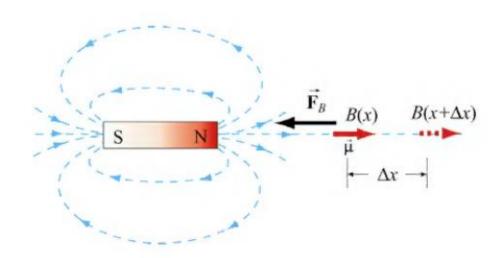
Identico al mom. meccanico su un dipolo elettrico in c. uniforme

 \rightarrow En. potenziale:

$$U_{mecc} = -\mathbf{\mu} \cdot \mathbf{B}$$

c) Circuito immerso in un c. non uniforme Circuito ~ Dipolo

C. non uniforme: p es quello di un magnete lineare



Circuito \sim Dipolo attratto verso magnete da forza \mathbf{F}_{B} Forza esterna necessaria per muoverlo di Δx :

$$\begin{split} & \to W_{\rm ext} = F_{\rm ext} \Delta x = \Delta U = -\mu B \ x + \Delta x \ - \left[-\mu B \ x \ \right] = -\mu \left[B \ x + \Delta x \ - B \ x \ \right] \\ & \to F_{\rm ext} = -\mu \frac{B \ x + \Delta x \ - B \ x}{\Delta x} \approx -\mu \frac{dB}{dx} = -F_B \\ & \to F_B = \mu \frac{dB}{dx} = \frac{d \ \mu \cdot B}{dx} \ , \ \ \text{in cui} \ \mu \ \ \text{e' costante} \end{split}$$

In generale: