Elementary Particles II

2 – Electroweak Interaction

Universal Current-Current Interaction, Intermediate Vector Bosons, Gauge Symmetry, Spontaneous Symmetry Breaking, Electroweak Unification, Neutral Currents, Discovery of *W* & *Z*, Precision Measurements, Higgs

Helicity/Chirality - I

With reference to Dirac equation:

$$\begin{split} \gamma^{0} &= \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \gamma = \begin{pmatrix} 0 & \sigma \\ -\sigma & 0 \end{pmatrix}, \gamma^{5} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} & \text{Dirac representation} \\ \mathbf{S} &= \frac{\mathbf{\Sigma}}{2}, \mathbf{\Sigma} = \begin{pmatrix} \sigma & 0 \\ 0 & \sigma \end{pmatrix} = \frac{\gamma^{0} \gamma}{a} \gamma^{5} = \mathbf{a} \gamma^{5} & \text{Spin operator} \\ \Lambda &= \frac{\mathbf{\Sigma} \cdot \mathbf{p}}{|\mathbf{p}|} & \text{Helicity operator} \\ \Lambda &= \frac{\mathbf{L} \cdot \mathbf{p}}{|\mathbf{p}|} & \text{Helicity eigenstates} \\ \Lambda &= -u^{(-)} \end{bmatrix} & \text{Helicity eigenstates} \\ P_{\pm} &= \frac{1 \pm \Lambda}{2} & \text{Projection operator sonto helicity eigenstates} \end{split}$$

2

Helicity/Chirality - II

Projectors, indeed:

$$P_{+}P_{+} = \left(\frac{1+\Lambda}{2}\right)\left(\frac{1+\Lambda}{2}\right) = \frac{1}{4}\left(1+\Lambda+\Lambda+\Lambda^{2}\right)$$

$$\Lambda^{2} = \frac{\left(\Sigma \cdot \mathbf{p}\right)^{2}}{\left|\mathbf{p}\right|^{2}} = 1 \rightarrow P_{+}P_{+} = \frac{1}{4}\left(1+2\Lambda+1\right) = \left(\frac{1+\Lambda}{2}\right) = P_{+}, \quad P_{-}P_{-} = P_{+}$$

$$P_{+}P_{-} = \left(\frac{1+\Lambda}{2}\right)\left(\frac{1-\Lambda}{2}\right) = \frac{1}{4}\left(1+\Lambda-\Lambda-\Lambda^{2}\right) = 0 = P_{-}P_{+}$$

$$1 = \frac{1-\Lambda}{2} + \frac{1+\Lambda}{2} = P_{-} + P_{+} \rightarrow 1u = \left(P_{+}+P_{-}\right)u = u_{+} + u_{-}$$

$$\Lambda = \frac{\Sigma \cdot \mathbf{p}}{\left|\mathbf{p}\right|} = \frac{\gamma^{0}\gamma}{\alpha}\gamma^{5} \cdot \frac{\mathbf{p}}{\left|\mathbf{p}\right|} = \frac{\mathbf{a} \cdot \mathbf{p}}{\left|\mathbf{p}\right|}\gamma^{5} \rightarrow P_{\pm} = \frac{1\pm\mathbf{a} \cdot \hat{\mathbf{p}}\gamma^{5}}{2}$$

Helicity/Chirality - III

 $\gamma^{5} \qquad \text{Chirality operator} \\ P_{L} = \frac{1 - \gamma^{5}}{2}, P_{R} = \frac{1 + \gamma^{5}}{2} \quad \text{Projectors onto chirality eigenstates} \\ \begin{cases} P_{L}u = u_{L} \\ P_{R}u = u_{R} \end{cases} \rightarrow 1u = (P_{L} + P_{R})u = u_{L} + u_{R} \end{cases}$

A very important limit:

$$\boldsymbol{\alpha} \cdot \mathbf{p} = E - \beta m$$

$$\boldsymbol{\Lambda} = \frac{E \cdot 1 - m \cdot \beta}{p} \gamma^{5} \underset{E \gg m}{\rightarrow} \gamma^{5}$$

$$P_{\pm} = \frac{1 \pm \Lambda}{2} \underset{E \gg m}{\rightarrow} \frac{1 \pm \gamma^{5}}{2} = P_{R,L}$$

For high energy, or massless, particles: Helicity projectors \rightarrow Chirality projectors

Helicity/Chirality - IV

$$Eu = (\mathbf{a} \cdot \mathbf{p} + \beta m)u$$

$$u = \begin{pmatrix} \phi \\ \chi \end{pmatrix}, \quad \phi, \chi \quad 2 \text{ components spinors}$$

$$\mathbf{a} = \begin{pmatrix} \mathbf{\sigma} & 0 \\ 0 & -\mathbf{\sigma} \end{pmatrix}, \quad \beta = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \text{ Dirac matrices in chiral representation}$$

$$\rightarrow \begin{cases} E\phi = (\mathbf{\sigma} \cdot \mathbf{p})\phi + m\chi \\ E\chi = -(\mathbf{\sigma} \cdot \mathbf{p})\chi + m\phi \end{cases}$$

$$\left\{ \begin{aligned} E\phi = (\mathbf{\sigma} \cdot \mathbf{p})\phi \\ E\chi = -(\mathbf{\sigma} \cdot \mathbf{p})\chi \end{aligned}, \quad m = 0 \end{cases} \quad \left\{ \begin{aligned} \frac{(\mathbf{\sigma} \cdot \mathbf{p})}{E = |\mathbf{p}|}\phi = \phi \\ \frac{(\mathbf{\sigma} \cdot \mathbf{p})}{E = |\mathbf{p}|}\chi = -\chi \end{aligned} \right\}$$
Helicity eigenstates

5

Helicity/Chirality - V

States with definite value of chirality, massive or massless particles

Particle

Antiparticle

Is it true? Try one example:

$$\gamma^{5}u_{L} = \gamma^{5}\frac{1}{2}(1-\gamma^{5})u = \frac{1}{2}(\gamma^{5}-1)u = -\frac{1}{2}(1-\gamma^{5})u = -u_{L} \quad \text{OK}$$

Helicity/Chirality - VI

Reminder: Solutions of Dirac equation

$$\begin{cases} u_1, u_2 & +\text{ve energy} \\ u_3, u_4 & -\text{ve energy} \\ \hline p_x \\ \hline p_x + ip_y \\ \hline E + m \end{cases}, \begin{pmatrix} 0 \\ 1 \\ p_x - ip_y \\ \hline E + m \\ p_z \\ \hline E + m \end{pmatrix}, \begin{pmatrix} p_z \\ \hline E - m \\ p_x + ip_y \\ \hline E - m \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} \frac{p_z}{E - m} \\ \frac{p_z}{E - m} \\ 1 \\ 0 \\ 1 \end{pmatrix} \end{pmatrix}, \begin{pmatrix} \frac{p_z - ip_y}{E - m} \\ \frac{-p_z}{E - m} \\ 0 \\ 1 \\ 0 \end{bmatrix}$$

Change to all +ve energy solutions by introducing antiparticle spinors v_1, v_2 :

$$\begin{cases} u_1, u_2 \quad +\text{ve energy} \\ u_1, u_2 \quad +\text{ve energy} \\ v_1, v_2 \quad +\text{ve energy} \\ \frac{p_z}{E+m} \\ \frac{p_x + ip_y}{E+m} \end{cases}, \begin{pmatrix} 0 \\ 1 \\ \frac{p_x - ip_y}{E+m} \\ \frac{p_z}{E+m} \\ \frac{p_z}{E+m} \\ \frac{p_z}{E+m} \end{pmatrix}, e^{i(\mathbf{p}\cdot\mathbf{r}-Et)}; \begin{pmatrix} \frac{p_x - ip_y}{E+m} \\ \frac{-p_z}{E+m} \\ 0 \\ 1 \\ 0 \\ \end{pmatrix}, \begin{pmatrix} \frac{p_z}{E+m} \\ \frac{p_x + ip_y}{E+m} \\ 1 \\ 0 \\ \end{pmatrix}, e^{-i(\mathbf{p}\cdot\mathbf{r}-Et)}$$

-> Antiparticle spinors have reversed momentum

$$\rightarrow \begin{cases} v_R = P_L v = \frac{1 - \gamma_5}{2} v \\ v_L = P_R v = \frac{1 + \gamma_5}{2} v \end{cases}$$

7

Helicity/Chirality - VII

Helicity of chiral states:

Massless particle:
$$\begin{cases} u_L & \langle H \rangle = -1 \\ u_R & \langle H \rangle = +1 \end{cases}$$

 \rightarrow Helicity defined \equiv Full longitudinal polarization

8

Massive particle:
$$\begin{cases} u_L & \langle H \rangle = -\beta \\ u_R & \langle H \rangle = +\beta \end{cases}$$

 \rightarrow Helicity undefined, superposition of ± 1 eigenstates

Massless particles: Helicity is Lorentz invariant

Massive particles: Helicity is frame dependent

Electroweak Interaction

Standard Model: Electromagnetic and Weak Interaction unified into Electroweak

Energy scale where unification is evident:

 $E \sim M_W$, $M_Z \sim 100 \text{ GeV}$

At lower energies:

Can still find tiny traces of the unification (Electroweak interference, Parity violation in atomic processes,...)

Electroweak interaction split into two, almost not interfering, effective interactions:

Electromagnetic

Non fundamental, useful low energy approximations

Weak

Weak Interaction: V - A - I

After a long history of beta decay experiments: *Current-Current (Fermi) Interaction* including *Vector & Axial Vector* terms in order to account for P & C violation

$$H_{\text{int}} = \frac{G_F}{\sqrt{2}} \sum_{i=V,A} C_i \left(\overline{\psi}_p \Gamma_i \psi_n \right) \left(\overline{\psi}_e \Gamma^i \left(1 + \frac{C_i'}{C_i} \gamma^5 \right) \psi_\nu \right)$$

Neutrino helicity = -1 yields lepton current = V - A

$$\begin{split} C_{i} &:= -C_{i} \rightarrow \left(1 + \frac{C_{i}}{C_{i}} \gamma^{5}\right) \psi_{\nu} = \left(1 - \gamma^{5}\right) \psi_{\nu} \\ \rightarrow H_{\text{int}} &= \frac{G_{F}}{\sqrt{2}} \Big[C_{\nu} \left(\overline{\psi}_{p} \gamma_{\mu} \psi_{n}\right) \left(\overline{\psi}_{e} \gamma^{\mu} \left(1 - \gamma^{5}\right) \psi_{\nu}\right) + C_{A} \left(\overline{\psi}_{p} \gamma_{\mu} \gamma_{5} \psi_{n}\right) \left(\overline{\psi}_{e} \gamma^{\mu} \gamma^{5} \left(1 - \gamma^{5}\right) \psi_{\nu}\right) \Big] \\ &= \frac{G_{F}}{\sqrt{2}} \Big[C_{\nu} \left(\overline{\psi}_{p} \gamma_{\mu} \psi_{n}\right) \left(\overline{\psi}_{e} \gamma^{\mu} \left(1 - \gamma^{5}\right) \psi_{\nu}\right) - C_{A} \left(\overline{\psi}_{p} \gamma_{\mu} \gamma_{5} \psi_{n}\right) \left(\overline{\psi}_{e} \gamma^{\mu} \left(1 - \gamma^{5}\right) \psi_{\nu}\right) \Big] \\ &= \frac{G_{F}}{\sqrt{2}} \Big[C_{\nu} \left(\overline{\psi}_{p} \gamma_{\mu} \psi_{n}\right) - C_{A} \left(\overline{\psi}_{p} \gamma_{\mu} \gamma_{5} \psi_{n}\right) \left(\overline{\psi}_{e} \gamma^{\mu} \left(1 - \gamma^{5}\right) \psi_{\nu}\right) \Big] \end{split}$$

Weak Interaction: V - A - II

Therefore:

$$H_{\rm int} = \frac{G_F}{\sqrt{2}} C_V \left(\overline{\psi}_p \gamma_\mu \left(1 - \frac{C_A}{C_V} \gamma_5 \right) \psi_n \right) \left(\overline{\psi}_e \gamma^\mu \left(1 - \gamma^5 \right) \psi_\nu \right)$$

Current-Current interaction: Lepton current: V - ANucleon current: $V - \alpha A$ (Strong interaction corrections)

Many violations in weak processes :

Space Parity(large) Charge Parity(large) CP (very small) T(very small) Flavor conservation(Isospin, S,C,B,T)(larger + smaller) Lepton numbers (Neutrino oscillations)

Weak Interaction: V - A - III

Observe:

$$\begin{split} H_{\rm int} &= \frac{2G_F}{\sqrt{2}} \bigg(\overline{\psi}_p \gamma_\mu \bigg(1 - \frac{C_A}{C_V} \gamma_5 \bigg) \psi_n \bigg) \bigg(\overline{\psi}_e \gamma^\mu \frac{(1 - \gamma^5)}{2} \psi_\nu \bigg) \\ &\frac{1 - \gamma^5}{2} \text{ Projection operator} \rightarrow \left[\frac{(1 - \gamma^5)}{2} \right]^2 = \frac{1 - \gamma^5}{2} \\ &\rightarrow H_{\rm int} = \frac{2G_F}{\sqrt{2}} \bigg(\overline{\psi}_p \gamma_\mu \bigg(1 - \frac{C_A}{C_V} \gamma_5 \bigg) \psi_n \bigg) \bigg(\overline{\psi}_e \gamma^\mu \bigg[\frac{(1 - \gamma^5)}{2} \bigg]^2 \psi_\nu \bigg) \\ &\rightarrow H_{\rm int} = \sqrt{2}G_F \bigg(\overline{\psi}_p \gamma_\mu \bigg(1 - \frac{C_A}{C_V} \gamma_5 \bigg) \psi_n \bigg) \bigg(\overline{\psi}_e \bigg(\frac{1 + \gamma^5}{2} \bigg) \gamma^\mu \bigg(\frac{1 - \gamma^5}{2} \bigg) \psi_\nu \end{split}$$

Lepton current written as *pure vector* between *chiral parts* of *v,e* states

 \rightarrow The weak charged current is just the same as the e.m. current, except it operates between chiral projections with different charge $\Delta Q = \pm I$

Weak Interaction: Universality - I

Extend *V*-*A* to muon weak interactions:

 $\mu^+ \rightarrow e^+ + \overline{\nu}_{\mu} + \nu_e, \ \mu^- \rightarrow e^- + \nu_{\mu} + \overline{\nu}_e \ \mu$ decay $\mu^- + p \rightarrow n + \nu_{\mu} \ \mu$ capture, involves nucleon current

 μ decay purely leptonic:

Guess: Current-Current, V-A for both electron and muon charged currents

Lagrangian density:

$$L_{V-A} = -\frac{G_F}{\sqrt{2}} \left[\overline{\nu}_{\mu} \gamma_{\mu} \left(1 - \gamma_5 \right) \mu \right] \left[\overline{e} \gamma^{\mu} \left(1 - \gamma_5 \right) \nu \right] + H.C.$$

Compute:

μ Lifetime Electron energy spectrum Electron longitudinal polarization

Weak Interaction: Universality - II

Relativistic Golden Rule for 3-body μ decay:

$$d\Gamma = |M|^{2} \frac{1}{2m_{\mu}} \frac{d^{3}\mathbf{p}_{\nu_{\mu}}}{(2\pi)^{3} 2E_{\nu_{\mu}}} \frac{d^{3}\mathbf{p}_{\bar{\nu}_{e}}}{(2\pi)^{3} 2E_{\bar{\nu}_{e}}} \frac{d^{3}\mathbf{p}_{e}}{(2\pi)^{3} 2E_{e}} (2\pi)^{4} \delta^{(4)} \left(p_{\mu} - p_{\nu_{\mu}} - p_{\bar{\nu}_{e}} - p_{e}\right)$$

$$\begin{split} & \left| M \right|^2 \text{ squared matrix element} \\ & \frac{1}{2m_{\mu}} \text{ 'flux' factor} \\ & \frac{d^3 \mathbf{p}_{\nu_{\mu}}}{(2\pi)^3 2E_{\nu_{\mu}}} \frac{d^3 \mathbf{p}_{\overline{\nu}_e}}{(2\pi)^3 2E_{\overline{\nu}_e}} \frac{d^3 \mathbf{p}_e}{(2\pi)^3 2E_e} \text{ phase space factor} \\ & \delta^{(4)} \left(p_{\mu} - p_{\nu_{\mu}} - p_{\overline{\nu}_e} - p_e \right) \text{ 4-momentum conservation} \end{split}$$

And:

Must average over initial / sum over final spin projections in $|M|^2$

14

Weak Interaction: Universality - III

Feynman diagram (tree level):

Amplitude:

$$\begin{split} M &= i \int \underbrace{\overline{u}\left(\nu_{\mu}\right)}_{\text{Charged current}} \gamma^{\mu}\left(1-\gamma^{5}\right) u\left(\mu\right)}_{\text{Charged current}} \underbrace{\frac{ig_{\mu\nu}}{m_{W}^{2}}}_{W \text{ propagator}} \underbrace{\overline{u}\left(e\right)}_{\frac{2\sqrt{2}}{2\sqrt{2}}} \gamma_{\nu}\left(1-\gamma^{5}\right) v\left(\overline{\nu_{e}}\right)}_{\text{Charged current}} \cdot \underbrace{\left(2\pi\right)^{4} \delta^{(4)}\left(p_{\mu}-p_{\nu}-q\right)}_{4\text{-mom conservation}} \underbrace{\left(2\pi\right)^{4} \delta^{(4)}\left(q-p_{e}-p_{\overline{\nu}}\right)}_{2\text{-dramed current}}}_{2\text{-dramed current}} \cdot \underbrace{\left(2\pi\right)^{4} \delta^{(4)}\left(p_{\mu}-p_{\nu}-q\right)}_{1 \text{-mom conservation}} \underbrace{\left(2\pi\right)^{4} \delta^{(4)}\left(q-p_{e}-p_{\overline{\nu}}\right)}_{2\text{-dramed current}}}_{2\text{-dramed current}} \cdot \underbrace{\left(2\pi\right)^{4} \delta^{(4)}\left(p_{\mu}-p_{\nu}-q\right)}_{1 \text{-mom conservation}} \underbrace{\left(2\pi\right)^{4} \delta^{(4)}\left(q-p_{e}-p_{\overline{\nu}}\right)}_{2\text{-dramed current}} \cdot \underbrace{\left(2\pi\right)^{4} \delta^{(4)}\left(p_{\mu}-p_{\nu}-q\right)}_{2\text{-dramed current}}$$

Weak Interaction: Universality - IV

Group constants together Integrate over internal W momentum, q(\leftarrow get rid of 2 δ -functions)

 \rightarrow Amplitude:

$$M = \frac{g_W^2}{8m_W^2} \overline{u} \left(\nu_{\mu}\right) \gamma^{\mu} \left(1 - \gamma^5\right) u\left(\mu\right) \overline{u} \left(e\right) \gamma^{\nu} \left(1 - \gamma^5\right) v\left(\overline{\nu}_e\right)$$

 \rightarrow Squared amplitude:

$$|M|^{2} = \left(\frac{g_{W}^{2}}{8m_{W}^{2}}\right)^{2} \left[\overline{u}\left(\nu_{\mu}\right)\gamma^{\mu}\left(1-\gamma^{5}\right)u\left(\mu\right)\right] \left[\overline{u}\left(\nu_{\mu}\right)\gamma^{\mu}\left(1-\gamma^{5}\right)u\left(\mu\right)\right]^{*} \cdot \left[\overline{u}\left(e\right)\gamma^{\nu}\left(1-\gamma^{5}\right)v\left(\overline{\nu}_{e}\right)\right] \left[\overline{u}\left(e\right)\gamma^{\nu}\left(1-\gamma^{5}\right)v\left(\overline{\nu}_{e}\right)\right]^{*}$$

Identity:

Weak Interaction: Universality - V

Obtain:

$$\left\langle \left| M \right|^2 \right\rangle = 2 \left(\frac{g_W}{m_W} \right)^4 \left(p_\mu p_{\overline{\nu}_e} \right) \left(p_{\nu_\mu} p_e \right)$$

Muon rest frame:

$$\begin{split} p_{\mu} &= \left(m_{\mu}, 0 \right) \\ \to p_{\mu} p_{\overline{\nu}_{e}} &= m_{\mu} E_{\overline{\nu}_{e}} \\ p_{\mu} &= p_{\nu_{\mu}} + p_{\overline{\nu}_{e}} + p_{e} \\ \to \left(p_{\mu} - p_{\overline{\nu}_{e}} \right)^{2} &= \left(p_{\nu_{\mu}} + p_{e} \right)^{2} \\ \to m_{\mu}^{2} - 2m_{\mu} E_{\overline{\nu}_{e}} &= m_{e}^{2} + 2p_{\nu_{\mu}} p_{e} \\ \to p_{\nu_{\mu}} p_{e} &= \frac{1}{2} \left(m_{\mu}^{2} - m_{e}^{2} \right) - m_{\mu} E_{\overline{\nu}_{e}} \\ \to \left\langle \left| M \right|^{2} \right\rangle &\approx 2 \left(\frac{g_{W}}{m_{W}} \right)^{4} m_{\mu}^{2} E_{\overline{\nu}_{e}} \left(\frac{1}{2} m_{\mu} - E_{\overline{\nu}_{e}} \right) \end{split}$$

17

Weak Interaction: Universality - VI

$$d\Gamma = |M|^{2} \frac{1}{2m_{\mu}} \frac{d^{3}\mathbf{p}_{\nu_{\mu}}}{(2\pi)^{3} 2E_{\nu_{\mu}}} \frac{d^{3}\mathbf{p}_{\overline{\nu}_{e}}}{(2\pi)^{3} 2E_{\overline{\nu}_{e}}} \frac{d^{3}\mathbf{p}_{e}}{(2\pi)^{3} 2E_{e}} (2\pi)^{4} \delta^{(4)} \left(p_{\mu} - p_{\nu_{\mu}} - p_{\overline{\nu}_{e}} - p_{e}\right)$$

Choose μ rest frame as reference

Split 4-dim δ into Energy*Momentum

$$\delta^{(4)} \left(p_{\mu} - p_{\nu_{\mu}} - p_{\bar{\nu}_{e}} - p_{e} \right) = \delta \left(m_{\mu} - E_{\nu_{\mu}} - E_{\bar{\nu}_{e}} - E_{e} \right) \delta^{(3)} \left(\mathbf{p}_{\nu_{\mu}} + \mathbf{p}_{\bar{\nu}_{e}} + \mathbf{p}_{e} \right)$$

$$\rightarrow d\Gamma = \frac{\left\langle |M|^{2} \right\rangle}{16 \left(2\pi \right)^{5} m_{\mu}} \int \frac{d^{3} \mathbf{p}_{\nu_{\mu}} d^{3} \mathbf{p}_{\bar{\nu}_{e}} d^{3} \mathbf{p}_{e}}{E_{\nu_{\mu}} E_{\bar{\nu}_{e}} E_{e}} \delta \left(m_{\mu} - E_{\nu_{\mu}} - E_{\bar{\nu}_{e}} - E_{e} \right) \delta^{(3)} \left(\mathbf{p}_{\nu_{\mu}} + \mathbf{p}_{\bar{\nu}_{e}} + \mathbf{p}_{e} \right)$$

Integrate over $\mathbf{p}_{\nu_{\mu}}, \mathbf{p}_{\overline{\nu}_{e}}, E_{\overline{\nu}_{e}}, E_{\nu_{\mu}}$:

$$\rightarrow d\Gamma = \left(\frac{g_W}{m_W}\right)^4 \frac{m_\mu}{16(2\pi)^4} \left(\frac{m_\mu}{2} - \frac{2E_e}{3}\right) d^3 \mathbf{p}_e$$

$$d^3 \mathbf{p}_e = \left|\mathbf{p}_e\right|^2 d\left|\mathbf{p}_e\right| d\Omega_e \approx E_e^2 dE_e d\Omega_e \rightarrow d\Gamma = \left(\frac{g_W}{m_W}\right)^4 \frac{m_\mu}{(4\pi)^3} \left(\frac{m_\mu}{2} - \frac{2E_e}{3}\right) E_e^2 dE_e$$

$$\rightarrow \Gamma = \int d\Gamma = \left(\frac{g_W}{m_W}\right)^4 \frac{m_\mu^5}{12(8\pi)^3} = \frac{1}{\tau_\mu}$$

$$\Gamma = \left(\frac{g_W}{m_W}\right)^4 \frac{1}{32} \frac{32m_\mu^5}{12(8\pi)^3} = G_F^2 \frac{8m_\mu^5}{3(8\pi)^3} = \frac{G_F^2 m_\mu^5}{192\pi^3}$$

Weak Interaction: Universality - VII

Electron Spectrum (a) -15 × 103 NUMBER OF EVENTS PER 0.625 MeV /c -10 X 103 62 KGAUSS - 5 X 103 30 20 POSITRON MOMENTUM MeV/c Measure μ lifetime, get Fermi constant: $G_F^{(\mu)} = \sqrt{\frac{192\pi^3}{\tau_\mu m_\mu^5}} = 1.1638 \ 10^{-5} \ GeV^{-2}$ After radiative corrections: $G_F^{(\mu)} = 1.16637 \ 10^{-5} \ GeV^{-2}$ Measure τ lifetime and *BR* to electron, get Fermi constant: $G_{F}^{(\tau)} = \sqrt{\frac{\Gamma(\tau \to e\overline{v}_{e}v_{\tau})}{\Gamma_{tot}}} \frac{192\pi^{3}}{\tau_{\tau}m_{\tau}^{5}} = 1.1642 \ 10^{-5} \ GeV^{-2}$ Compare to Fermi constant from β decay: $G_F^{(\beta)} = 1.1361 \, 10^{-5} \, GeV^{-2}$

Weak Interaction: Universality - VIII

 μ Decay: C & P Violations

Polarized μ^{\pm} decay: μ rest frame $\frac{dN^{\pm}}{dxd\cos\theta} = x^{2} \left(3 - 2x\right) \left[1 \pm \cos\theta \frac{2x - 1}{3 - 2x}\right]$ $x = \frac{p_{e}}{p_{e}^{\max}}, \ \theta \triangleleft \left(\mathbf{s}_{\mu}, \mathbf{p}_{e}\right)$

Weak Interaction: Universality - IX

Charged current:

 $\nu_{\mu} + e^- \rightarrow \mu^- + \nu_e$, inverse μ decay

$$\begin{split} \sum_{spin} M_{fi} M_{fi}^{*} &= \sum_{spin} \frac{G_{F}}{\sqrt{2}} \Big[\overline{u} \left(3 \right) \gamma^{\mu} \left(1 - \gamma^{5} \right) u \left(1 \right) \Big] \Big[\overline{u} \left(3 \right) \gamma_{\nu} \left(1 - \gamma_{5} \right) u \left(1 \right) \Big]^{*} \\ & \left[\overline{u} \left(4 \right) \gamma_{\mu} \left(1 - \gamma_{5} \right) u \left(2 \right) \right] \Big[\overline{u} \left(4 \right) \gamma^{\nu} \left(1 - \gamma^{5} \right) u \left(2 \right) \Big]^{*} \\ & \sum_{spin} \Big[\overline{u} \left(a \right) \Gamma_{1} u \left(b \right) \Big] \Big[\overline{u} \left(a \right) \Gamma_{2} u \left(b \right) \Big]^{*} = Tr \Big[\Gamma_{1} \left(\not p_{b} + m_{b} \right) \Gamma_{2} \left(\not p_{a} + m_{a} \right) \Big] \\ & \sum_{spin} \Big| M_{fi} \Big|^{2} = 64G_{F}^{2} \left(p_{1} \cdot p_{2} \right) \left(p_{3} \cdot p_{4} \right) \\ & \sum_{spin} \Big| M_{fi} \Big|^{2} = 256G_{F}^{2} E^{4} \left[1 - \left(\frac{m_{\mu}}{2E} \right)^{2} \right] \end{split}$$

Weak Interaction: Universality - X

$$\frac{d\sigma}{d\Omega} = \frac{G_F^2}{\pi^2} E^{*2} \left[1 - \left(\frac{m_\mu}{2E^*}\right)^2 \right]^2$$

$$\rightarrow \sigma = \frac{4G_F^2}{\pi} E^{*2} \left[1 - \left(\frac{m_\mu}{2E^*}\right)^2 \right]^2, \quad E^* \text{ CM energy of } e, v$$

$$E^* \simeq \sqrt{2mE_\nu}$$

$$\rightarrow \sigma = \frac{8G_F^2 m_\mu}{\pi} E_\nu \propto E_\nu \text{ at high energy}$$

- $\sigma~$ badly divergent
- $\rightarrow Unphysical$

Weak Interaction: Universality - XI

Charged current $\nu_e/\overline{\nu}_e - e$ scattering:

$$\nu_e + e^- \to e^- + \nu_e$$
$$\overline{\nu}_e + e^- \to \overline{\nu}_e + e^-$$

NB Actually incomplete:

Missing neutral current amplitude leading to the same final states Cross sections must be avaluated by adding *all* the relevant amplitudes

Weak Interaction: Universality - XII

$$M_{fi} = -i \frac{G_F}{\sqrt{2}} \left[\overline{v} \left(\nu, q_1 \right) \gamma_{\mu} \left(1 - \gamma_5 \right) u \left(e, p_1 \right) \right] \cdot \left[\overline{u} \left(e, p_2 \right) \gamma^{\mu} \left(1 - \gamma_5 \right) v \left(\nu, q_2 \right) \right]$$

Weak Interaction: Universality -XIII

$$\overline{\nu}e \rightarrow \overline{\nu}e$$

$$\frac{d\sigma_{\overline{\nu}e}}{d\Omega^*} = \frac{\left\langle \left| M_{fi} \right|^2 \right\rangle}{64\pi^2 s} = \frac{G_F^2 2mE_{\nu} \left(1 - \cos\theta^* \right)^2}{16\pi^2}$$

Total cross section:

$$\sigma_{\bar{\nu}e} = \frac{G_F^2 2mE_{\nu}}{3\pi} \approx 0.574 \ 10^{-41} E_{\nu} \left(GeV \right) \ cm^2$$

 $\nu e \rightarrow \nu e$

$$\frac{d\sigma_{\nu e}}{d\Omega^*} = \frac{\left\langle \left| M_{fi} \right|^2 \right\rangle}{64\pi^2 s} = \frac{G_F^2 2mE_{\nu}}{4\pi^2}$$

Total cross section:

$$\sigma_{\nu e} = \frac{G_F^2 2mE_{\nu}}{\pi} \approx 1.72 \ 10^{-41} E_{\nu} \left(GeV \right) \ cm^2$$

Weak Interaction: Universality - XIV

Total cross sections:

$$\sigma_{\bar{\nu}e} = \frac{G_F^2 2mE_{\nu}}{3\pi} \approx 0.574 \ 10^{-41} E_{\nu} \left(GeV \right) \ cm^2$$

$$\sigma_{\nu e} = \frac{G_F^2 2mE_{\nu}}{\pi} \approx 1.72 \ 10^{-41} E_{\nu} \left(GeV \right) \ cm^2$$

as divergent at high energy as the inverse muon decay

NB Cross sections only crude approximations: Neutral current contribute not included

Interesting factor $\times 3$ between νe and $\overline{\nu} e$

Weak Interaction: Universality - XV

Origin of factor $\times 3$:

 $z = \cos \theta^*$

 \rightarrow Amplitude & Cross section suppressed at small angle

E.Menichetti - Universita' di Torino

Weak Interaction: Universality - XVI

Semileptonic and non leptonic processes understood in terms of quarks

Coupling basically similar to leptonic charged currents:

Picture is slightly more complicated, however Fundamental question:

Is the quark coupling identical to the lepton one?

Weak Interaction: Universality-XVII

Consider charged current of leptons:

Very natural to group charged and neutral leptons into doublets, or families

$$\begin{pmatrix} \nu_e \\ e^- \end{pmatrix} \quad \begin{pmatrix} \nu_\mu \\ \mu^- \end{pmatrix} \quad \begin{pmatrix} \nu_\tau \\ \tau^- \end{pmatrix}$$

Within each doublet, charged current transitions can be thought as due to emission/ absorption of W^{\pm} bosons, similar to (neutral) e.m. current transitions

$$\begin{array}{c} W^- \to & \nu_e \\ W^- \leftarrow & e^- \downarrow \\ e^- \downarrow \leftarrow & W^+ \end{array}$$

Similar for 2nd, 3rd family

Weak Interaction: Universality-XVIII

Natural to extend this scheme to quarks

$$\begin{pmatrix} u \\ d \end{pmatrix} \quad \begin{pmatrix} c \\ s \end{pmatrix} \quad \begin{pmatrix} t \\ b \end{pmatrix}$$

 $W^- \longrightarrow u \longrightarrow W^+$ $W^- \leftarrow \uparrow d \downarrow \leftarrow W^+$

Similar for 2nd, 3rd family

Almost correct, but incomplete:

Does not account for strangeness (more generally, \rightarrow flavour) violating processes

Cabibbo's very ingenious idea:

Quark flavor eigenstates (i.e., quark model eigenstates) are not to be identified with quark weak currents \rightarrow Weak currents are mixtures of different flavors

By universal convention, mixing is assumed between d, s, b quarks

Weak Interaction: Universality-XIX

In terms of mixed "d-like" quarks, with just 2 families:

$$\begin{pmatrix} d' \\ s' \end{pmatrix} = \begin{pmatrix} \cos \theta_C & \sin \theta_C \\ -\sin \theta_C & \cos \theta_C \end{pmatrix} \begin{pmatrix} d \\ s \end{pmatrix} \quad \theta_c \quad \text{Cabibbo's angle}$$

This explain *many* things....

How to extract θ_c ?

Just one example: Get the angle from β decay

 $G_F^{(\beta)} = 0.975 G_F^{(\mu)} \text{(Remember that 2\% difference ?)}$ $\rightarrow G_F^{(\beta)} = \cos \theta_C G_F^{(\mu)}$ $\rightarrow \theta_c \simeq 13^0$

Weak Interaction: Universality-XX

Extend the idea to 3 families: From Cabibbo's angle to *Cabibbo-Kobayashi-Maskawa* matrix

$$\begin{bmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{bmatrix} \begin{bmatrix} |d\rangle \\ |s\rangle \\ |b\rangle \end{bmatrix} = \begin{bmatrix} |d'\rangle \\ |s'\rangle \\ |b'\rangle \end{bmatrix}$$

From unitarity:

3 mixing angles 1 complex phase

This can account for CP violation

Experimental values:

0.9753	0.221	0.003
0.221	0.9747	0.040
0.009	0.039	0.9991

Almost diagonal Heavy quarks even more diagonal

Weak Interaction: Universality-XXI

Extend V-A to neutrino-nucleon scattering

 $\nu_{\mu} + N \rightarrow \mu^{-} + X$

 $\overline{\nu}_{\mu} + N \longrightarrow \mu^{+} + X$

Somewhat similar to *e-N*, μ -*N* deep inelastic scattering Modeling similar to DIS: Parton elastic scattering

Deep ineastic neutrino scattering reveals the same structure as charged lepton DIS

More information: Charged current sensitive to parton charge sign

 \rightarrow Can separate quark/antiquark contribution

And: Yes, by looking at (anti)neutrino-nucleon DIS structure functions (probing the parton structure by charged – and neutral – weak currents) one concludes that quarks couple to weak currents exactly as leptons

Weak Interaction: Universality-XXII u, u30 300 10 20501001502002503500 1.0 1.0 0.8[10⁻³⁸ cm²/ GeV] 0.60. 0.4ष्वे CRS 0.2CCFR (90) BNL-76 HSW IHEP-ITEP SKAT 0.0^L Ξ 0.0 100 150 10 20 30 50200250300 350 E_v [GeV]

Linearly rising cross section confirmed...

E.Menichetti - Universita' di Torino

34

Troubles: Unitarity - I

Divergence at high energy : Unitarity bound violated around $E_{\nu}^* \sim 300 \ GeV$

 $\sigma \leq \frac{4\pi}{k^2} = \frac{4\pi}{E^{*2}}$ Unitarity bound for S-Wave scattering

Reminder: (Simpler) Spinless potential scattering

Expand incident (plane) wave into angular momentum eigenstates

$$\Psi_{i} = e^{ikz} = \frac{i}{2kr} \sum_{l=0}^{\infty} (2l+1) \left[(-1)^{l} e^{-ikr} - e^{ikr} \right] P_{l}(\cos\theta)$$

Outgoing spherical wave phase shifted by potential:

$$\Psi_{total} = \Psi_{scattered} + \Psi_{i} = \frac{i}{2kr} \sum_{l=0}^{\infty} (2l+1) \left[(-1)^{l} e^{-ikr} - \eta_{l} e^{2i\delta_{l}} e^{ikr} \right] P_{l}(\cos\theta)$$

$$\Psi_{scattered} = \Psi_{total} - \Psi_{i} = \frac{e^{ikr}}{kr} \sum_{l=0}^{\infty} (2l+1) \frac{\eta_{l} e^{2i\delta_{l}} - 1}{2i} P_{l}(\cos\theta) = \frac{e^{ikr}}{r} f(\theta)$$

Troubles: Unitarity - II

Outgoing elementary flux:

$$d\Phi_{out} = v_{out} \Psi_{scat} \Psi^*_{scat} r^2 d\Omega = v_{out} \left| F(\theta) \right|^2 d\Omega$$

Incident flux:

 $\Phi_{in} = \Psi_{in} \Psi_{in}^* v_{in} = v_{in}$

$$\rightarrow d\sigma = \frac{\Phi_{out}}{\Phi_{in}} = \left|F(\theta)\right|^2 d\Omega$$

$$\sigma = \int \left|F(\theta)\right|^2 d\Omega$$

$$\sigma = \frac{1}{k^2} \sum_{l,m} (2l+1) \left[\frac{\eta_l e^{2i\delta_l} - 1}{2i}\right] (2m+1) \left[\frac{\eta_m e^{2i\delta_m} - 1}{2i}\right]^*$$

$$\times \int P_l(\cos\theta) P_m(\cos\theta) d\Omega$$

$$\sigma = \frac{4\pi}{k^2} \sum_l (2l+1) \left[\frac{\eta_l e^{2i\delta_l} - 1}{2i}\right]^2 = \frac{4\pi}{k^2} \sum_l (2l+1) \sin^2 \delta_l$$

$$\rightarrow \sigma_{l=0} = \frac{4\pi}{k^2} \sin^2 \delta_0 \le \frac{4\pi}{k^2} = \frac{4\pi}{E^{*2}}$$
 Unitarity bound for S-Wave scattering
Troubles: Renormalization - I

Suppose Fermi's theory can be saved by radiative corrections: Assume divergent cross-section as due to our limited, tree-level approximation Maybe higher orders could fix it

Take QED as an example

These diagrams (and higher orders) divergent: However, nice fix available by renormalization procedure

Very successful program, leading to extraordinary accuracy & agreement between theory and experiment

Troubles: Renormalization - II

Higher order diagrams in Fermi's theory:

Cannot be fixed by renormalization: Fermi's theory non-renormalizable

Indeed: Each vertex ~ G_F

Troubles: Renormalization - III

Lagrangian density (μ decay etc)

$$L_{Fermi} = -\frac{G_F}{\sqrt{2}} \overline{\nu}_{\mu} \gamma^{\alpha} \left(1 - \gamma^5\right) \mu \overline{e} \gamma_{\alpha} \left(1 - \gamma^5\right) \nu_e$$

Action dimension:

$$S = \int L_{Fermi} d^{4}x \rightarrow [S] = [E][T] = [E][E^{-1}] = 0 \text{ Action dimensionless}$$

$$\rightarrow [L_{Fermi}] = [E^{4}]$$

$$[L_{Fermi}] = [G_{F}][\psi^{4}]$$

Field dimension: $[\psi] = [E^{3/2}]$

$$\rightarrow [L_{Fermi}] = [G_{F}][E^{6}] = [E^{4}]$$

$$\rightarrow [G_{F}] = [E^{-2}]$$

Amplitude dimensionless: [A] = 0

→ Each G_F in the amplitude to be dimensionally compensated by some k^2 factor → Loop diagrams of higher orders must include integrals of higher powers of k→ More and more divergent

Intermediate Vector Boson - I

As anticipated: Forced to go beyond Fermi's theory *Current-Current* must be a *low energy effective theory:* Low energy approximation of a more general theory

Replace *contact interaction* (current-current) by *boson exchange*:

Modeled after the electromagnetic interaction

Exchanged particle must be

Charged (Charged current \pm)

Chiral	(Only coupled to left chiral parts: Parity violation)
Heavy	(Fermi's point-like interaction OK at low energy)

Intermediate Vector Boson - II

Some key points

A) (Quarks and) Leptons (both) interact through the exchange of vector particles

Intermediate Vector Boson - III

B) Exchanged vector bosons are (very) massive

Range of weak interaction quite small:

Compare β -decay of nuclei, $R < R_{nucleus}$

Cannot tell how large is boson mass, just raw estimate $M \ge 1 \text{ GeV}$

Intermediate Vector Boson - IV

$$\begin{split} W & \text{propagator:} -i \frac{g_{\mu\nu} - q_{\mu}q_{\nu}/M_{W}^{2}}{q^{2} - M_{W}^{2}} \quad \text{(Gauge dependent)} \\ q^{2} \ll M_{W}^{2} \rightarrow -i \frac{g_{\mu\nu} - q_{\mu}q_{\nu}/M_{W}^{2}}{q^{2} - M_{W}^{2}} \approx i \frac{g_{\mu\nu}}{M_{W}^{2}} \quad q^{2} \text{-independent} \\ T_{fi} \cong \left(\frac{1}{2\sqrt{2}}\right)^{2} g_{W}^{2} \left(\overline{u}_{f}^{(1)} \frac{1}{2}\gamma^{\mu} \left(1 - \gamma^{5}\right)u_{i}^{(1)}\right) i \frac{g_{\mu\nu}}{M_{W}^{2}} \left(\overline{u}_{f}^{(2)} \frac{1}{2}\gamma_{\nu} \left(1 - \gamma_{5}\right)u_{i}^{(2)} \\ \rightarrow T_{fi} \cong i \frac{1}{8} 4\sqrt{2}G_{F} \quad j^{\mu(1)}j_{\mu}^{(2)} \\ g_{W}^{2} \equiv \alpha_{W} \quad \text{Charged current coupling constant} \\ G_{F} = \frac{\sqrt{2}}{8} \left(\frac{g_{W}}{M_{W}}\right)^{2} \quad \text{Fermi constant} \end{split}$$

E.Menichetti - Universita' di Torino

Intermediate Vector Boson - V

Showing how Standard Model diagrams collapse into current-current at low energy:

Intermediate Vector Boson - VI

Good fix for some problems: Cross sections of several neutrino reactions Inverse Muon Decay:

$$\frac{d\sigma}{d\Omega_{CM}} = \frac{G_F^2 M_W^4}{16\pi^2 k^2} \left(\frac{4k^2}{4k^2 - M_W^2}\right)^2 \to \frac{d\sigma}{d\Omega_{CM}} \approx \begin{cases} \frac{G_F^2 k^2}{\pi^2}, & 4k^2 \ll M_W^2 \\ \frac{G_F^2 M_W^4}{16\pi^2 k^2}, & 4k^2 \gg M_W^2 \end{cases} \to \sigma \sim \frac{4G_F^2 k^2}{\pi}, & 4k^2 \ll M_W^2 \\ \frac{G_F^2 M_W^4}{16\pi^2 k^2}, & 4k^2 \gg M_W^2 \end{cases}$$

No divergence!

Fall 2020

Intermediate Vector Boson - VII

Charged current (only), tree level elastic (anti) electronic neutrino-electron cross sections:

$$\begin{split} \nu_e + e &\to e + \nu_e \\ \frac{d\sigma}{d\Omega_{CM}} \simeq \frac{16G_F^2 M_W^2}{\pi^2} \frac{4k^2}{\left(q^2 - M_W^2\right)^2}, \ k^2 \gg m_e^2 \\ q^2 &\simeq -2k^2 \left(1 - \cos\theta\right), \ s \simeq 4k^2 \\ &\to \sigma \simeq \frac{G_F^2}{\pi} \frac{4k^2}{1 + \frac{4k^2}{M_W^2}} \xrightarrow{k^2 \gg M_W^2} \frac{G_F^2 M_W^2}{\pi}, \ \text{no divergence!} \end{split}$$

$$\begin{split} &\overline{\nu}_{e} + e \to \overline{\nu}_{e} + e \\ &\sigma \simeq \frac{G_{F}^{2} M_{W}^{4}}{3\pi} \frac{4k^{2}}{16k^{4} \left(1 - \frac{M_{W}^{2}}{4k^{2}}\right)^{2}} = \frac{G_{F}^{2} M_{W}^{4}}{3\pi} \frac{1}{4k^{2} \left(1 - \frac{M_{W}^{2}}{4k^{2}}\right)^{2}} \\ &\to \sigma \underset{k^{2} \gg M_{W}^{2}}{\to} \frac{G_{F}^{2} M_{W}^{4}}{3\pi s}, \quad \text{no divergence!} \end{split}$$

E.Menichetti - Universita' di Torino

Intermediate Vector Boson - VIII

Another dark side of naive IVB model:

Take hypothetical reaction

$$u_{\mu} + \overline{
u}_{\mu} \rightarrow W^{+} + W^{-}$$

No question, not easy to realize in the lab...

Nevertheless, it should be possible to compute the cross section Anyway, similar issues for the (realistic) reaction

 $e^+ + e^- \rightarrow W^+ + W^-$

Intermediate Vector Boson - IX

Central issue:

Massive W^{\pm} bosons in the final state

 \rightarrow 3 polarization states for a massive vector particle Rest frame:

$$\begin{split} \varepsilon_{x} &= (0,1,0,0) \\ \varepsilon_{y} &= (0,0,1,0) \\ \end{bmatrix} \varepsilon_{T} \quad \text{Transverse polarization} \\ \varepsilon_{z} &= (0,0,0,1) \quad \varepsilon_{L} \quad \text{Longitudinal polarization} \\ \text{After a } z \text{-boost, carrying the } W \text{ to 4-momentum } k^{\mu} &= \left(k^{0},0,0,k\right) \\ \varepsilon_{T} \left(k\right) &= \varepsilon_{T} \left(0\right) \\ \varepsilon_{L} \left(k\right) &= \left(\frac{k}{M_{W}},0,0,\frac{k_{0}}{M_{W}}\right) = \frac{k^{\mu}}{M_{W}} + O\left(\frac{M_{W}}{k_{0}}\right) \end{split}$$

Intermediate Vector Boson - X

Matrix element
$$(1 = \nu, W^+, 2 = \overline{\nu}, W^-; p = \nu, k = W)$$
:

$$T_{fi}^{\lambda_{1}\lambda_{2}} = g^{2}\varepsilon_{\mu}^{-*}(k_{2},\lambda_{2})\varepsilon_{\mu}^{+*}(k_{1},\lambda_{1})\overline{\nu}(p_{2})\gamma^{\mu}(1-\gamma_{5})\frac{(\not p_{1}-\not k_{1}+m_{\mu})}{(p_{1}-k_{1})^{2}-m_{\mu}^{2}}\gamma^{\nu}(1-\gamma_{5})u(p_{1})$$

By:

Neglecting μ mass,

Restricting to longitudinally polarized W's ($\lambda = 0$),

Taking the high energy ($\gg M_W$) limit for the polarization 4 – vectors, commuting γ_5 :

$$\left|T_{fi}^{00}\right|^{2} = \frac{g^{4}}{M_{W}^{4}(p_{1}-k_{1})^{4}} Tr\left[k_{2}\left(1-\gamma_{5}\right)\left(\not\!\!p_{1}-\not\!\!k_{1}\right)\not\!\!k_{1}\not\!\!p_{1}\not\!\!k_{1}\left(\not\!\!p_{1}-\not\!\!k_{1}\right)\not\!\!k_{2}\not\!\!p_{2}\right]$$

By averaging/summing over initial/final spin projections:

$$\sum_{spin} \left| T_{fi}^{00} \right|^2 = \frac{g^4}{M_W^4} (p_1 \cdot k_1) (p_2 \cdot k_2) = \frac{g^4}{M_W^4} E^4 (1 - \cos^2 \theta) \rightarrow \frac{d\sigma}{d\Omega^*} = \frac{G_F^2}{8\pi^2} E^2 \sin^2 \theta$$

$$\rightarrow \text{Still divergent at high energy}$$

No simple solution for this problem :

Massive vector particles cannot make it without 3 polarization states

Intermediate Vector Boson - XI

Compare to well known QED process

No contribution from longitudinal photons:

Real photons always transverse, as a consequence of *gauge invariance* of QED (Compare to classical radiation field: **E**, **B** purely transverse)

Hope the gauge invariance benefits can be extended to weak interactions..

Intermediate Vector Boson - XII

Is that a single trouble, unrelated to the full IVB scheme?

Have a look at diagrams including *virtual W*:

Discover that a new divergence hits hard our naive IVB model..

Looking at virtual *W* propagator:

$$\frac{-g_{\mu\nu}+k_{\mu}k_{\nu}/M_{W}^{2}}{k^{2}-M_{W}^{2}} \xrightarrow{k^{2}\to\infty} const$$

 \rightarrow Will make diagrams with virtual *Ws* divergent at high energy

Serious illness of IVB model, particularly relevant for neutral current processes

Intermediate Vector Boson - XIII

Neutral current reactions like:

$$u_{\mu} + e^{-} \rightarrow \nu_{\mu} + e^{-}$$
 $\overline{\nu}_{\mu} + e^{-} \rightarrow \overline{\nu}_{\mu} + e^{-}$

Not allowed at tree level by our IVB model, only by loop diagrams:

But we can't compute loop diagrams including virtual *W*: Divergent, IVB theory *not renormalizable* Basic requirement: Theory must be renormalizable

Intermediate Vector Boson - XIV

Aside: Expect strong suppression Surprisingly, after first observations: NC Cross sections \approx Allowed processes

$$\begin{aligned} \nu_e + e^- &\rightarrow e^- + \nu_e \\ \nu_\mu + e^- &\rightarrow \mu^- + \nu_e \end{aligned}$$

Suggestion:

Maybe neutral currents do exist at tree level, e.g.

[Indeed, neutral currents are *required* in standard electroweak theory]

Gauge Symmetry - I

What makes QED so successful?

Renormalization program allows for computing observables with high accuracy, comparable to experimental resolution

QED is a renormalizable field theory

Fermi's theory is a non-renormalizable theory

And:

Naive IVB theory of weak interactions is a non-renormalizable theory

Try to discover what makes the difference

Gauge Symmetry - II

Back to QED for a while: Reconsider global and local gauge invariance

Free Dirac Lagrangian:

 $L_0=\overline{\psi}ig(xig)ig(i\gamma^\mu\partial_\mu-mig)\psiig(xig)$

Invariant upon global gauge transformation:

$$\begin{cases} \psi(x) \to \psi'(x) = e^{-i\alpha}\psi(x) \\ \overline{\psi}(x) \to \overline{\psi}'(x) = e^{+i\alpha}\overline{\psi}(x) \end{cases}, \quad \alpha \text{ constant}$$

Noether's theorem \rightarrow Conserved current:

$$\partial_{\mu}s^{\mu}(x) = 0, \ s^{\mu}(x) = q\overline{\psi}(x)\gamma^{\mu}\psi(x)$$

 \rightarrow Conserved charge:

$$Q = \int s^0(x) d^3 \mathbf{r} = const$$

Gauge Symmetry - III

Non invariant under local gauge transformation:

$$\begin{cases} \psi(x) \to \psi'(x) = e^{-iqf(x)}\psi(x) \\ \overline{\psi}(x) \to \overline{\psi}'(x) = e^{+iqf(x)}\overline{\psi}(x) \\ L_0 \to L_0' = L_0 + q\overline{\psi}(x)\gamma^{\mu}\psi(x)\partial_{\mu}f(x) \end{cases}$$

Define then a *covariant derivative* as:

$$D_{\mu}\psi(x) = \left[\partial_{\mu} + iqA_{\mu}(x)\right]\psi(x)$$

where, upon the previous local gauge transformation:

$$A_{\mu}(x) \rightarrow A_{\mu}(x) = A_{\mu}(x) + \partial_{\mu}f(x)$$

Then the Lagrangian:

$$L = \overline{\psi}(x) (i\gamma^{\mu} D_{\mu} - m) \psi(x) = L_0 - q \overline{\psi}(x) \gamma^{\mu} \psi(x) A_{\mu}(x)$$

is invariant

L contains an *interaction* term
$$\left(\leftarrow j^{\mu}A_{\mu} \right)$$

Gauge Symmetry - IV

Consider a single family of massless leptons: $L_{0} = i\overline{\psi}(x)\gamma^{\mu}\partial_{\mu}\psi(x) + i\overline{\psi}_{\nu}(x)\gamma^{\mu}\partial_{\mu}\psi_{\nu}(x)$ Chiral spinors:

$$\psi^{L}(x) = P_{L}\psi(x) = \frac{1}{2}(1 - \gamma_{5})\psi(x)$$

$$\psi^{R}(x) = P_{R}\psi(x) = \frac{1}{2}(1 + \gamma_{5})\psi(x)$$

$$\rightarrow L_{0} = i\overline{\psi}^{L}(x)\gamma^{\mu}\partial_{\mu}\psi^{L}(x) + i\overline{\psi}_{\nu}^{L}(x)\gamma^{\mu}\partial_{\mu}\psi_{\nu}^{L}(x)$$

$$+i\overline{\psi}^{R}(x)\gamma^{\mu}\partial_{\mu}\psi^{R}(x) + i\overline{\psi}_{\nu}^{R}(x)\gamma^{\mu}\partial_{\mu}\psi_{\nu}^{R}(x)$$

Charged current: Connecting two leptons with $\Delta Q = \pm 1$ To encode this into a symmetry scheme, define the doublet:

$$\Psi^{L}(x) = \begin{pmatrix} \psi_{\nu}^{L}(x) \\ \psi^{L}(x) \end{pmatrix}, \overline{\Psi}^{L}(x) = \begin{pmatrix} \overline{\psi}_{\nu}^{L}(x) & \overline{\psi}^{L}(x) \end{pmatrix}$$
$$\rightarrow L_{0} = i\overline{\Psi}^{L}(x)\gamma^{\mu}\partial_{\mu}\Psi^{L}(x) + i\overline{\psi}^{R}(x)\gamma^{\mu}\partial_{\mu}\psi^{R}(x) + i\overline{\psi}_{\nu}^{R}(x)\gamma^{\mu}\partial_{\mu}\psi_{\nu}^{R}(x)$$

Gauge Symmetry - V

Suppose the *L*-doublet realizes the fundamental representation of a *SU*(2) (*gauge*) symmetry of the weak interaction, exactly as *U*(1) is the (gauge) symmetry of QED Then *L*-spinors will transform $\Psi^{L}(x) \rightarrow \Psi^{L'}(x) = U(\alpha)\Psi^{L}(x) = \exp[i\alpha_{j}\tau_{j}/2]\Psi^{L}(x)$ $\overline{\Psi}^{L}(x) \rightarrow \overline{\Psi}^{L'}(x) = \overline{\Psi}^{L}(x)U^{\dagger}(\alpha) = \overline{\Psi}^{L}(x)\exp[-i\alpha_{j}\tau_{j}/2]$

 $\alpha_{1}, \alpha_{2}, \alpha_{3} \quad \text{3 continuous, real parameters} \\ \tau_{1}, \tau_{2}, \tau_{3} \quad \text{Pauli matrices} \\ \left[\text{Reminder} : \left[\tau_{i}, \tau_{j} \right] = 2i\varepsilon_{ijk} \tau_{k} \right] \end{aligned}$

Also take *R*-spinors as *SU*(2) singlets: $\psi^{R}(x) \rightarrow \psi^{R'}(x) = \psi^{R}(x), \psi^{R}_{\nu}(x) \rightarrow \psi^{R'}_{\nu}(x) = \psi^{R}_{\nu}(x)$ $\overline{\psi}^{R}(x) \rightarrow \overline{\psi}^{R'}(x) = \overline{\psi}^{R}(x), \overline{\psi}^{R}_{\nu}(x) \rightarrow \overline{\psi}^{R'}_{\nu}(x) = \overline{\psi}^{R}_{\nu}(x)$

Gauge Symmetry - VI

According to Noether's theorem :

Expect conserved current after L invariance under infinitesimal SU(2) transformations :

$$\Psi^{L}(x) \to \Psi^{L}'(x) = \left(1 + i \alpha_{j} \tau_{j}/2\right) \Psi^{L}(x)$$

$$\overline{\Psi}^{L}(x) \to \overline{\Psi}^{L}'(x) = \overline{\Psi}^{L}(x) \left(1 - i \alpha_{j} \tau_{j}/2\right)$$

 \rightarrow Identify 3 weak isospin, conserved currents / charges:

$$\begin{aligned} J_{i}^{\mu}(x) &= \frac{1}{2} \overline{\Psi}^{L}(x) \gamma^{\mu} \tau_{i} \Psi^{L}(x) \\ I_{i}^{W} &= \int d^{3} \mathbf{x} J_{i}^{0}(x) = \int \frac{1}{2} \Psi^{L\dagger}(x) \tau_{i} \Psi^{L}(x) \\ \text{Make 2 non - Hermitian, linear combinations:} \\ J^{\mu}(x) &= 2 \Big[J_{1}^{\mu}(x) - i J_{2}^{\mu}(x) \Big] = \Big[\overline{\Psi}^{L}(x) \gamma^{\mu} \tau_{1} \Psi^{L}(x) - i \overline{\Psi}^{L}(x) \gamma^{\mu} \tau_{2} \Psi^{L}(x) \Big] \\ J^{\mu\dagger}(x) &= 2 \Big[J_{1}^{\mu}(x) + i J_{2}^{\mu}(x) \Big] = \Big[\overline{\Psi}^{L}(x) \gamma^{\mu} \tau_{1} \Psi^{L}(x) + i \overline{\Psi}^{L}(x) \gamma^{\mu} \tau_{2} \Psi^{L}(x) \Big] \end{aligned}$$

(x)

Gauge Symmetry - VII

Remember:

$$\Psi^{L}(x) = \begin{pmatrix} \psi_{\nu}^{L}(x) \\ \psi^{L}(x) \end{pmatrix}, \overline{\Psi}^{L}(x) = \begin{pmatrix} \overline{\psi}_{\nu}^{L}(x) & \overline{\psi}^{L}(x) \end{pmatrix}$$

Then:

$$J_{1}(x) = \overline{\Psi}^{L}(x)\gamma^{\mu}\tau_{1}\Psi^{L}(x) = \left(\overline{\psi}_{\nu}^{L}(x) \quad \overline{\psi}^{L}(x)\right)\gamma^{\mu} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} \psi_{\nu}^{L}(x) \\ \psi^{L}(x) \end{pmatrix}$$

$$= \left(\overline{\psi}_{\nu}^{L}(x) \quad \overline{\psi}^{L}(x)\right)\gamma^{\mu} \begin{pmatrix} \psi^{L}(x) \\ \psi_{\nu}^{L}(x) \end{pmatrix}$$

$$= \overline{\psi}_{\nu}^{L}(x)\gamma^{\mu}\psi^{L}(x) + \overline{\psi}^{L}(x)\gamma^{\mu}\psi_{\nu}^{L}(x)$$

$$iJ_{2}(x) = i\overline{\Psi}^{L}(x)\gamma^{\mu}\tau_{2}\Psi^{L}(x) = i\left(\overline{\psi}_{\nu}^{L}(x) \quad \overline{\psi}^{L}(x)\right)\gamma^{\mu} \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \begin{pmatrix} \psi_{\nu}^{L}(x) \\ \psi^{L}(x) \end{pmatrix}$$

$$= \overline{\psi}_{\nu}^{L}(x)\gamma^{\mu}\psi^{L}(x) - \overline{\psi}^{L}(x)\gamma^{\mu}\psi_{\nu}^{L}(x)$$
Therefore:

 $\begin{cases} J^{\mu}(x) = 2\overline{\psi}^{L}(x)\gamma^{\mu}\psi^{L}(x) \\ J^{\mu\dagger}(x) = 2\overline{\psi}^{L}(x)\gamma^{\mu}\psi^{L}(x) \end{cases} : \text{Just our weak charged currents} \end{cases}$

E.Menichetti - Universita' di Torino

Gauge Symmetry - VIII

$$\begin{split} J_{3}^{\mu} &= \frac{1}{2} \overline{\Psi}^{L}(x) \gamma^{\mu} \tau_{3} \Psi^{L}(x) \\ \overline{\Psi}^{L}(x) \gamma^{\mu} \tau_{3} \Psi^{L}(x) &= \left(\overline{\psi}_{\nu}^{L}(x) \quad \overline{\psi}^{L}(x) \right) \gamma^{\mu} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} \psi_{\nu}^{L}(x) \\ \psi^{L}(x) \end{pmatrix} \\ &\to \overline{\Psi}^{L}(x) \gamma^{\mu} \tau_{3} \Psi^{L}(x) &= \left(\overline{\psi}_{\nu}^{L}(x) \quad \overline{\psi}^{L}(x) \right) \gamma^{\mu} \begin{pmatrix} \psi_{\nu}^{L}(x) \\ -\psi^{L}(x) \end{pmatrix} \\ &\to J_{3}^{\mu} &= \frac{1}{2} \left[\overline{\psi}_{\nu}^{L}(x) \gamma^{\mu} \psi_{\nu}^{L}(x) - \overline{\psi}^{L}(x) \gamma^{\mu} \psi^{L}(x) \right] \end{split}$$

Neutral (as opposed to charged) current

Observe:

2nd term is actually part of the electromagnetic current, up to a constant factor

$$J_{EM}^{\mu} = -e\overline{\psi}(x)\gamma^{\mu}\psi(x) = -e\left[\overline{\psi}^{L}(x)\gamma^{\mu}\psi^{L}(x) + \overline{\psi}^{R}(x)\gamma^{\mu}\psi^{R}(x)\right]$$

Might be possible to unify EM and weak interactions. But: Count 3 weak isospin + 1 electromagnetic currents = 2 charged + 2 neutral \rightarrow Unified symmetry group must be larger that SU(2), which has only 3 parameters

Gauge Symmetry - IX

Early models (between '50s and '60s...):

Neutral current \equiv 3rd weak isospin current

Symmetry group is $SU(2)_L \times U(1)_Q$

 $SU(2)_L$ (Non Abelian) symmetry group of weak interactions of *L*-fermions $U(1)_O$ (Abelian) symmetry group of QED

Then:

Neutral current has same V-A structure of charged current (Wrong: When finally observed, neutral current was found \neq V-A)

Weak and Electromagnetic interactions stay independent (Wrong: At high energy, proofs of unification easily found)

Gauge Symmetry - X

Rather assume the symmetry group of (unified) Electroweak interaction is

$SU(2)_L \times U(1)_Y$

where *Y* is a new observable called *weak hypercharge*

$$J_Y^{\mu} = \frac{1}{e} J_{EM}^{\mu} - J_3^{\mu} = -\overline{\psi}(x) \gamma^{\mu} \psi(x) - \frac{1}{2} \left[\overline{\psi}_{\nu}{}^{L}(x) \gamma^{\mu} \psi_{\nu}{}^{L}(x) - \overline{\psi}^{L}(x) \gamma^{\mu} \psi^{L}(x) \right]$$

$$\rightarrow J_Y^{\mu} = \frac{1}{2} \overline{\psi}^{L}(x) \gamma^{\mu} \psi^{L}(x) - \frac{1}{2} \overline{\psi}_{\nu}{}^{L}(x) \gamma^{\mu} \psi_{\nu}{}^{L}(x) - \overline{\psi}^{R}(x) \gamma^{\mu} \psi^{R}(x)$$

 \rightarrow Conserved charge:

$$Y_W = \int d^3 \mathbf{x} J_Y^0(x) = \frac{Q}{e} - I_3^W$$

Fermion EW quantum numbers: Defined by I, I_3, Y

Different for different chiralities!

Gauge Symmetry - XI

Find the EW quantum numbers of (chiral) leptons:

$$\begin{split} Y_{W} &= 2(Q - I_{3}) \\ I_{3}^{W} \left| l^{-}, L \right\rangle = -\frac{1}{2} \left| l^{-}, L \right\rangle \quad Y_{W} \left| l^{-}, L \right\rangle = (-1) \left| l^{-}, L \right\rangle \\ I_{3}^{W} \left| \nu_{l}, L \right\rangle = +\frac{1}{2} \left| \nu_{l}, L \right\rangle \quad Y_{W} \left| \nu_{l}, L \right\rangle = (-1) \left| \nu_{l}, L \right\rangle \\ I_{3}^{W} \left| l^{-}, R \right\rangle = 0 \qquad Y_{W} \left| l^{-}, R \right\rangle = (-2) \left| l^{-}, R \right\rangle \\ I_{3}^{W} \left| \nu_{l}, R \right\rangle = 0 \qquad Y_{W} \left| \nu_{l}, R \right\rangle = 0 \left| \nu_{l}, R \right\rangle \end{split}$$

Gauge Symmetry - XII

Extend to *local* gauge transformations

First SU(2) gauge transformations: Similar to QCD

L-doublet

 $\Psi^{L}(x) \to \Psi^{L'}(x) = U(\alpha)\Psi^{L}(x) = \exp\left[ig\omega_{j}(x)\tau_{j}/2\right]\Psi^{L}(x)$ $\overline{\Psi}^{L}(x) \to \overline{\Psi}^{L'}(x) = \overline{\Psi}^{L}(x)U^{\dagger}(\alpha) = \overline{\Psi}^{L}(x)\exp\left[-ig\omega_{j}(x)\tau_{j}/2\right]$ R - singlet $\psi^{R}(x) \to \psi^{R'}(x) = \psi^{R}(x), \psi^{R}_{\nu}(x) \to \psi^{R'}_{\nu}(x) = \psi^{R}_{\nu}(x)$ $\overline{\psi}^{R}(x) \to \overline{\psi}^{R'}(x) = \overline{\psi}^{R}(x), \overline{\psi}^{R}_{\nu}(x) \to \overline{\psi}^{R'}_{\nu}(x) = \overline{\psi}^{R}_{\nu}(x)$

 $\omega_j(x)$: 3 real parameters, functions of (\mathbf{r}, t)

As for QCD: L_0 not invariant

$$L_{0} \rightarrow L_{0}' = L_{0} + \delta L_{0} = L_{0} - \frac{1}{2} g \overline{\Psi}^{L}(x) \tau_{j} \gamma_{\mu} \partial^{\mu} \omega_{j}(x) \Psi^{L}(x)$$

Gauge Symmetry - XIII

 \rightarrow Define a covariant derivative for the doublet:

$$\partial^{\mu}\Psi^{L}(x) \rightarrow D^{\mu}\Psi^{L}(x) = \left[\partial^{\mu} + i\frac{g}{2}\tau_{j}W^{\mu}_{j}(x)\right]\Psi^{L}(x)$$

 W_i^{μ} : triplet of (charged, massless), gluon – like vector fields

Requiring suitable transformation rules: [Repeated indexes summed, ω_i infinitesimal]

$$W_{j}^{\mu}(x) \rightarrow W_{j}^{\mu}'(x) = W_{j}^{\mu}(x) - \partial^{\mu}\omega_{j}(x) - g\varepsilon_{jik}\omega_{i}(x)W_{k}^{\mu}(x)$$

$$\rightarrow L \text{ invariant}$$

Gauge Symmetry - XIV

Now weak hypercharge U(1) gauge transformations: Similar to QED

$$\psi(x) \to \psi'(x) = e^{-ig'Yf(x)}\psi(x)$$

- $\overline{\psi}(x) \to \overline{\psi}'(x) = \overline{\psi}(x) e^{ig'Yf(x)}$
- \rightarrow Define a covariant derivative:

 $\partial^{\mu}\psi(x) \rightarrow D^{\mu}\psi(x) = \left[\partial^{\mu} + ig'B^{\mu}(x)\right]\psi(x)$

 B^{μ} : Neutral, massless photon – like vector field g': New coupling constant

$$B^{\mu}(x) \rightarrow B^{\mu}'(x) = B^{\mu}(x) - \partial^{\mu}f(x)$$

 $\rightarrow L$ invariant

Gauge Symmetry - XV

Collecting all pieces together:

$$\begin{split} L &= i \Big[\overline{\Psi}^{L} \left(x \right) \gamma_{\mu} D^{\mu} \Psi^{L} \left(x \right) + \overline{\psi}^{R} \left(x \right) \gamma_{\mu} D^{\mu} \psi^{R} \left(x \right) + \overline{\psi}^{R} \left(x \right) \gamma_{\mu} D^{\mu} \psi^{R}_{\nu} \left(x \right) \Big] \\ D^{\mu} \Psi^{L} \left(x \right) &= \Big[\partial^{\mu} + i \frac{g}{2} \tau_{j} W^{\mu}_{j} \left(x \right) - i \frac{g'}{2} B^{\mu} \left(x \right) \Big] \Psi^{L} \left(x \right) \\ D^{\mu} \psi^{R}_{\nu} \left(x \right) &= \Big[\partial^{\mu} - i \frac{g'}{2} B^{\mu} \left(x \right) \Big] \psi^{R} \left(x \right) \\ D^{\mu} \psi^{R}_{\nu} \left(x \right) &= \partial^{\mu} \psi^{R}_{\nu} \left(x \right) \end{split}$$

Write it as:

 $L = L_0 + L_I$ $L_I = -gJ_1^{\mu}(x)W_{1\mu} - gJ_2^{\mu}(x)W_{2\mu} - gJ_3^{\mu}(x)W_{3\mu} - g'J_Y^{\mu}(x)B_{\mu}(x)$

68

Gauge Symmetry - XVI

To understand the meaning of the interaction terms : Re – write the interaction part

Define

$$W_{\mu}(x) = \frac{1}{\sqrt{2}} \left[W_{1\mu}(x) - iW_{2\mu}(x) \right]$$
$$W_{\mu}^{\dagger}(x) = \frac{1}{\sqrt{2}} \left[W_{1\mu}(x) + iW_{2\mu}(x) \right]$$

And get for the first 2 terms:

$$\rightarrow L_{I-ch} = -\frac{g}{2\sqrt{2}} \left[J^{\mu\dagger}(x) W_{\mu}(x) + J^{\mu}(x) W_{\mu}^{\dagger}(x) \right]$$

Charged current interaction of L – fermions

Gauge Symmetry - XVII

Define:

$$W_{3\mu}(x) = \cos \theta_W Z_{\mu}(x) + \sin \theta_W A_{\mu}(x)$$
$$B_{\mu}(x) = -\sin \theta_W Z_{\mu}(x) + \cos \theta_W A_{\mu}(x)$$

Reminder:

$$J_{Y}^{\mu}(x) = \frac{1}{e} J_{EM}^{\mu}(x) - J_{3}^{\mu}(x)$$

$$\rightarrow \begin{cases} -g' J_{Y}^{\mu}(x) B_{\mu}(x) = -g' \left[\frac{1}{e} J_{EM}^{\mu}(x) - J_{3}^{\mu}(x) \right] \left[-\sin \theta_{W} Z_{\mu}(x) + \cos \theta_{W} A_{\mu}(x) \right] \\ -g J_{3}^{\mu}(x) W_{3\mu} = -g J_{3}^{\mu}(x) \left[\cos \theta_{W} Z_{\mu}(x) + \sin \theta_{W} A_{\mu}(x) \right] \end{cases}$$

 \rightarrow Remaining terms:

$$-J_{EM}^{\mu}(x)\frac{g'}{e}\left[-\sin\theta_{W}Z_{\mu}(x)+\cos\theta_{W}A_{\mu}(x)\right]+\\-J_{3}^{\mu}(x)\left\{g\left[\cos\theta_{W}Z_{\mu}(x)+\sin\theta_{W}A_{\mu}(x)\right]+g'\left[-\sin\theta_{W}Z_{\mu}(x)+\cos\theta_{W}A_{\mu}(x)\right]\right\}$$

Gauge Symmetry - XVIII

Most simple way of unifying the EM and weak interaction : Require this condition on g', θ_w constants

 $g\sin\theta_{W} = g'\cos\theta_{W} = e$

and contemplate the miracle:

$$L_{I} = -J_{EM}^{\mu}(x)A_{\mu} - \frac{g}{2\sqrt{2}} \left[J^{\mu\dagger}(x)W_{\mu} + J^{\mu}(x)W_{\mu}^{\dagger} \right] - \frac{g}{\cos\theta_{W}} \left[J_{3}^{\mu}(x) - \sin^{2}\theta_{W} \frac{J_{EM}^{\mu}}{e}(x) \right] Z_{\mu}(x)$$

Electromagnetic interaction Charged current weak interaction Neutral current weak interaction

Gauge Symmetry - XIX

As for *QED*: Additional terms required in order to account for: *Energy, Momentum, Angular Momentum* carried over by the fields

Weak Hypercharge field:

 $-\frac{1}{4}B_{\mu\nu}(x)B^{\mu\nu}(x)$ $B^{\mu\nu}(x) = \partial^{\nu}B^{\mu}(x) - \partial^{\mu}B^{\nu}(x)$ Similar to *QED*: Abelian symmetry *U*(1)

Weak Isospin fields:

$$-\frac{1}{4}\sum_{i=1}^{3}G^{(i)}_{\mu\nu}(x)G^{(i)\mu\nu}(x)$$

$$G^{(i)\mu\nu}(x) = \underbrace{\partial^{\nu}W^{(i)\mu}(x) - \partial^{\mu}W^{(i)\nu}(x)}_{F^{(i)\mu\nu}(x)} + g\sum_{i,j=1}^{3}\varepsilon_{ijk}W^{(j)\mu}(x)W^{(k)\nu}(x)$$

Similar to QCD: Non-Abelian symmetry $SU(2)_L$
Gauge Symmetry - XX

Gauge Boson Lagrangian:

$$L^{B} = -\frac{1}{4} B_{\mu\nu}(x) B^{\mu\nu}(x) - \frac{1}{4} \sum_{i=1}^{3} G^{(i)}_{\mu\nu}(x) G^{(i)\mu\nu}(x)$$

$$\rightarrow L^{B} = -\frac{1}{4} B_{\mu\nu}(x) B^{\mu\nu}(x) - \frac{1}{4} \sum_{i=1}^{3} F^{(i)}_{\mu\nu}(x) F^{(i)\mu\nu}(x)$$

$$+ g \sum_{i,j,k=1}^{3} \varepsilon_{ijk} W^{(j)\mu}(x) W^{(k)\nu}(x) \partial^{\mu} W^{(k)\nu}(x) - \frac{1}{4} \sum_{i,j,k,l,m=1}^{3} \varepsilon_{ijk} \varepsilon_{ilm} g^{2} W^{(j)\mu}(x) W^{(k)\nu}(x) W^{(l)}_{\mu}(x) W^{(m)}_{\nu}$$

 $L_0^B =$ Free term

 L_{SI}^{B} = Self-Interaction term

Gauge Symmetry - XXI

Free term: Rewrite using $A^{\mu}, W^{\mu}, W^{\dagger \mu}, Z^{\mu}$:

$$L_{0}^{B} = -\frac{1}{4} F_{\mu\nu}(x) F^{\mu\nu}(x) - \frac{1}{2} F^{W}_{\mu\nu}(x) F^{W^{\dagger}\mu\nu}(x) - \frac{1}{4} Z_{\mu\nu}(x) Z^{\mu\nu}(x)$$

Field tensors:

$$F_{\mu\nu}(x) = \partial_{\mu}A_{\nu}(x) - \partial_{\nu}A_{\mu}(x) \qquad \text{Coupled to EM current}$$

$$F_{\mu\nu}^{W}(x) = \partial_{\mu}W_{\nu}(x) - \partial_{\nu}W_{\mu}(x)$$

$$F_{\mu\nu}^{W\dagger\mu\nu}(x) = \partial^{\mu}W^{\dagger\nu}(x) - \partial^{\nu}W^{\dagger\mu}(x) \qquad \text{Coupled to Charged current}$$

$$Z_{\mu\nu}^{\mu\nu}(x) = \partial^{\mu}Z^{\nu}(x) - \partial^{\nu}Z^{\mu}(x) \qquad \text{Coupled to Neutral current}$$

Self-Interaction term: Similar to 3- and 4-gluons terms of QCD

E.Menichetti - Universita' di Torino

Gauge Symmetry - XXII

Massless leptons & gauge bosons not physical: Mass must be there

But: Putting 'by hand' a mass term in L would spoil gauge invariance

Gauge bosons:

$$m_W^2 W_\mu^\dagger W^\mu + \frac{1}{2} m_Z^2 Z_\mu Z^\mu$$

Take *W* as an example:

 $W_i^{\mu} \to W_i^{\mu} - \partial^{\mu} \omega_i(x) - g \varepsilon_{ijk} \omega_j(x) W_k^{\mu}$ infinitesimal parameters

Then:

 $m_{W}^{2}W_{\mu}^{\dagger}W^{\mu} \to m_{W}^{2}\left(W_{i}^{\dagger\mu} - \partial^{\mu}\omega_{i}(x) - g\varepsilon_{ijk}\omega_{j}(x)W_{k}^{\dagger\mu}\right)\left(W_{i}^{\mu} - \partial^{\mu}\omega_{i}(x) - g\varepsilon_{ijk}\omega_{j}(x)W_{k}^{\mu}\right)$ $\neq m_{W}^{2}W_{\mu}^{\dagger}W^{\mu}$

Gauge Symmetry - XXIII

Leptons :

 $-m\overline{\psi}(x)\psi(x)$

Write in terms of chiral parts :

$$-m\overline{\psi}(x)\psi(x) = -m\overline{\psi}(x)\left(\underbrace{P_{R}+P_{L}}_{=1}\right)\psi(x)$$

$$P_{R} = \frac{1+\gamma_{5}}{2}, \quad P_{L} = \frac{1-\gamma_{5}}{2}$$

$$\rightarrow -m\overline{\psi}(x)\left(\frac{1+\gamma_{5}}{2} + \frac{1-\gamma_{5}}{2}\right)\psi(x) = -m\overline{\psi}(x)\left(\left(\frac{1+\gamma_{5}}{2}\right)^{2} + \left(\frac{1-\gamma_{5}}{2}\right)^{2}\right)\psi(x)$$

$$\rightarrow -m\overline{\psi}(x)\left(\frac{1+\gamma_{5}}{2} + \frac{1-\gamma_{5}}{2}\right)\psi(x) = -m\overline{\psi}_{L}(x)\psi_{R}(x) - m\overline{\psi}_{R}(x)\psi_{L}(x)$$

Not invariant under SU(2):

- L, R chiral parts live in different SU(2) representations
- \rightarrow Different gauge transformations
- \rightarrow Mass term not gauge invariant

Gauge Symmetry - XXIV

Bottom line: Any mass term not invariant

Glashow model (1961): Put mass by hand \rightarrow Gauge invariance lost, back to naive IVB

Finally, discover a subtle mechanism to give mass to physical states, without spoiling gauge invariance:

Spontaneous Symmetry Breaking

Broad phenomenology, also remotely rooted in classical physics

SSB - I

Symmetries: Frequently approximate \rightarrow Broken Breaking modes:

(a) Explicit breaking

 $H = H_0 + H_b$

- H_0 invariant
- H_b non-invariant

Ex: Hydrogen atom in a magnetic field **B** $H_0 = \frac{p^2}{2m} - \frac{Ze^2}{r}$ rotationally invariant $H_b = -\mathbf{\mu} \cdot \mathbf{B}$ invariant wrt rotations around **B** $\rightarrow H_0$ degeneracies removed by H_b (b) Spontaneous breaking

H symmetric, ground state non symmetric

Ex: Ferromagnetism $T > T_c$: $\mathbf{M} = 0 \rightarrow$ Dipoles randomly oriented \rightarrow Rotational symmetry

 $T < T_c$: $\mathbf{M} \neq 0 \rightarrow$ Dipoles pick some direction $\rightarrow H$ degeneracies not removed Ground state *degenerate*

SSB - II

SSB - III

Take a first year classical mechanics exercise: Bead sliding frictionless along a spinning hoop Find equilibrium angle

 $N = m\omega^2 R$ $N_y = N\cos\theta = m\omega^2 R\cos\theta = mg$ $\rightarrow \cos\theta_0 = \frac{g}{\omega^2 R}$

Funny observation:

Critical frequency: $\cos \theta_0 = 1 = \frac{g}{\omega_0^2 R}$ For $\omega < \omega_0$: Different solution $\theta_1 = 0$ E.Menichetti - Universita' di Torino

SSB - IV

$$T = \frac{1}{2}mv^{2} = \frac{1}{2}m\left(R^{2}\dot{\theta}^{2} + \omega^{2}R^{2}\sin^{2}\theta\right)$$

$$V = mgy = mgR(1 - \cos\theta)$$

$$L = T - V = \frac{1}{2}mR^{2}\dot{\theta}^{2} + \frac{1}{2}m\omega^{2}R^{2}\sin^{2}\theta - mgR(1 - \cos\theta)$$

$$L = \frac{1}{2}mR^{2}\dot{\theta}^{2} - V_{eff}$$

Define effective potential, including centrifugal term :

$$V_{eff} \equiv -\frac{1}{2}m\omega^2 R^2 \sin^2\theta + mgR(1 - \cos\theta) = mgR\left[(1 - \cos\theta) - \frac{\omega^2 R \sin^2\theta}{2g}\right]$$

Define reduced effective potential, β parameter :

$$U \equiv \frac{V_{eff}}{mgR} = (1 - \cos\theta) - \frac{1}{2} \frac{\omega^2 R}{g} \sin^2 \theta$$

$$\beta \equiv \frac{\omega^2 R}{g}$$

$$\rightarrow U = (1 - \cos\theta) - \frac{1}{2} \beta \sin^2 \theta = 2\sin^2 \frac{\theta}{2} - \frac{\beta}{2} (1 - \cos^2 \theta) = 2\sin^2 \frac{\theta}{2} \left(1 - \beta \cos^2 \frac{\theta}{2}\right)$$

SSB - V

Find equilibrium angles, identify stable and unstable :

 $\frac{\partial U}{\partial \theta} = \sin \theta \left(1 - \beta \cos \theta \right) = 0$ $\rightarrow \begin{cases} \cos \theta_0 = \frac{1}{\beta} \\ \theta_1 = 0 \end{cases}$ $\frac{\partial^2 U}{\partial \theta^2} = \cos \theta - \beta \cos 2\theta$ $\begin{array}{c} \left. \frac{\partial^2 U}{\partial \theta^2} \right|_{\theta = \theta_1} = 1 - \beta & \text{stable for } \beta < 1 \\ \left. \frac{\partial^2 U}{\partial \theta^2} \right|_{\theta = \theta_0} = \beta - \frac{1}{\beta} & \text{stable for } \beta > 1 \end{array}$

SSB - VI

Showing how shape of potential curve, equilibrium angle change with β

a) $\beta < l \rightarrow l$ eq. angle

 $\beta > 1 \rightarrow 2$ eq. angles: Cannot tell which one will be found Reflection symmetry of *V* lost (\leftarrow spontaneously broken) in the solution of eq. of motion

b) Small oscillations around equilibrium angle:

 $\beta < l \rightarrow OK$ Symmetrical wrt origin

SSB - VII

Quantum Mechanics: Simple system with 1 degree of freedom:

Expand around $\pm \eta$ to quadratic terms only: Harmonic oscillator

$$|+\rangle$$
 solution, centered on $+\eta$
 $|-\rangle$ solution centered on $-\eta$

Naively:

Expect two degenerate ground states, both with undefined parity

SSB - VIII

But:

H not diagonal in this basis $\langle +|H|+\rangle = \langle -|H|-\rangle = a, \langle +|H|-\rangle = \langle -|H|+\rangle = b$

Physical reason : Tunneling through central barrier

 $\rightarrow \text{Diagonalize, find:} \\ \text{Eigenstates} \qquad \text{Energies} \\ |S\rangle = |+\rangle + |-\rangle \qquad a+b \\ |A\rangle = |+\rangle - |-\rangle \qquad a-b \\ \end{cases}$

 $|S\rangle, |A\rangle$: Parity eigenstates \rightarrow Degeneracy removed: Just 1 ground state $E_{ground} = a - |b|$

SSB - IX

Field theory: Real scalar field

$$L = \frac{1}{2} \left(\partial_{\mu} \phi \right)^2 - V(\phi)$$
$$V(\phi) = \frac{1}{2} \mu^2 \phi^2 + \frac{1}{4} \lambda^2 \phi^4, \lambda > 0$$

Reflection symmetric: $V(\varphi) = V(-\varphi)$ V Minima:

$$\mu^2 > 0: \phi = 0$$
$$\mu^2 < 0: \phi = \nu = \pm \sqrt{-\frac{\mu^2}{\lambda}}$$

V Minima: Defining *vacuum* state (\leftarrow Cannot have less energy) $\mu^2 > 0$: Vacuum (non degenerate) = Zero field $\mu^2 < 0$: Vacuum (degenerate!) = $\nu \neq$ Zero field !! ν = Vacuum Expectation Value (VEV) of ϕ

SSB - X

Choose vacuum state:

$$\langle \phi(x) \rangle_0 = v$$
 Spontaneous Symmetry Breakdown
Define: $\phi(x) = v + \eta(x)$
 $\rightarrow L = \frac{1}{2} (\partial_\mu \eta)^2 - \lambda \left(v^2 \eta^2 - v \eta^3 - \frac{1}{4} \eta^4 \right) = \left[\frac{1}{2} (\partial_\mu \eta)^2 - \lambda v^2 \eta^2 \right] - \lambda v \eta^3 - \frac{1}{4} \lambda \eta^4$
 $L = \frac{1}{2} (\partial_\mu \eta)^2 - \lambda v^2 \eta^2 + \text{higher powers of } \eta$
 \rightarrow Free Klein-Gordon equation \rightarrow Scalar quantum field
 $m^2 = 2\lambda v^2 \rightarrow m = \sqrt{-2\mu^2} > 0$
[Observe: $\mu^2 < 0 \rightarrow$ Imaginary mass in original $L!$]

KO: $L(\eta) \neq L(-\eta)$

Reflection symmetry spontaneously broken

SSB - XI

What makes the difference between a single degree of freedom system and a field?

1 degree of freedom: Vacuum not degenerate

 $\leftarrow Tunneling$

 ∞ degrees of freedom: Vacuum degenerate

 $\leftarrow \text{ Tunneling not effective}$

Indeed, it can be shown that:

 $A_{tunnel} \propto e^{-aV}, V$ system volume $\rightarrow A_{tunnel} \sim 0$ for a (infinite) field

SSB - XII

Field theory: Complex scalar field

$$\phi = \frac{1}{\sqrt{2}} (\phi_1 + i\phi_2), \phi^* = \frac{1}{\sqrt{2}} (\phi_1 - i\phi_2)$$

$$L = (\partial_\mu \phi) (\partial^\mu \phi)^* - V(\phi)$$

$$V(\phi) = \mu^2 \phi^* \phi + \lambda (\phi^* \phi)^2, \lambda > 0, \mu^2 < 0$$

$$U(1) \text{ symmetric: } \phi \to \phi' = e^{i\alpha} \phi$$
Observe: $U(1)$ continuous symmetry
$$V \text{ Minima:}$$

$$\mu^2 < 0: \phi_1^2 + \phi_2^2 = -\frac{\mu^2}{\lambda}$$

→ Vacuum infinitely degenerate Choose vacuum = (v, 0)→ U(1) symmetry *spontaneously broken*

SSB - XIII

Define:

$$\phi(x) = \frac{1}{\sqrt{2}} \left[\nu + \xi(x) + i\eta(x) \right]$$

$$L = \frac{1}{2} \left[\left(\partial_{\mu} \xi \right)^{2} + \left(\partial_{\mu} \eta \right)^{2} \right] + \mu^{2} \eta^{2} + \text{higher powers of } \eta$$

Free Klein-Gordon equations for (ξ, η)

But: "Kinetic energy" terms for both ξ , η ; Mass term only for η

 η field excitations: *massive* scalar particles

 \rightarrow ξ field excitations: *massless* scalar particles, aka *Goldstone Bosons*

Fall 2020

SSB - XIV

Summary:

SSB of a continuous, global symmetry $\rightarrow \infty$ degenerate vacuum states Symmetry generators transform any vacuum state into another one

 \rightarrow Do not annihilate the vacuum state

Indeed, for a non-degenerate vacuum: $\langle \phi \rangle_0$ Invariant under G

$$\to e^{i\alpha G} \left\langle \phi \right\rangle_0 \simeq \left(1 + i\alpha G \right) \left\langle \phi \right\rangle_0 = \left\langle \phi \right\rangle_0 \leftrightarrow G \left\langle \phi \right\rangle_0 = 0$$

 \rightarrow G does annihilate a non-degenerate vacuum]

For degenerate vacua: Goldstone Theorem n generators not annihilating the vacuum \rightarrow Appearance of n massless scalars Also called *Goldstone bosons*

This is actually very bad news for our primordial SM...

SSB - XV

Example from condensed matter physics: Ferromagnet

Interaction rotationally invariant

But, below Curie temperature

- \rightarrow Spontaneous magnetization in a random orientation
- \rightarrow Rotational symmetry lost
- \rightarrow Degenerate vacuum
- \rightarrow Goldstones

Non-relativistic version of massless

Spin waves \equiv Zero energy-gap *quasi - particles* (i.e. lattice excitation)

SSB - XVI

Would seem to definitely destroy our hint of a Standard Model:

3+1 massless gauge bosons, only one observed4 massless scalar bosons, none observed

But: Goldstone Theorem *can* be evaded

Local gauge invariance + SSB: Higgs mechanism

Simple, yet subtle way of giving mass to gauge bosons without spoiling gauge invariance (and renormalizability)

SSB - XVII

Example by Higgs :

U(1) gauge group, require *local* symmetry:

Gauge vector boson A_{μ} to be introduced, coupling to some current as usual Now: Add "sombrero" potential for a complex, scalar field $\phi = \phi_1 + i\phi_2$

$$L = \underbrace{\left[\left(\partial_{\mu} - ieA_{\mu}\right)\phi^{*}\right]\left[\left(\partial^{\mu} + ieA^{\mu}\right)\phi\right]}_{EM \text{ interaction of (charged) }\phi} - \frac{1}{4}F_{\mu\nu}F^{\mu\nu} - \mu^{2}\phi^{*}\phi - \lambda\left(\phi^{*}\phi\right)^{2} + \underbrace{\dots}_{Current-field interaction etc}$$

As found before:Degenerate vacuum state \rightarrow SSB picks as vacuum state (v,0) $\rightarrow \phi = v + \eta_1 + i\eta_2$

L written in terms of
$$\eta_1, \eta_2$$
:

Upon quantization, 2 scalar particles $\rightarrow m_1 = \sqrt{2\lambda v^2}, m_2 = 0$ Plugging $\phi = v + \eta_1 + i\eta_2$ into *L*:

$$L = \frac{1}{2} \left(\partial_{\mu} \eta_{1} \right) \left(\partial^{\mu} \eta_{1} \right) - \frac{1}{2} \underbrace{2 \lambda v^{2}}_{P_{1}} \eta_{1}^{2} + \frac{1}{2} \left(\partial_{\mu} \eta_{2} \right) \left(\partial^{\mu} \eta_{2} \right) + \underbrace{\frac{1}{2} \underbrace{\left(ev \right)^{2}}_{Massive vector!} A^{\mu} A_{\mu}}_{Massive vector!} - \frac{1}{4} F_{\mu\nu} F^{\mu\nu} + \underbrace{ev A^{\mu} \partial_{\mu} \eta_{2}}_{??} + \dots$$

etc

SSB - XVIII

Attempting to understand *L*:

Massive vector field A^{μ} + Massive scalar field η_1 + Massless scalar field η_2

Troubling term coupling A^{μ} and η_2

Use gauge invariance:

$$\begin{cases} \phi \to \phi' = e^{-ie\theta(x)}\phi \\ A^{\mu} \to A'^{\mu} = A^{\mu} + \partial_{\mu}\theta \end{cases}$$

Choose θ to make ϕ real: Then $\eta_2 \equiv 0 \quad (\leftarrow \text{Unitary gauge})$

$$\rightarrow L = \frac{1}{2} \left(\partial_{\mu} \eta_{1} \right) \left(\partial^{\mu} \eta_{1} \right) - \frac{1}{2} 2\lambda v^{2} \eta_{1}^{2} + \frac{1}{2} \underbrace{\left(ev \right)^{2}}_{Massive vector!} A^{\mu} A_{\mu} - \frac{1}{4} F_{\mu\nu} F^{\mu\nu} + \dots$$

Massive vector field A^{μ} + Massive scalar field η_1 Counting degrees of freedom: 2 + 1 + 1 = 3 + 1 $A_{\mu} = 0$ OK

Standard picture:

By effect of a smart gauge transformation, the massless vector field A_{μ} has eaten the Goldstone boson η_2 to become massive

SSB - XIX

Trying to dissipate some misunderstandings likely to sneak in: Mostly related to our naive perception of what is really a 'particle'

1) Where is the mass?

To identify mass terms in *L*: Not necessarily a trivial task

Key point: Particle content only meaningful in perturbative expansion

Example:
$$L = \left(\partial_{\mu}\phi\right) \left(\partial^{\mu}\phi\right)^* - \left(-\mu^2\phi^*\phi\right) - \lambda\left(\phi^*\phi\right)^2, \lambda > 0, \mu^2 > 0$$

 $-\mu^2 \rightarrow \text{Imaginary mass} \rightarrow \text{Nonsense} \rightarrow ???$

But: To use this form of *L* to extract Feynman rules, should expand around $|\phi| = 0$ Unstable extremum \rightarrow Can't make it

Rewrite by expanding around $\eta = 0: L = \frac{1}{2} (\partial_{\mu} \eta)^2 - \lambda \nu^2 \eta^2 + \cdots$

Stable extremum \rightarrow OK

 \rightarrow Particle content should be identified in this form

SSB - XX

2)What's so special in unitary gauge?

Nothing: L invariant under local gauge transformations,

including the one to unitary gauge:

 \rightarrow *L* describe the same physics before and after the gauge transofrmation But: Particle content much easier to extract in the unitary gauge

3) Disappearing Goldstones !?

Indeed: And re-appearing as extra degrees of freedom for massive gauge bosons See comment above on the tricky business of defining what is a particle...

4)What decides which vacuum is selected among the many? Not really relevant: Any choice yields identical results

5) Could we make it with the SM without SSB and all that complicated swapping of degrees of freedom?Actually no: SSB is an *intrinsic* feature of certain quantum systems

More on Higgs field and particle later (last part of the lectures)

Standard Model - I

Higgs mechanism fixes troublesome, massless gauge bosons in the unified EW interaction Boson counting:

Local gauge symmetry $SU(2)_L \otimes U(1)_Y \rightarrow 4$ vector bosons Will need 3 symmetries spontaneously broken to give mass to 3 weak bosons Photon *is* massless

Extend Abelian Higgs model to non-Abelian gauge symmetry: Introduce a doublet of complex, scalar fields:

 $\phi(x) = \begin{pmatrix} \phi^+(x) \\ \phi^0(x) \end{pmatrix}$ Assuming $Y_W = 1 \rightarrow \begin{cases} Q[\phi^+(x)] = +1 \\ Q[\phi^0(x)] = 0 \end{cases}$

Standard Model - II

$$SU(2)_{L} \otimes U(1) \text{ Gauge transformation of doublet:}$$

$$\phi \rightarrow \phi' = \exp\left\{-i\left[\frac{g}{2}\boldsymbol{a}\left(x\right)\cdot\boldsymbol{\tau} + \frac{g'}{2}y\theta\left(x\right)I\right]\right\}\phi$$

$$SU(2)_{L} \otimes U(1) \text{ Covariant derivative:}$$

$$D^{\mu} = \partial^{\mu} + i\left[\frac{g}{2}\boldsymbol{\tau}\cdot\mathbf{W}^{\mu} + \frac{g'}{2}yB^{\mu}\right]$$

$$\rightarrow \text{ Additional term to EW lagrangian:}$$

$$L_{H} = D_{\mu}\phi^{\dagger}D^{\mu}\phi - \mu^{2}\phi^{\dagger}\phi - \lambda\left(\phi^{\dagger}\phi\right)^{2}$$

Take $\mu^{2} < 0, \ \lambda > 0$:

$$\left|\phi\right|_{\min}^{2} = -\frac{\mu^{2}}{2\lambda} = \frac{v^{2}}{2} \rightarrow v = \sqrt{-\frac{\mu^{2}}{\lambda}}$$

Pick ground state (= vacuum) as

$$\left\langle\phi\right\rangle_{0} = \begin{pmatrix}0\\v\\\sqrt{2}\end{pmatrix} \rightarrow \text{ SSB of Electroweak gauge symmetry}$$

Standard Model - III

Goldstone boson: Associated with each generator not annihilating the vacuum Take generators of $SU(2)_L \otimes U(1)_Y$:

$$\begin{aligned} \tau_1 \langle \phi \rangle_0 &= \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} v \\ 0 \end{pmatrix} \neq 0 \\ \tau_2 \langle \phi \rangle_0 &= \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v \end{pmatrix} = -\frac{i}{\sqrt{2}} \begin{pmatrix} v \\ 0 \end{pmatrix} \neq 0 \\ \tau_3 \langle \phi \rangle_0 &= \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ -v \end{pmatrix} \neq 0 \\ Y \langle \phi \rangle_0 &= +1 \langle \phi \rangle_0 \neq 0 \\ \text{But: } Q \langle \phi \rangle_0 &= \frac{1}{2} (Y + \tau_3) \langle \phi \rangle_0 = 0 \\ \rightarrow \langle \phi \rangle_0 \colon U(1)_Q \text{ Invariant} \to U(1)_Q \text{ symmetry unbroken} \\ \to \text{Photon stays massless} \end{aligned}$$

Standard Model - IV

As before for the Higgs model, rewrite:

$$\phi = \frac{1}{\sqrt{2}} \begin{pmatrix} \sigma_1 + i\sigma_2 \\ v + \eta_1 + i\eta_2 \end{pmatrix}$$

$$\rightarrow V = -\frac{\mu^4}{4\lambda} + \lambda v^2 \eta_1^2 + \lambda v \eta_1 \left(\sigma_1^2 + \sigma_2^2 + \eta_1^2 + \eta_2^2\right) + \frac{\lambda}{4} \left(\sigma_1^2 + \sigma_2^2 + \eta_1^2 + \eta_2^2\right)^2$$

3 massless scalars: $\sigma_1, \sigma_2, \eta_2 \leftarrow$ The Goldstones
1 massive scalar: $\eta_1, m_{\eta_1} \equiv m_H = \sqrt{2\lambda v^2} \leftarrow$ The Higgs
Gauge transformation suitable to get rid of 3 Goldstones:
 $\phi \rightarrow \phi' = U\phi = U \frac{1}{\sqrt{2}} \begin{pmatrix} \sigma_1 + i\sigma_2 \\ v + \eta_1 + i\eta_2 \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v + \eta_1 \end{pmatrix}$

 $\rightarrow \begin{cases} SU(2)_L \text{ rotation of doublet to make it 'down'} \\ U(1)_Y \text{ re-phasing of doublet to make it real} \end{cases} (\leftarrow \text{Unitary gauge})$

Standard Model - V

Re-write gauge terms of L in the unitary gauge, in terms of the physical fields:

 $L_{R} + L_{H}$ $= -\frac{1}{4} F_{\mu\nu}(x) F^{\mu\nu}(x)$ Photon $-\frac{1}{2}F^{W}_{\mu\nu}(x)F^{W\dagger\mu\nu}(x)+\frac{1}{2}m_{W}^{2}W^{\dagger}_{\mu}W^{\mu} \quad W^{\pm} \text{ boson}$ $-\frac{1}{4}Z_{\mu\nu}(x)Z^{\mu\nu}(x)+\frac{1}{2}m_{Z}^{2}Z_{\mu}Z^{\mu}$ Z⁰ boson $+ (\partial_{\mu}\sigma)(\partial^{\mu}\sigma) - \frac{1}{2}m_{H}^{2}\sigma^{2}$ *H* Higgs boson $+L^{I}_{RR}+L^{I}_{HH}+L^{I}_{HR}$

102

Gauge-Higgs, Higgs self-, Gauge self-interactions

Standard Model - VI

Lepton masses: Different mechanism required

 \rightarrow Yukawa (scalar) coupling

Describing interaction between Dirac and scalar fields:

 $V \approx g \overline{\Psi} \phi \Psi$, Static limit:

$$V = -\frac{g}{4\pi} \frac{e^{-\mu r}}{r}$$

$$L_{HL} = -g_l \Big[\overline{\Psi}_l^L \Phi \psi_l^R + \overline{\psi}_l^R \Phi^\dagger \Psi_l^L \Big] - \underbrace{g_{\nu_l}}_{=0 \text{ for massless neutrino}} \Big[\overline{\Psi}_l^L \widetilde{\Phi} \psi_{\nu_l}^R + \overline{\psi}_{\nu_l}^R \widetilde{\Phi}^\dagger \Psi_l^L \Big], \quad \tilde{\Phi} = \begin{pmatrix} \phi_b^* \\ -\phi_a^* \end{pmatrix}$$

In the unitary gauge:

$$L_{HL} = -\frac{1}{v} m_l \overline{\psi}_l \psi_l \sigma - \frac{1}{v} m_{\nu_l} \overline{\psi}_{\nu_l} \psi_{\nu_l} \sigma$$

Lepton masses in terms of model parameters:

$$m_l = \frac{vg_l}{\sqrt{2}}, m_{\nu_l} = \frac{vg_{\nu_l}}{\sqrt{2}}$$

Standard Model - VII

Model parameters v, λ and θ_w :

 $v = \sqrt{-\frac{\mu^2}{\lambda}}$ $\lambda = ???$ $g \sin \theta_W = g' \cos \theta_W = e$

Finding the acquired mass of gauge bosons in terms of couplings and VEV of the Higgs field:

$$\begin{split} m_{W^{\pm}} &= \frac{g}{2} \sqrt{-\frac{\mu^2}{\lambda}} = \frac{gv}{2} \\ m_{Z^0} &= \frac{\sqrt{(g^2 + g'^2)v}}{2} \\ m_{\chi^0} &= \frac{\sqrt{(g^2 + g'^2)v}}{2} \\ m_{\chi} &= 0 \\ m_{H} &= \sqrt{-2\mu^2} = ??? \end{split}$$

Standard Model - VIII

Relating model parameters to measured constants $e, G_F, \sin \theta_W$:

$$g = \frac{e}{\sin \theta_{W}}, \ g' = \frac{e}{\cos \theta_{W}}$$

$$G_{F} = \frac{\sqrt{2}}{8} \left(\frac{g}{M_{W}}\right)^{2} \rightarrow \frac{8G_{F}}{\sqrt{2}} = \left(\frac{g}{M_{W}}\right)^{2} \rightarrow \frac{M_{W}}{g} = \sqrt{\frac{\sqrt{2}}{8G_{F}}}$$

$$\rightarrow M_{W} = \sqrt{\frac{\sqrt{2}g^{2}}{8G_{F}}} = \sqrt{\frac{\sqrt{2}e^{2}}{8G_{F}\sin^{2}\theta_{W}}} = \frac{37.3}{\sin \theta_{W}} \quad GeV$$

$$\rightarrow M_{Z} = \frac{M_{W}}{\cos \theta_{W}} = \frac{37.3}{\sin \theta_{W}\cos \theta_{W}} \quad GeV$$

$$v = \frac{2M_{W}}{g} = 2\sqrt{\frac{\sqrt{2}}{8G_{F}}} = \frac{1}{\sqrt{\sqrt{2}G_{F}}} \simeq 246 \ GeV \quad \text{VEV of the Higgs field}$$

$$\rightarrow \frac{v}{\sqrt{2}} = \frac{1}{\sqrt{\sqrt{2}G_{F}}} \frac{1}{\sqrt{2}} = \frac{1}{\sqrt{\sqrt{8}G_{F}}} \approx 174 \ GeV \rightarrow \left\langle \phi \right\rangle_{0} = \left(\frac{0}{\frac{v}{\sqrt{2}}}\right) \approx \left(\frac{0}{174 \ GeV}\right)$$

No clues on $\lambda \to No$ (direct)prediction of $M_H = \sqrt{2v^2\lambda}$

Standard Model - IX

Quite remarkably, get m_W, m_Z by measured constants:

$$\begin{cases} \alpha = \frac{1}{137.04} \\ G_F = 1.166 \ 10^{-5} \ GeV^{-2} \\ \sin^2 \theta_W = 0.23122 \\ \\ \rightarrow m_W = 77.5 \ GeV, m_Z = 88.4 \ GeV \end{cases}$$

Experimental values:

 $m_W = 80.40 \ GeV, m_Z = 90.19 \ GeV$

Difference originating from radiative corrections

Higgs:

$$m_H = \sqrt{-2\mu^2} = \sqrt{2\lambda v^2} \to ???$$

Standard Model - X

Lepton-Gauge Boson vertexes:

Fall 2020

Standard Model - XI

Gauge bosons self-interaction vertexes:

Standard Model - XII

Higgs vertexes:

Standard Model - XIII

Extension to 2nd, 3rd lepton family: Straightforward Will need 2+2 = 4 new parameters (Yukawa couplings)

'Minimal' Standard Model: Massless neutrinos $\rightarrow g_{\nu_i}^{(i)} = 0$

'Non Minimal' Standard Model:
Neutrino mixing (← Require massive neutrinos, mixing matrix):
Account for observed neutrino oscillations
May indicate physics beyond Standard Model

Extension to 3 quark families: Similar to leptons Will need 6 more parameters Will require CKM 'flavor rotation' (see later) Strong interaction effects Flavor physics

Standard Model - XIV

Fermion electroweak quantum numbers:

Generations			Quantum Numbers			
helicity	1.	2.	3.	Q	T_3	Y_W
L	$ \left(\begin{array}{c} \nu_e\\ e\end{array}\right)_L\\ \left(\begin{array}{c} u\\ d'\end{array}\right)_L $	$ \begin{pmatrix} \nu_{\mu} \\ \mu \end{pmatrix}_{L} $ $ \begin{pmatrix} c \\ s' \end{pmatrix}_{L} $	$ \begin{pmatrix} \nu_{\tau} \\ \tau \end{pmatrix}_{L} $ $ \begin{pmatrix} t \\ b' \end{pmatrix}_{L} $	$\begin{array}{c} 0 \\ -1 \\ 2/3 \\ -1/3 \end{array}$	1/2 - 1/2 1/2 - 1/2	$-1 \\ -1 \\ 1/3 \\ 1/3$
R	e_R u_R d_R	μ_R c_R s_R	$ au_R$ t_R b_R	-1 2/3 -1/3	0 0 0	-2 4/3 -2/3

Fall 2020

Standard Model - XV

Internal consistency of SM:

Reconsidering hypothetical, troublesome reaction

 $u \overline{
u} \longrightarrow W_L^+ W_L^-$

at very high energy

Polarization 4-vectors of longitudinally polarized Ws:

$$\varepsilon_{L}^{\mu}(p) = \frac{p^{\mu}}{m_{W}} + O\left(\frac{m_{W}}{p^{0}}\right) \sim \frac{p^{\mu}}{m_{W}}$$

Divergent term of matrix element:

Standard Model - XVI

Standard Model: Neutral Current \rightarrow Two diagrams instead of one $M_{fi}^b: Z^0$ matrix element: $\nu\nu Z, WWZ$ vertexes, Z propagator

After quite intense calculations....

$$M_{fi}^{b} \approx \frac{g^{2}}{4m_{W}^{2}} \overline{v}(l) \not p(1-\gamma_{5})u(k)$$
$$\rightarrow M_{fi}^{b} + M_{fi}^{b} = 0$$

Divergence fixed in a gauge theory!

Standard Model - XVII

Another, similar reaction

 $e^{+}e^{-} \rightarrow W_{L}^{+}W_{L}^{-}$ Quite realistic! $M_{fi}^{a} \approx -\frac{g^{2}}{4m_{W}^{2}}\overline{v}(l)\not p(1-\gamma_{5})u(k)$ $e^{2} = (1) \quad (1)$

$$M_{fi}^{v} \approx \frac{1}{m_{W}^{2}} \overline{v}(l) p u(k)$$

$$M_{fl}^{c} \approx -\frac{g_{WWZ}}{2m_{W}^{2}} \overline{v}(l) \Big[g_{L} \not p(1-\gamma_{5}) + g_{R} \not p(1+\gamma_{5}) \Big] u(k)$$

 $\rightarrow M_{fi}^{a} + M_{fi}^{b} + M_{fi}^{c} \approx -\frac{g^{2}}{4m_{W}^{2}} m\overline{v}(l)u(k)$ Still (weakly) divergent at high energy

Standard Model - XVIII

Reason of extra divergence: R chiral parts of massive fermions

Higgs diagram:

$$M_{fi}^{H} \approx -\frac{1}{2m_{W}^{2}}g_{eeH}g_{WWH}\overline{v}(l)u(k)$$

 \rightarrow Correct compensation with gauge theory & SSB

Strong support for the Standard Model:

Higgs *must* be there

(or something really new must happen at ~ 1 TeV to save unitarity)

Standard Model - XIX

Right neutrinos: Don't know about them [Observe: These are $R - Chirality \nu$'s Massive ν_L of course feature some R - Helicity]

Not part of Standard Model: Do not couple to γ (uncharged) Do not couple to W ($SU(2)_L$ singlets, like e_R) Do not couple to Z (0 electric charge and 0 weak hypercharge) \rightarrow Also known as *sterile* neutrinos

Maybe relevant for some extension of Standard Model Dark matter? Dark energy?

.

Neutral Current - I

As a result of the weak-electromagnetic unification, neutral currents are different from charged

Lorentz structure not $V - A$		$-i\frac{g_{W}}{\sqrt{2}}\gamma^{\mu}\frac{\left(1-\gamma^{5}\right)}{2}$	Charged	
		$-ig_Z\gamma^\mu \frac{(C_V - C_A^\gamma)}{2}$	Neutral	
	Fermion	C_{V}	C_{A}	
	${ u_e}, { u_\mu}, { u_ au}$	+1/2	+1/2	
Coupling	e, μ, au	$-1/2+2\sin\theta_{W}$	-1/2	
Coupling	<i>u</i> , <i>c</i> , <i>t</i>	$+1/2-4/3\sin^2\theta_W$	+1/2	
	d, s, b	$-1/2+2/3\sin^2\theta_w$	-1/2	

 $\theta_{\rm W}$ new fundamental constant

What about interaction strength?

Neutral Current - II

Tight relationship between weak and electromagnetic interactions Coupling constants:

$$g_{w} = \frac{e}{\sin \theta_{W}}$$
 Charged currents
 $g_{z} = \frac{e}{\sin \theta_{W} \cos \theta_{W}}$ Neutral currents

Charged, neutral and electromagnetic couplings fixed by 2 universal constants:

- *e* : Elementary charge
- θ_W : Weinberg angle, new fundamental constant

 $\sin^2\theta_W = 0.23122 \pm 0.00015$

Neutral Current - III

Expect to observe typical neutrino processes like:

$$\begin{split} & \left(\nu_{e}, \overline{\nu}_{e} \right) + e \rightarrow \left(\nu_{e}, \overline{\nu}_{e} \right) + e \quad \text{Contributing to elastic scattering} \\ & \left(\nu_{\mu}, \overline{\nu}_{\mu} \right) + e \rightarrow \left(\nu_{\mu}, \overline{\nu}_{\mu} \right) + e \\ & \left(\nu_{e}, \overline{\nu}_{e} \right) + N \rightarrow \left(\nu_{e}, \overline{\nu}_{e} \right) + hadron \quad shower \\ & \left(\nu_{\mu}, \overline{\nu}_{\mu} \right) + N \rightarrow \left(\nu_{\mu}, \overline{\nu}_{\mu} \right) + hadron \quad shower \end{split}$$

Neutral Currents Discovery - I

Predicted by Glashow-Salam-Weinberg model ('60s) Not really accepted for a long time:

Mostly because of strong suppression of strangeness changing decays like: $K^0 \rightarrow \mu^+ \mu^- \quad BR \quad <10^{-8}$ not accounted for. Compare: $K^+ \rightarrow \mu^+ v_\mu \quad BR \quad 63.4 \%$

Also because it was not clearly demonstrated that GSW was renormalizable

Two breakthroughs:

- GIM prediction of charm to solve the $K^0 \rightarrow \mu^+ \mu^-$ puzzle ('70)
- GSW model shown to be renormalizable by 't Hooft ('71)
- \rightarrow Sudden wave of interest in gauge theories

Neutral Currents Discovery - II

Main interest = Prediction of new phenomena Most shocking prediction of GSW: neutral currents, never seen before → Try to find neutral currents to validate GSW

Best opportunity: High energy neutrino interactions

Larger cross sections No EM background

Drawback: Neutrino experiments difficult

Neutral Currents Discovery - III

Neutrino beams

Take 2 body decays of π , K obtained from a high energy proton machine

Kinematics:

$$\pi^{\pm}, K^{\pm} \to \mu^{\pm} + \overset{(-)}{\nu}_{\mu}$$

 $\beta, \gamma, M, |\mathbf{p}| \qquad K, \pi \text{ LAB}$ $p^*, E_{\mu}^*, \theta_{\mu}^* \qquad \mu \text{ CM}$ $p_{\mu}, E_{\mu}, \theta_{\mu} \qquad \mu \text{ LAB}$ $|\mathbf{p}_{\nu}^*| = E_{\nu}^* = \frac{M_{\pi,K}^2 - m_{\mu}^2}{2M_{\pi,K}} \approx \begin{cases} 30\\236 \end{cases} \text{ MeV}$

CM: Isotropic decay

$$\frac{dP}{d\left(\cos\theta^{*}\right)} = \frac{1}{2} \longrightarrow \frac{dP}{dE} = \frac{dP}{d\left(\cos\theta^{*}\right)} \frac{d\left(\cos\theta^{*}\right)}{dE}$$

Neutral Currents Discovery - IV

Lorentz transform to LAB:

$$E = \gamma \left(E^* + \beta p^* \cos \theta^* \right) \rightarrow dE = \gamma \beta p^* d \left(\cos \theta^* \right) \rightarrow d \left(\cos \theta^* \right) = \frac{dE}{\gamma \beta p^*}$$
$$\rightarrow \frac{dP}{dE} = \frac{1}{2\gamma \beta p^*}$$

Flat distribution over wide interval:

$$\gamma(1+\beta)E^* = \gamma(1+\beta)\frac{\pi,\kappa}{2M_{\pi,K}} \max$$
$$\gamma(1-\beta)E^* = \gamma(1-\beta)\frac{M_{\pi,K}^2 - m_{\mu}^2}{2M_{\pi,K}} \min$$

 $M_{-K}^{2} - m_{-K}^{2}$

$$\frac{dN}{dE} = \frac{M_{\pi,K}}{\gamma\beta \left(M_{\pi,K}^2 - m_{\mu}^2\right)} = \frac{1}{\underbrace{\frac{\gamma\beta M_{\pi,K}}{|\mathbf{p}|} \left(1 - \frac{m_{\mu}^2}{M_{\pi,K}^2}\right)}_{|\mathbf{p}|}} = \frac{1}{|\mathbf{p}| \left(1 - \frac{m_{\mu}^2}{M_{\pi,K}^2}\right)}$$

 \rightarrow Broad LAB v_{μ} energy distribution

Neutral Currents Discovery - VI

a) Narrow Band Beam: ν energy known, low intensity Magnetic selection of a narrow π/K momentum window

Fall 2020

Neutral Currents Discovery - VI

Measure ν energy by direction:

Exploit hadron beam \sim monocromaticity

$$\tan \theta_{\nu} = \frac{1}{\gamma \left(\cos \theta_{\nu}^{*} + \beta\right)} \rightarrow \tan \theta_{\max} = \frac{1}{\gamma \left(\cos \frac{\pi}{2} + \beta\right)} = \frac{1}{\beta \gamma} \approx \frac{1}{\gamma} = \frac{1}{|\mathbf{p}|} \ll \frac{1}{|\mathbf{p}|}$$
$$E_{\nu} = \frac{m_{\pi,K}^{2} - m_{\mu}^{2}}{2E_{\pi,K} \left(1 - \beta \cos \theta\right)} \approx \frac{m_{\pi,K}^{2} - m_{\mu}^{2}}{2E_{\pi,K} \left(1 - \beta \left(1 - \frac{\theta^{2}}{2}\right)\right)}$$

250

250

95

RADIUS (inches)

Neutral Currents Discovery - VII

 $E_{\nu} = \frac{m_{\pi,K}^2 \left(1 - \frac{m_{\mu}^2}{m_{\pi,K}^2} \right) E_{\pi,K}}{\gamma^2 m_{\pi,K}^2 \left(\frac{1}{\gamma^2} + \theta^2 \right)} = E_{\pi,K} \frac{\left(1 - \frac{m_{\mu}^2}{m_{\pi,K}^2} \right)}{\left(1 + \gamma^2 \theta^2 \right)}$

200 GeV

250 GeV

Fall 2020

Neutral Currents Discovery - VIII

b) Wide Band Beam: v energy unknown, high intensity

Replace magnetic selection by a special focussing device, suitable to make a low divergence hadron beam out of an uncollimated, divergent source: Van der Meer Horn

Collect a wide momentum window, focus into a narrow, intense beam

Neutral Currents Discovery - IX

2 conical (high) current sheets:

Equivalent to many trapezoidal current loops symmetrically placed around the axis \rightarrow Circular magnetic field (red circumference)

Trajectory in the *B* field: ~ Circular arc $|\mathbf{p}| = 0.3BR \begin{cases} p \ GeV \\ B \ T \\ R \ m \end{cases}$

Deflection after a path length l in the field :

$$\Delta \theta = \frac{\Delta l}{R} = 0.3B \frac{\Delta l}{|\mathbf{p}|}$$

Deflection should compensate $\langle p_T \rangle$ of hadrons coming out of the target: $\langle p_T \rangle \sim p\Delta\theta \sim 0.2 \ GeV$ at PS energies $\rightarrow 0.2 \ GeV \sim |\mathbf{p}|\Delta\theta = 0.3B\Delta l$ Simple guess:

$$B = \frac{\mu_0 I}{2\pi r} \to 0.2 \ GeV \sim |\mathbf{p}| \Delta \theta \sim 0.3 \frac{\mu_0 I}{2\pi r} \Delta l$$
$$\to I \sim \frac{|\mathbf{p}| \Delta \theta 2\pi r}{0.3\mu_0 \Delta l} \sim 10^5 A!$$

Neutral Currents Discovery - X

Narrow/Wideband beam spectra SPS beam

The Gargamelle horn

Neutral Currents Discovery - XI

Length:4.8 mDiameter:2 mLiquid Freon:12 m³

E.Menichetti - Universita' di Torino

Neutral Currents Discovery - XIII

	ε	Electroweak theory		V-A theory	
Reaction		gv	ga	gv	<i>g</i> _A
$\nu_{\mu} + e^- \rightarrow \nu_{\mu} + e^-$	+1	$-\frac{1}{2}+2s^2$	$-\frac{1}{2}$	0	0
${ar v}_\mu \!+\! e^- ightarrow {ar v}_\mu \!+\! e^-$	-1	$-\frac{1}{2}+2s^2$	$-\frac{1}{2}$	0	0
$\nu_e + e^- \rightarrow \nu_e + e^-$	+1	$+\frac{1}{2}+2s^{2}$	$+\frac{1}{2}$	1	1
$\bar{\nu}_e + e^- \rightarrow \bar{\nu}_e + e^-$	-1	$+\frac{1}{2}+2s^2$	$+\frac{1}{2}$	1	1
$\nu_{\mu} + e^- \rightarrow \mu^- + \nu_e$	+1	1	1	1	1

E.Menichetti - Universita' di Torino

Neutral Currents Discovery - XIV

Differential cross sections:

$$y = 1 - \frac{E_{v}}{E_{v}} \simeq \frac{E_{e}}{E_{v}} \quad \text{Bjorken } y$$

$$\frac{d\sigma_{v_{\mu}e}}{dy} = \frac{G_{F}^{2}m_{e}}{2\pi} E_{v} \left[\left(g_{V} + g_{A} \right)^{2} + \left(g_{V} - g_{A} \right)^{2} \left(1 - y \right)^{2} + \frac{m_{e}}{E_{v}} \left(g_{A}^{2} - g_{V}^{2} \right) y \right]$$

$$\frac{d\sigma_{\bar{v}_{\mu}e}}{dy} = \frac{G_{F}^{2}m_{e}}{2\pi} E_{v} \left[\left(g_{V} - g_{A} \right)^{2} + \left(g_{V} + g_{A} \right)^{2} \left(1 - y \right)^{2} + \frac{m_{e}}{E_{v}} \left(g_{A}^{2} - g_{V}^{2} \right) y \right]$$

$$\frac{1}{2} \int_{0}^{1} (1 - y)^{2} dy = \frac{1}{3}, \quad \int_{0}^{1} y dy = \frac{1}{2}$$

Total cross sections:

$$\rightarrow \sigma_{\nu_{\mu}e} = \frac{G_F^2 m_e}{2\pi} E_{\nu} \left[\left(g_V + g_A \right)^2 + \frac{1}{3} \left(g_V - g_A \right)^2 + \frac{m_e}{E_{\nu}} \frac{1}{2} \left(g_A^2 - g_V^2 \right) \right]$$

$$\rightarrow \sigma_{\overline{\nu}_{\mu}e} = \frac{G_F^2 m_e}{2\pi} E_{\nu} \left[\left(g_V - g_A \right)^2 + \frac{1}{3} \left(g_V + g_A \right)^2 + \frac{m_e}{E_{\nu}} \frac{1}{2} \left(g_A^2 - g_V^2 \right) \right]$$

Neutral Currents Discovery - XV

First Gargamelle leptonic neutral current event

Neutral Currents Discovery - XVI

 $v^{(-)}$ $v^{-}q, \overline{q}$ processes

Neutral Currents Discovery - XVII

$$g_{V} = \frac{1}{2} - \frac{4}{3} \sin^{2} \theta_{W} \qquad g_{A} = \frac{1}{2} \qquad u, c, t$$

$$g'_{V} = -\frac{1}{2} + \frac{4}{3} \sin^{2} \theta_{W} \qquad g'_{A} = \frac{1}{2} \qquad d, s, b$$

$$g_{L} = \frac{1}{2} - \frac{2}{3} \sin^{2} \theta_{W} \qquad g_{R} = -\frac{2}{3} \sin^{2} \theta_{W} \qquad u, c, t$$

$$g'_{L} = -\frac{1}{2} + \frac{1}{3} \sin^{2} \theta_{W} \qquad g_{R} = \frac{1}{3} \sin^{2} \theta_{W} \qquad d, s, b$$

$$\frac{d\sigma_{\nu_{\mu}q}}{dy} = \frac{d\sigma_{\overline{\nu_{\mu}q}}}{dy} = \frac{G_F^2 m_q}{2\pi} E_{\nu} \left[\left(g_V + g_A \right)^2 + \left(g_V - g_A \right)^2 \left(1 - y \right)^2 + \frac{m_q}{E} \left(g_A^2 - g_V^2 \right) y \right] \\ \frac{d\sigma_{\overline{\nu_{\mu}q}}}{dy} = \frac{d\sigma_{\nu_{\mu}\overline{q}}}{dy} = \frac{G_F^2 m_q}{2\pi} E_{\nu} \left[\left(g_V - g_A \right)^2 + \left(g_V + g_A \right)^2 \left(1 - y \right)^2 + \frac{m_q}{E_{\nu}} \left(g_A^2 - g_V^2 \right) y \right]$$

Neutral Currents Discovery -XVIII

$$\frac{d\sigma_{(-)}}{dxdy} = \sum_{q} q(x) \frac{d\sigma_{(-)}}{dy} + \sum_{\bar{q}} \bar{q}(x) \frac{d\sigma_{(-)}}{dy}$$

$$\rightarrow \frac{d\sigma_{\nu_{\mu}N}}{dxdy} = \frac{G_{F}^{2}m_{N}}{2\pi} x E_{\nu} \Big[\Big(g_{L}^{2} + g_{L}^{\prime 2}\Big) \Big(q + \bar{q}(1-y)^{2}\Big) + \Big(g_{R}^{2} + g_{R}^{\prime 2}\Big) \Big(\bar{q} + q(1-y)^{2}\Big) \Big]$$

$$\rightarrow \frac{d\sigma_{\bar{\nu}_{\mu}N}}{dxdy} = \frac{G_{F}^{2}m_{N}}{2\pi} x E_{\nu} \Big[\Big(g_{R}^{2} + g_{R}^{\prime 2}\Big) \Big(q + \bar{q}(1-y)^{2}\Big) + \Big(g_{L}^{2} + g_{L}^{\prime 2}\Big) \Big(\bar{q} + q(1-y)^{2}\Big) \Big]$$

$$R_{\nu}^{N} = \frac{\sigma_{NC}(\nu)}{\sigma_{CC}(\nu)} \quad R_{\overline{\nu}}^{N} = \frac{\sigma_{NC}(\overline{\nu})}{\sigma_{CC}(\overline{\nu})} \quad r = \frac{\sigma_{CC}(\overline{\nu})}{\sigma_{CC}(\nu)}$$
$$\rightarrow g_{L}^{2} + g_{L}^{2} = \frac{R_{\nu}^{N} - r^{2}R_{\overline{\nu}}^{N}}{1 - r^{2}} \quad g_{R}^{2} + g_{R}^{2} = \frac{r(R_{\nu}^{N} - R_{\overline{\nu}}^{N})}{1 - r^{2}}$$

E.Menichetti - Universita' di Torino

Neutral Currents Discovery - XIX Gargamelle Gargamelle hadronic neutral current event charged current

Neutral Currents Discovery - XX

140

Result

$$\sin^2\theta_{W}=0.3 \div 0.4$$

Neutral Currents Discovery - XXI

Fall 2020

 \sim 700 t calorimeter, digital readout of energy and direction of produced particles

W & Z - I

Some reminescences about photons...

Free photons
$$(j^{\mu} = 0)$$
: $\Box^{2} A^{\mu} - \partial^{\mu} (\partial_{\nu} A^{\nu}) = j^{\mu}$
Lorentz condition
 $\partial_{\mu} A^{\mu} = 0 \rightarrow \Box^{2} A^{\mu} = 0$
 $\rightarrow A^{\mu} = \varepsilon^{\mu} (q) e^{-iqx} \rightarrow q^{2} = 0$ massless quanta
4 components ε^{μ} ??
a) $\partial_{\mu} A^{\mu} = 0 \rightarrow \varepsilon^{\mu} (q) q_{\mu} = 0 \rightarrow 3$ components
b) Gauge freedom:
 $A^{\mu} \rightarrow A^{\mu} + \partial^{\mu} \Lambda, \ \Box^{2} \Lambda = 0$
 $\Lambda = iae^{-iqx} (\leftarrow \Box^{2} \Lambda = q^{2} \Lambda = 0 \text{ OK})$
 $\rightarrow \partial^{\mu} \Lambda = ia \partial^{\mu} e^{-iqx}$
 $A^{\mu} \rightarrow A^{\mu} + \partial^{\mu} \Lambda = \varepsilon^{\mu} (q) e^{-iqx} + ia \partial^{\mu} e^{-iqx} = [\varepsilon^{\mu} (q) + ia (-iq_{\mu})] e^{-iqx} = [\varepsilon^{\mu} (q) + aq_{\mu}] e^{-iqx}$
 $\rightarrow \text{EM}$ field unchanged by $\varepsilon^{\mu} (q) \rightarrow \varepsilon^{\mu} (q) + aq^{\mu}$
Choose *a* to make $\varepsilon^{0} = 0$
 $\rightarrow \varepsilon^{\mu} (q) q_{\mu} = 0 \rightarrow \varepsilon \cdot \mathbf{q} = 0 \rightarrow 2$ components

W & Z - II

2 components \rightarrow 2 independent ε^{μ}

Take photon momentum along z

$$\begin{split} \varepsilon_1^{\mu} &= \begin{pmatrix} 0 & 1 & 0 & 0 \end{pmatrix} \quad x \text{-linear polarization} \\ \varepsilon_2^{\mu} &= \begin{pmatrix} 0 & 0 & 1 & 0 \end{pmatrix} \quad y \text{-linear polarization} \\ \text{or} \\ \varepsilon_L^{\mu} &= \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & 1 & -i & 0 \end{pmatrix} \text{ Left circular polarization: } S_z = -1 \\ \varepsilon_R^{\mu} &= \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & 1 & +i & 0 \end{pmatrix} \text{ Right circular polarization: } S_z = +1 \end{split}$$

E.Menichetti - Universita' di Torino

W & Z - III

Original wave equation:

$$\Box^2 A^{\mu} - \partial^{\mu} \left(\partial_{\nu} A^{\nu} \right) = j^{\mu}$$

For a massive vector boson:

$$\left(\Box^2 + m^2\right)B^{\mu} - \partial^{\mu}\left(\partial_{\nu}B^{\nu}\right) = j^{\mu}$$

Free particle:

$$\left(\Box^2 + m^2\right)B^{\mu} - \partial^{\mu}\left(\partial_{\nu}B^{\nu}\right) = 0$$

But:

$$\partial_{\mu} \left(\Box^{2} + m^{2} \right) B^{\mu} - \partial_{\mu} \partial^{\mu} \left(\partial_{\nu} B^{\nu} \right) = 0 \rightarrow \left(\Box^{2} + m^{2} \right) \partial_{\mu} B^{\mu} - \Box^{2} \left(\partial_{\nu} B^{\nu} \right) = 0$$
$$\rightarrow m^{2} \partial_{\mu} B^{\mu} = 0 \rightarrow \partial_{\mu} B^{\mu} = 0$$

Bottom line: Not an extra condition...

$$\rightarrow \left(\Box^2 + m^2\right) B^{\mu} = 0$$

$$B^{\mu} = \varepsilon^{\mu} \left(p\right) e^{-ipx} \rightarrow \varepsilon^{\mu} p_{\mu} = 0 \rightarrow 3 \text{ independent components}$$

No gauge freedom...

W & Z - IV

3 independent components \rightarrow 3 independent ε^{μ}

Take photon momentum along *z*

$$\varepsilon_L^{\mu} = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & 1 & -i & 0 \end{pmatrix}$$
 Left circular polarization: $S_z = -1$

$$\varepsilon_R^{\mu} = -\frac{1}{\sqrt{2}} \begin{pmatrix} 0 & 1 & +i & 0 \end{pmatrix}$$
 Right circular polarization: $S_z = +1$

To find 3rd polarization 4-vector:

$$\varepsilon_{0}^{\mu} = \frac{1}{\sqrt{\left|\alpha^{2} - \beta^{2}\right|}} \begin{pmatrix} \alpha & 0 & 0 & \beta \end{pmatrix}, \quad \frac{1}{\sqrt{\left|\alpha^{2} - \beta^{2}\right|}} \quad \text{normalization} : \varepsilon^{\mu} p_{\mu} = 0 \rightarrow \alpha E - \beta p_{z} = 0$$

$$\rightarrow \alpha = p_z, \beta = E \rightarrow \varepsilon_0^{\mu} = \frac{1}{m} (p_z \quad 0 \quad 0 \quad E)$$
 Longitudinal polarization: $S_z = 0$

Observe: Longitudinal/Transverse boson \rightarrow Transverse/Longitudinal spin...

As for photons: Attribute refers to oscillating 'electric/magnetic field', rather than spin

W & Z - V

Decay: $W^- \rightarrow e^- + \overline{v_e}$

Matrix element:

$$M_{fi} = \frac{g}{\sqrt{2}} \varepsilon_{\mu} (p_1) \overline{u} (p_3) \gamma^{\mu} \frac{1}{2} (1 - \gamma_5) v(p_4) = \frac{g}{\sqrt{2}} \varepsilon_{\mu} (p_1) j^{\mu}$$

$$\overline{u} (p_3): \text{ outgoing fermion, } v(p_4): \text{ outgoing antifermion}$$

$$\overline{u} (p_3) \gamma^{\mu} \frac{1}{2} (1 - \gamma_5) v(p_4) = \overline{u} (p_3) \frac{1}{2} \gamma^{\mu} (1 - \gamma_5) \frac{1}{2} \gamma^{\mu} (1 - \gamma_5) v(p_4)$$

$$= \underbrace{\overline{u} (p_3) \frac{1}{2} (1 + \gamma_5) \gamma^{\mu} \frac{1}{2} (1 - \gamma_5) v(p_4)}_{v_R} = \overline{e}_L \gamma^{\mu} v_R$$

LR current :

Build from rotated L, R spinors

$$j^{\mu} = \overline{u}_{\downarrow}(p_3) \frac{1}{2} \gamma^{\mu} v_{\uparrow}(p_4) = 2E(0, -\cos\theta, -i, \sin\theta)$$

W & Z - VI

W polarization states in the rest system:

$$\varepsilon_{L}^{\mu} = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & 1 & -i & 0 \end{pmatrix}$$

$$\varepsilon_{R}^{\mu} = -\frac{1}{\sqrt{2}} \begin{pmatrix} 0 & 1 & +i & 0 \end{pmatrix}$$

$$\varepsilon_{0}^{\mu} = \frac{1}{m} \begin{pmatrix} 0 & 0 & 0 & m \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 & 1 \end{pmatrix}$$

Matrix elements for different W polarization states in the rest system:

$$\begin{split} \varepsilon_{L}^{\mu} &: \quad \frac{g}{\sqrt{2}} \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & 1 & -i & 0 \end{pmatrix} 2 \frac{M_{W}}{2} \begin{pmatrix} 0, -\cos\theta, -i, \sin\theta \end{pmatrix} = -\frac{gM_{W}}{2} \begin{pmatrix} 1+\cos\theta \end{pmatrix} \\ \\ \rightarrow \left| M_{L} \right|^{2} &= \frac{g^{2}M_{W}^{2}}{4} \begin{pmatrix} 1+\cos\theta \end{pmatrix}^{2} \\ \\ \varepsilon_{R}^{\mu} &: \quad \frac{g}{\sqrt{2}} \left[-\frac{1}{\sqrt{2}} \begin{pmatrix} 0 & 1 & +i & 0 \end{pmatrix} \right] 2 \frac{M_{W}}{2} \begin{pmatrix} 0, -\cos\theta, -i, \sin\theta \end{pmatrix} = -\frac{gM_{W}}{2} \begin{pmatrix} 1-\cos\theta \end{pmatrix} \\ \\ \rightarrow \left| M_{R} \right|^{2} &= \frac{g^{2}M_{W}^{2}}{4} \begin{pmatrix} 1-\cos\theta \end{pmatrix}^{2} \\ \\ \varepsilon_{0}^{\mu} &: \quad \frac{g}{\sqrt{2}} \frac{1}{m} \begin{pmatrix} 0 & 0 & m \end{pmatrix} 2 \frac{M_{W}}{2} \begin{pmatrix} 0, -\cos\theta, -i, \sin\theta \end{pmatrix} = \frac{gM_{W}}{\sqrt{2}} \sin\theta \\ \\ \rightarrow \left| M_{0} \right|^{2} &= \frac{g^{2}M_{W}^{2}}{2} \sin^{2}\theta \end{split}$$

W & *Z* - *V*II

$$|M_{L}|^{2} = \frac{g^{2}M_{W}^{2}}{4}(1+\cos\theta)^{2}$$
$$|M_{R}|^{2} = \frac{g^{2}M_{W}^{2}}{4}(1-\cos\theta)^{2}$$
$$|M_{0}|^{2} = \frac{g^{2}M_{W}^{2}}{2}\sin^{2}\theta$$

2-body differential decay rate:

$$\frac{d\Gamma_{L,0,R}}{d\Omega} = \frac{p}{32\pi^2 M_W^2} |M|^2 = \frac{1}{64\pi^2 M_W} |M|^2 = \frac{g^2 M_W}{64\pi^2} \begin{cases} \frac{1}{4} (1+\cos\theta)^2 \\ \frac{1}{2}\sin^2\theta \\ \frac{1}{4} (1-\cos\theta)^2 \end{cases}$$

Total rates:

$$\int \frac{1}{4} (1 \pm \cos \theta)^2 d \cos \theta d\varphi = \int \frac{1}{2} \sin^2 \theta d \cos \theta d\varphi = \frac{4\pi}{3}$$
$$\rightarrow \Gamma_L = \Gamma_R = \Gamma_0 = \frac{g^2 M_W}{48\pi}$$

151

Averaging over the initial spin states:

$$\left< |M|^2 \right> = \frac{1}{3} g^2 M_W^2 \left[\frac{1}{4} (1 + \cos \theta)^2 + \frac{1}{4} (1 - \cos \theta)^2 + \frac{1}{2} \sin^2 \theta \right]$$
$$\to \left< |M|^2 \right> = \frac{1}{3} g^2 M_W^2$$

Isotropic: OK for an unpolarized mother particle

$$\rightarrow \Gamma \left(W^{-} \rightarrow e^{-} + \overline{\nu}_{e} \right) = \frac{g^{2} M_{W}}{48\pi}$$

Fall 2020

W & Z - IX

Considering all the others decay modes: Large W mass \rightarrow All fermions \approx massless Do *not* count Top: Too heavy, decay energetically forbidden Color factor = 3

Similar to $e^+e^- \rightarrow q\overline{q}$: Take quarks as free, on shell particles Taking into account CKM mixing:

$$\begin{split} W^{-} &\to e^{-} \overline{\nu}_{e} \qquad W^{-} \to d\overline{u} \quad \times 3 \left| V_{ud} \right|^{2} \qquad W^{-} \to d\overline{c} \quad \times 3 \left| V_{cd} \right|^{2} \\ W^{-} &\to \mu^{-} \overline{\nu}_{\mu} \qquad W^{-} \to s\overline{u} \quad \times 3 \left| V_{us} \right|^{2} \qquad W^{-} \to s\overline{c} \quad \times 3 \left| V_{cs} \right|^{2} \\ W^{-} &\to \tau^{-} \overline{\nu}_{\tau} \qquad W^{-} \to b\overline{u} \quad \times 3 \left| V_{ub} \right|^{2} \qquad W^{-} \to b\overline{c} \quad \times 3 \left| V_{cb} \right|^{2} \\ \end{array}$$

CKM Unitarity:

e.g.
$$|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 1$$
 etc
 $\rightarrow \Gamma_W = 9\Gamma_{W \rightarrow e\nu} = \frac{3g^2 M_W}{16\pi} = 2.07 \; GeV$

Experiment :

 $2.14 \pm 0.04 \ GeV$

QCD corrections..

W & Z - X

Z couplings:

$$c_{L} = I_{3} - Q \sin^{2} \theta_{W}$$

$$c_{R} = -Q \sin^{2} \theta_{W}$$

$$j_{\mu}^{Z} = g_{Z} \overline{u} \gamma_{\mu} \left[c_{L} \frac{1}{2} (1 - \gamma_{5}) + c_{R} \frac{1}{2} (1 + \gamma_{5}) \right] u$$

$$c_V = c_L + c_R = I_3 - 2Q\sin^2\theta_W$$
$$c_A = c_L - c_R = I_3$$

W & Z - XI

Therefore:

	Fermion	Q	I_W^3	c_L	C _R	c_V	c_A
$\sin^2 \theta_W \approx 0.23$	$v_e, v_\mu, v_ au$	0	$+\frac{1}{2}$	$+\frac{1}{2}$	0	$+\frac{1}{2}$	$+\frac{1}{2}$
	e^-,μ^-, au^-	-1	$-\frac{1}{2}$	-0.27	0.23	-0.04	$-\frac{1}{2}$
	u, c, t	$+\frac{2}{3}$	$+\frac{1}{2}$	0.35	-0.15	+0.19	$+\frac{1}{2}$
	d, s, b	$-\frac{1}{3}$	$-\frac{1}{2}$	-0.42	0.08	-0.35	$-\frac{1}{2}$

W & *Z* - XII

Z couplings: Both to L and R fermions

Nevertheless: Only 2 vertexes, remaining 2 = 0

To show that RR vertex is 0 (LL similar):

$$\begin{split} \overline{u}_{R} &= u_{R}^{\dagger} \gamma^{0} = u^{\dagger} \frac{1 + \gamma^{5}}{2} \gamma^{0}, \quad v_{R} = \frac{1 - \gamma^{5}}{2} v \\ \overline{u}_{R} \gamma^{\mu} \left(c_{V} + c_{A} \gamma_{5} \right) v_{R} &= u^{\dagger} \frac{1 + \gamma^{5}}{2} \gamma^{0} \gamma^{\mu} \left(c_{V} + c_{A} \gamma_{5} \right) \frac{1 - \gamma^{5}}{2} v \\ &= u^{\dagger} \gamma^{0} \frac{1 - \gamma^{5}}{2} \gamma^{\mu} \frac{1 - \gamma^{5}}{2} \left(c_{V} + c_{A} \gamma_{5} \right) v \\ &= \overline{u} \gamma^{\mu} \underbrace{\frac{1 + \gamma^{5}}{2} \frac{1 - \gamma^{5}}{2}}_{=0} \left(c_{V} + c_{A} \gamma_{5} \right) v = 0 \end{split}$$

E.Menichetti - Universita' di Torino

W & *Z* - XIII

Decay:
$$Z^0 \rightarrow e^+ + e^-$$

$$\left< |M|^2 \right> = \frac{2}{3} g^2 \cos^2 \theta_W M_Z^2 [c_L^2 + c_R^2]$$

$$2 [c_L^2 + c_R^2] = [c_V^2 + c_A^2]$$

$$\rightarrow \Gamma (Z \rightarrow e^+ e^-) = \frac{g^2 \cos^2 \theta_W M_Z}{48\pi} [c_V^2 + c_A^2]$$

E.Menichetti - Universita' di Torino

W & Z - XIV

$$Br(Z \to e^+e^-) = Br(Z \to \mu^+\mu^-) = Br(Z \to \tau^+\tau^-) \approx 3.5\%$$

$$Br(Z \to \nu_1\overline{\nu}_1) = Br(Z \to \nu_2\overline{\nu}_2) = Br(Z \to \nu_3\overline{\nu}_3) \approx 6.9\%$$

$$Br(Z \to d\overline{d}) = Br(Z \to s\overline{s}) = Br(Z \to b\overline{b}) \approx 15\%$$

$$Br(Z \to u\overline{u}) = Br(Z \to c\overline{c}) \approx 12\%$$

 $Br(Z \rightarrow hadrons) \approx 69\%$

$$\rightarrow \Gamma_Z = \sum_i \Gamma_i = 2.5 \ GeV$$
Experiment: $\Gamma_Z = 2.4952 \pm 0.0023 \ GeV$

W & Z - XV

Ultimate systematics....

W & Z Discovery - I

W & Z Discovery - II

W & Z Discovery - III

 $S\overline{p}pS$ Collider main parameters

- $\sqrt{s} = 540 \text{ GeV}$
- 3 bunches protons, 3 bunches antiprotons, 10¹¹ particles per bunch
- Luminosity = $5 \times 10^{27} \text{ cm}^{-2} \text{sec}^{-1}$
- First collisions in December 1981

W & Z Discovery - IV

Stochastical cooling system

- 10⁷ antiprotons with p = 3.5 GeV/c gets in outer part of toroidale vacuum chamber
- Inductor measures discrepancy of particles
- Correction signal is send to opposite side
- Magnet deflects particles
- After 2*sec* aperture is opened

Fall 2020

164

W & Z Discovery - VI

Several conditions to select events

- More than 10000 events/s, most of them selected by a trigger
- Trace in central detector must point into center of electromagnetic shower
- Transversal momentum in central detector > 7 GeV
- Trace must be isolated (only other traces with transversal momentum <2.5 GeV allowed)
- Missing energy >15 GeV, has to point contrary to trace of electron

W & Z Discovery - VIII

- Calculate sum of all hadron momenta in the transverse plane (to avoid leaks along the beam lines)
- **p**_T(v) not exactly antiparallel to **p**_T(e)
 - W boson not always produced at rest, finite detector resolution

E.Menichetti - Universita' di Torino

W & Z Discovery - IX

UA2 Candidate Z event

W & Z Discovery - X

 $\frac{d\sigma}{d\cos\theta^*} = \text{ const} \quad \text{Just an approximation}$

$$\frac{d\sigma}{dp_{T}} = \frac{d\sigma}{d\cos\theta^{*}} \frac{d\cos\theta^{*}}{dp_{T}}$$

$$p_{T} = p^{*}\sin\theta^{*} = \frac{M_{W}}{2}\sin\theta^{*}$$

$$\rightarrow \sin\theta^{*} = \frac{2p_{T}}{M_{W}}$$

$$\rightarrow \cos\theta^{*} = \sqrt{1 - \sin^{2}\theta^{*}} = \sqrt{1 - \left(\frac{2p_{T}}{M_{W}}\right)^{2}}$$

$$\rightarrow \frac{d\cos\theta^{*}}{dp_{T}} = \frac{\frac{4p_{T}}{M_{W}}}{2\sqrt{1 - \left(\frac{2p_{T}}{M_{W}}\right)^{2}}} = \frac{2p_{T}}{M_{W}\sqrt{1 - \left(\frac{2p_{T}}{M_{W}}\right)^{2}}}$$

$$\rightarrow \frac{d\sigma}{dp_{T}} = A\left(\cos\theta^{*}\right)\frac{d\cos\theta^{*}}{dp_{T}} \approx K\frac{2p_{T}}{M_{W}\sqrt{1 - \left(\frac{2p_{T}}{M_{W}}\right)^{2}}}$$
Jacobian peak at $\frac{M_{W}}{2}$

169

Fall 2020

W & Z Discovery - XIII

- Z⁰ cross section ~10 times smaller than W[±] boson production
- W⁺ cross section ~43% larger than W⁻ at LHC (pp collider!)

172

Precision Tests - I

LEP – Precision tests of SM 1989-2000

26 km circumference 4 large experiments: ALEPH, DELPHI, L3, OPAL

1989 - 1995 $\sqrt{s} = 91.2 \ GeV$ $17 \ 10^6 \ Z^0 \ detected$

1996 - 2000 $\sqrt{s} = 161 - 208 \ GeV$ $30 \ 10^3 \ WW$ detected

LINACS

Pb ions

P .

¢,

LEAR

South Area

Pb ions

174

Precision Tests - III

Precision Tests - IV

Precision Tests - V

 $e^+e^- \rightarrow \mu^+\mu^-$ at the *Z* peak Only consider (dominant) *Z* diagram

Electron vertex:

$$\overline{v}(p_2)(-ig_Z\gamma^{\mu})\frac{1}{2}(c_V-c_A\gamma^5)u(p_1)$$
 Electron c_V, c_A

Z propagator :

$$-i\frac{g_{\mu\nu}}{q^2-m_Z^2}$$
 Approximate, see later

Muon vertex:

$$\overline{u}(p_3)(-ig_Z\gamma^{\nu})\frac{1}{2}(c_V-c_A\gamma^5)\nu(p_4)$$
 Muon c_V, c_A

Precision Tests- VI

Ultrarelativistic limit \rightarrow Chirality \simeq Helicity \rightarrow Use helicity eigenstates for electron, muon vertexes $c_{-} = c_{-} + c_{-} = c_{-} = c_{-}$

$$c_{L} = c_{V} + c_{A}, c_{R} = c_{V} - c_{A}$$

$$\rightarrow c_{V} = \frac{1}{2} (c_{L} + c_{R}), c_{A} = \frac{1}{2} (c_{L} - c_{R})$$

$$\frac{1}{2} (c_{V} - c_{A} \gamma^{5}) \rightarrow \frac{1}{2} c_{L} (1 - \gamma^{5}) + \frac{1}{2} c_{R} (1 + \gamma^{5})$$

 \rightarrow Matrix element:

$$\begin{bmatrix} c_L \overline{v}(p_2) \gamma^{\mu} \frac{1}{2} (1-\gamma^5) u(p_1) + c_R \overline{v}(p_2) \gamma^{\mu} \frac{1}{2} (1+\gamma^5) u(p_1) \end{bmatrix}$$

$$\times \left(-\frac{g_Z}{q^2 - m_Z^2} g_{\mu\nu} \right)$$

$$\times \left[c_L \overline{u}(p_3) \gamma^{\nu} \frac{1}{2} (1-\gamma^5) v(p_4) + c_R \overline{u}(p_3) \gamma^{\nu} \frac{1}{2} (1+\gamma^5) v(p_4) \right]$$

Introduce chirality \simeq helicity projectors:

$$\frac{1}{2}(1-\gamma^5)u \simeq u_{\downarrow}, \frac{1}{2}(1+\gamma^5)u \simeq u_{\uparrow}, \frac{1}{2}(1-\gamma^5)v \simeq v_{\uparrow}, \frac{1}{2}(1+\gamma^5)v \simeq v_{\downarrow}$$

Precision Tests- VII

 \rightarrow Matrix element:

$$\left[c_L \overline{v}(p_2) \gamma^{\mu} u_{\downarrow}(p_1) + c_R \overline{v}(p_2) \gamma^{\mu} u_{\uparrow}(p_1) \right] \left(-\frac{g_Z}{q^2 - m_Z^2} g_{\mu\nu} \right) \left[c_L \overline{u}(p_3) \gamma^{\nu} v_{\uparrow}(p_4) + c_R \overline{u}(p_3) \gamma^{\nu} v_{\downarrow}(p_4) \right]$$

$$\overline{v}(p_2) = \overline{v}_{\uparrow}(p_2) + \overline{v}_{\downarrow}(p_2), \overline{u}(p_3) = \overline{u}_{\uparrow}(p_3) + \overline{u}_{\downarrow}(p_3)$$

Surviving terms in both e, μ currents: LR, RL only

$$\rightarrow \left[c_L \overline{v}_{\uparrow}(p_2) \gamma^{\mu} u_{\downarrow}(p_1) + c_R \overline{v}_{\downarrow}(p_2) \gamma^{\mu} u_{\uparrow}(p_1)\right] \left(-\frac{g_Z}{q^2 - m_Z^2} g_{\mu\nu}\right) \left[c_L \overline{u}_{\downarrow}(p_3) \gamma^{\nu} v_{\uparrow}(p_4) + c_R \overline{u}_{\uparrow}(p_3) \gamma^{\nu} v_{\downarrow}(p_4)\right]$$

179

Precision Tests- VIII

Almost 'Cut & Paste' from QED case:

$$|M_{RR}|^{2} = s^{2} \left| \frac{g_{Z}^{2}}{s - m_{Z}^{2}} \right|^{2} (c_{R}^{e})^{2} (c_{R}^{\mu})^{2} (1 + \cos \theta)^{2}$$
$$|M_{RL}|^{2} = s^{2} \left| \frac{g_{Z}^{2}}{s - m_{Z}^{2}} \right|^{2} (c_{R}^{e})^{2} (c_{L}^{\mu})^{2} (1 - \cos \theta)^{2}$$
$$|M_{LR}|^{2} = s^{2} \left| \frac{g_{Z}^{2}}{s - m_{Z}^{2}} \right|^{2} (c_{L}^{e})^{2} (c_{R}^{\mu})^{2} (1 - \cos \theta)^{2}$$
$$|M_{LR}|^{2} = s^{2} \left| \frac{g_{Z}^{2}}{s - m_{Z}^{2}} \right|^{2} (c_{L}^{e})^{2} (c_{L}^{\mu})^{2} (1 + \cos \theta)^{2}$$

Fall 2020
Precision Tests-IX

Now take correct Z propagator: Z unstable

$$-i\frac{g_{\mu\nu}}{q^2 - m_Z^2} = -i\frac{g_{\mu\nu}}{s - m_Z^2} \rightarrow -i\frac{g_{\mu\nu}}{s - m_Z^2 + im_Z\Gamma_Z}$$
$$\rightarrow \left|-i\frac{1}{s - m_Z^2 + im_Z\Gamma_Z}\right|^2 = \frac{1}{\left(s - m_Z^2\right)^2 + m_Z^2\Gamma_Z^2}$$
$$\frac{d\sigma}{d\Omega} = \frac{\left|M_{fi}\right|^2}{64\pi^2 s}$$

 \rightarrow Differential cross-section for the 4 combinations:

$$\frac{\mathrm{d}\sigma_{RR}}{\mathrm{d}\Omega} = \frac{1}{64\pi^2} \frac{g_Z^4 s}{(s - m_Z^2)^2 + m_Z^2 \Gamma_Z^2} (c_R^e)^2 (c_R^\mu)^2 (1 + \cos\theta)^2$$
$$\frac{\mathrm{d}\sigma_{LL}}{\mathrm{d}\Omega} = \frac{1}{64\pi^2} \frac{g_Z^4 s}{(s - m_Z^2)^2 + m_Z^2 \Gamma_Z^2} (c_L^e)^2 (c_L^\mu)^2 (1 + \cos\theta)^2$$
$$\frac{\mathrm{d}\sigma_{LR}}{\mathrm{d}\Omega} = \frac{1}{64\pi^2} \frac{g_Z^4 s}{(s - m_Z^2)^2 + m_Z^2 \Gamma_Z^2} (c_L^e)^2 (c_R^\mu)^2 (1 - \cos\theta)^2$$
$$\frac{\mathrm{d}\sigma_{RL}}{\mathrm{d}\Omega} = \frac{1}{64\pi^2} \frac{g_Z^4 s}{(s - m_Z^2)^2 + m_Z^2 \Gamma_Z^2} (c_L^e)^2 (c_R^\mu)^2 (1 - \cos\theta)^2$$

Precision Tests-X

Most interesting difference wrt QED case:

 $|M_{LL}|^{2} + |M_{RR}|^{2} \neq |M_{LR}|^{2} + |M_{RL}|^{2}$

Unpolarized cross section: Average & Sum over spins

$$\rightarrow \frac{d\sigma}{d\Omega} = \frac{1}{64\pi^2} \frac{1}{4} \frac{g_Z^4 s}{\left(s - m_Z^2\right)^2 + m_Z^2 \Gamma_Z^2} \frac{1}{4} \left(c_V^2 + c_A^2\right)_e \left(c_V^2 + c_A^2\right)_\mu \left(1 + \cos^2\theta\right) + 2\left(c_V c_A\right)_e \left(c_V c_A\right)_\mu \cos\theta$$

Sizeable forward-backward asymmetry!

Precision Tests - XI

Integrate over solid angle, get total cross section:

$$\sigma_{e^+e^- \to Z \to \mu^+\mu^-} = \frac{1}{192\pi} \frac{g_Z^4 s}{(s - m_Z^2)^2 + m_Z^2 \Gamma_Z^2} \left[(c_V^e)^2 + (c_A^e)^2 \right] \left[(c_V^\mu)^2 + (c_A^\mu)^2 \right] \right]$$

Recall partial Z widths:

. .

$$\Gamma(Z \to e^+ e^-) = \frac{g_Z^2 m_Z}{48\pi} [(c_V^e)^2 + (c_A^e)^2] \qquad \qquad \Gamma(Z \to \mu^+ \mu^-) = \frac{g_Z^2 m_Z}{48\pi} [(c_V^\mu)^2 + (c_A^\mu)^2]$$

$$\sigma = \frac{12\pi}{m_Z^2} \frac{s}{(s - m_Z^2)^2 + m_Z^2 \Gamma_Z^2} \Gamma(Z \to e^+ e^-) \Gamma(Z \to \mu^+ \mu^-)$$

$$\to \sigma_{peak} \simeq \frac{12\pi (BR)^2}{m_Z^2} \approx \frac{37.7 (3.510^{-2})^2}{(91.2)^2} \approx 55\ 10^{-7} \, GeV^{-2}$$

$$(\hbar c)^2 \simeq 0.389 GeV^2 mb$$

 $\rightarrow \sigma_{peak} \simeq 55 \ 10^{-7} GeV^{-2} 0.389 GeV^2 mb \approx 2.1410^{-6} mb = 2.14 nb$

Precision Tests - XII

Z peak: Essentially 4 types of events

 $e^+e^- \rightarrow e^+e^-, \mu^+\mu^-, \tau^+\tau^-, q\overline{q} (\rightarrow hadrons)$

Different topologies in the detectors:

Measuring cross sections:

Count events(!)

Subtract background

Correct for inefficiency

Get integrated luminosity (Most of the time from independent counting of Bhabha events)

$$\rightarrow \sigma = \frac{N - N_{bck}}{\varepsilon} \frac{1}{L_{int}}$$

Precision Tests - XIII

Among other results at the peak: Z^0 lineshape Meaning in practice:

m_Z	Z mass
Γ_Z	Z total width
Γ_{f}	Z partial width to fermion type f
$N_{ u}$	Number of (SM) neutrino species

Obtained by 'scanning' the Z^0 peak:

Move $E_{beam} = \frac{\sqrt{s}}{2}$ in steps through the peak

Measure relevant σ at each step Fit profile:

$$\sigma\left(e^{+}e^{-} \rightarrow Z \rightarrow f\bar{f}\right) = \frac{12\pi}{m_{Z}^{2}} \frac{s\Gamma_{ee}\Gamma_{ff}}{\left(s - m_{Z}^{2}\right)^{2} + m_{Z}^{2}\Gamma_{Z}^{2}}$$

Precision Tests - XIV

Lineshape quite distorted by several effects Main effect: Initial State Radiation (*ISR*)

Fall 2020

Precision Tests - XV

Finding the number of Standard Model neutrinos (Meaning: With standard coupling to Z) Total width:

$$\begin{split} \Gamma &= \Gamma_{ee} + \Gamma_{\mu\mu} + \Gamma_{\tau\tau} + \Gamma_{had} + \Gamma_{\nu_1\nu_1} + \Gamma_{\nu_2\nu_2} + \Gamma_{\nu_3\nu_3} + ?\\ \Gamma &= 3\Gamma_{ll} + \Gamma_{had} + N_{\nu}\Gamma_{\nu\nu} \end{split}$$

Measure partial widths from peak cross sections:

$$\sigma_0^{ff} = \frac{12\pi}{m_Z^2} \frac{\Gamma_{ee} \Gamma_{ff}}{\Gamma_Z^2}$$

 $N_{\rm v} = 2.9840 \pm 0.0082$

Precision Tests - XVI

Write differential cross section (e.g. for $e^+e^- \rightarrow \mu^+\mu^-$) as:

$$\frac{d\sigma}{d\Omega} = k \Big[A \Big(1 + \cos^2 \theta \Big) + B \cos \theta \Big]$$
$$A = \Big[\Big(c_L^e \Big)^2 + \Big(c_R^e \Big)^2 \Big] \Big[\Big(c_L^\mu \Big)^2 + \Big(c_R^\mu \Big)^2 \Big], \quad B = \Big[\Big(c_L^e \Big)^2 - \Big(c_R^e \Big)^2 \Big] \Big[\Big(c_L^\mu \Big)^2 - \Big(c_R^\mu \Big)^2 \Big]$$

Forward/Backward cross sections:

$$\sigma_F = \int_0^1 \frac{d\sigma}{d\cos\theta} d\cos\theta, \ \ \sigma_B = \int_{-1}^0 \frac{d\sigma}{d\cos\theta} d\cos\theta$$

FB Asymmetry:

$$A_{FB} = \frac{\sigma_F - \sigma_B}{\sigma_F + \sigma_B}$$

$$\sigma_F = k \left(\frac{4}{3}A + \frac{1}{2}B\right), \sigma_B = k \left(\frac{4}{3}A - \frac{1}{2}B\right)$$

$$\to A_{FB} = \frac{3}{8} \frac{B}{A} = \frac{3}{4} \frac{\left[\left(c_L^e\right)^2 - \left(c_R^e\right)^2\right]}{\left[\left(c_L^e\right)^2 + \left(c_R^e\right)^2\right]} \frac{\left[\left(c_L^\mu\right)^2 - \left(c_R^\mu\right)^2\right]}{\left[\left(c_L^\mu\right)^2 + \left(c_R^\mu\right)^2\right]} = \frac{3}{4} A_e A$$

Precision Tests - XVII

 $\sin^2 \theta_W = 0.23154 \pm 0.00016$

 $A_{FB}(peak) \sim 0$ for leptons ($\sin^2 \theta_W \approx 0.25$)

$$A_{FB}(peak \pm 2 \text{ GeV}) \neq 0: = 2 \frac{c_V/c_A}{1 + (c_V/c_A)^2}$$

Interference with QED

Precision Tests - XVIII

LEP2: Study of WW production

190

Precision Tests - XIX

Maybe one of the best results of the whole LEP saga

191

Precision Tests - XX

Measurement of m_W : Kinematical fit Example:

 $W^{+}W^{-} \rightarrow q\overline{q}e^{-}\overline{\nu}$ Get $\overline{\nu}$ 4-momentum from: $p_{q} + p_{\overline{q}} + p_{e^{-}} + p_{\overline{\nu}} = (\sqrt{s}, 0)$ Make W bosons masses :

$$M_{W^{+}} = (p_{q} + p_{\overline{q}})^{2}$$
$$M_{W^{-}} = (p_{e^{-}} + p_{\overline{v}})^{2}$$

 $m_W = 80.376 \pm 0.033 \,\mathrm{GeV}$ $\Gamma_W = 2.196 \pm 0.083 \,\mathrm{GeV}$

Loopology - I

Standard Model : $M_W = M_Z \cos \theta_W$ Measure: $\begin{cases} M_Z = 91.1875 \pm 0.0021 & GeV \\ \sin^2 \theta_W = 0.23154 \pm 0.00016 \end{cases}$

 \rightarrow Predict $M_W = 79.946 \pm 0.008 \ GeV$

Measure

 $M_{\scriptscriptstyle W} = 80.376 \pm 0.033~GeV$

Discrepancy: Virtual loops (including Higgs..)

Loopology - II

Fall 2020

The Happy End

All is well that ends well: And finally...

... Mr. Higgs and Mr. Englert went to Stockholm

195