Elementary Particles II

Organization, Contents, Literature

Academic Year 2012-2013

Fall 2012

Logistics & Human Resources

Time

Monday 11-13, Wednesday 14-16, Friday 9-11 But: Watch for changes..

Place

Aula Avogadro - 3rd Floor "New" Building

People E.Menichetti – Lectures <u>menichetti@to.infn.it</u> <u>http://www.ph.unito.it/~menichet/</u>

6 CFU Course ~ 48 h

Exam Requirements

Oral examination (Will include a 20' oral presentation on some agreed subject)

Exam Dates Upon individual request

Course Web Page

http://www.ph.unito.it/~menichet/PARTICELLE2.html

Fall 2012

Background

Required basic familiarity with:

[Special Relativity Quantum Mechanics Electricity & Magnetism Relativistic Quantum Mechanics Introductory Nuclear & Particle Physics]

Accelerators and Detectors Introductory Quantum Field Theory First Half of Elementary Particle Physics

Contents

QCD

Color, Color Gauge Theory, Gluons, Color Interaction, Asymptotic Freedom, Confinement, Perturbative QCD, Quarkonia

Electroweak Interaction

Fermi Theory, Unitarity Violations, Intermediate Vector Boson, Neutral Currents, Spontaneous Symmetry Breaking, Electroweak Unification, Discovery of W and Z, Tests of the Standard Model

To be decided

Literature

Author(s)	Title One	e word comment	
General textbooks:			
Bettini	Introduction to Elementary Particle Physics	Original	
Burcham and Jobes	Nuclear and Particle Physics	Detailed	
Halzen and Martin	Quark and Leptons	Condensed	
Griffiths	Introduction to Elementary Particles	Conceptual	
Leader and Predazzi	An Introduction to Gauge Theories and Modern	<i>i</i> Complete	
	Particle Physics, voll. 1 e 2		
Seiden	Particle Physics A Comprehensive Introduction	<i>i</i> Modern	
Morpurgo (in Italian)	Introduzione alla Fisica delle Particelle	Deep	
Nagashima	Elementary Particle Physics	Global	
Single subject books: (Mostly) Theory			
F.J. Yndurain	The Theory of Quark and Gluon Interactions	Detailed	
J. Horejsi	Fundamentals of Electroweak Theory	Clear	
Single subject books: (Mostly) Experiment			
G.Dissertori et al.	Quantum Chromodynamics: High Energy	Modern	
	Experiments and Theory		
R.Tenchini et al.	The Physics of the Z and W Bosons	Modern	
Most useful single book (Phenomenological):			
C.Quigg	Gauge Theories of the Strong, Weak, and Electromagnetic Interactions		

Key Points

Same guidelines as for the first half-course:

Little interference with the (many) theoretical courses

'Experimental/Phenomenological', whatever it means

Difficult task (for both students *and* teacher):

Experimental particle physics notoriously difficult to either teach or learn in a classroom

Today's large, 'partonic' experiments and machines operating conditions quite far from common experience, filled with extreme technology, sometimes hard to understand at first contact

Goal definitely worth the effort: *Exploration, Validation and Extension of the SM* One of the most exciting intellectual challenges/time killers available on the market