Dispositivi attivi: utilizzati per moltissime funzioni diverse Punti di vista per una classificazione (oggi)

a) Modo di funzionamento:

Analogico / Lineare vs Logico / Digitale

[Inoltre: $Mixed\ Signal\ (\leftarrow Entrambi)$]

b) Funzione

Molte diverse

Forte tendenza a unita' funzionali complesse integrate su un unico chip

Mattoni elementari:

Come nel LEGO, 'pochi' (?) tipi fondamentali

Oggi in numero maggiore di ieri i tipi di componenti elementari; tuttavia scenario generale dominato dai MOS, fondamentalmente tutti simili

Molte varieta' riguardo dimensioni, frequenza di lavoro,correnti/tensioni/potenze max, etc Caratteristica I - V della giunzione pn: Eq. di Schockley

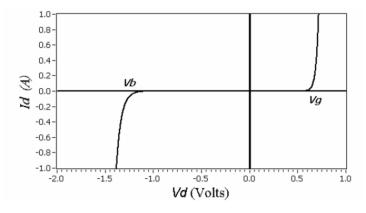
$$I = I_{S} \left(e^{\frac{qV}{kT}} - 1 \right) = I_{S} \left(e^{\frac{V}{V_{T}}} - 1 \right)$$

 I_{s} corrente (inversa se V < 0) di saturazione

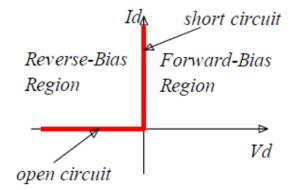
 $I_{\scriptscriptstyle S}$ molto piccola, aumenta rapidamente con T

$$V_T = \frac{kT}{q}$$
 tensione termica ~ 26 meV @ T = 300 K

Iaumenta molto rapidamente con V quando $V \geq 0.7~V$ (Silicio) $I \approx -I_{\rm S}$ quando V < 0;

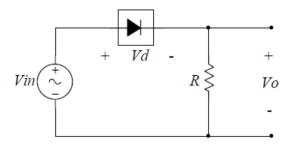

$$\begin{array}{c|c}
Anode & Cathode \\
\hline
Id + Vd -
\end{array}$$

Diodo: Giunzione pn

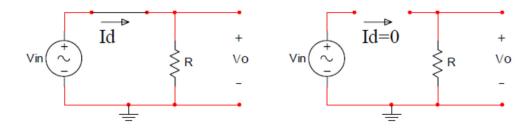

Caratteristica I - V $\left\{ egin{array}{ll} & \mbox{non lineare} \\ \mbox{dipendente dalla polarita' di V} \end{array} \right.$

 $V_{\rm g}$: tensione di ON ~ 0.6 -0.7 V per Si

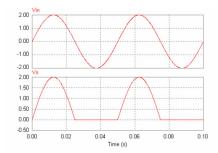
 V_b : tensione di breakdown, variabile entro limiti molto larghi

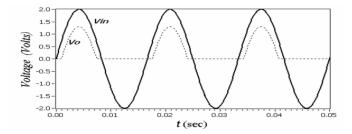


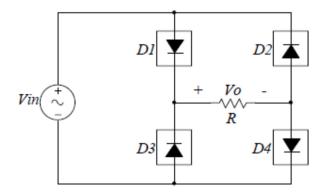
Approssimazione drastica:

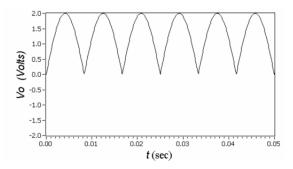


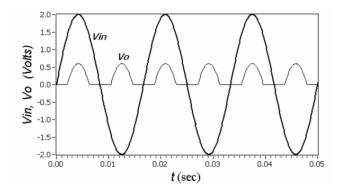
Circuiti con diodi


a) Raddrizzatore a una semionda

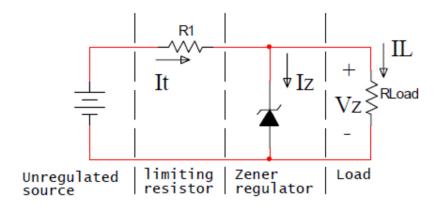

Circuiti equivalenti per V > 0 e V < 0


Risultato, approx drastica:


Risultato, approx realistica:


b) Raddrizzatore a due semionde

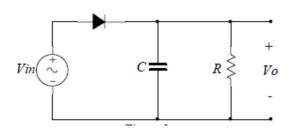
Risultato, approx drastica:



Risultato, approx realistica:

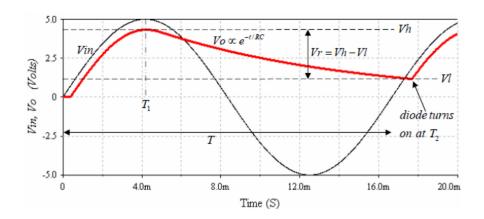
c)Regolatore di tensione:

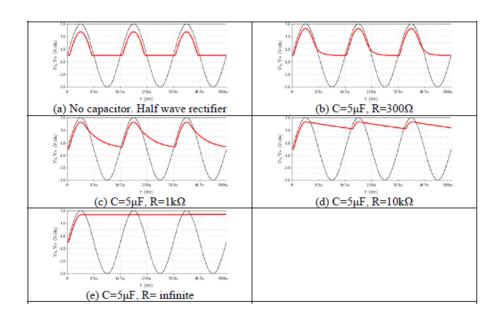
Sfrutta la tensione di breakdown


$$I_L = \frac{V_Z}{R_L}$$
 corrente nel carico $I_L + I_Z = I_T$ corrente totale

Per V_{in} variabile (\leftarrow instabile):

 $V_Z = \mathrm{cost} \rightarrow I_L$ stabilizzata $\rightarrow V_L = V_Z$ stabilizzata


d) Raddrizzatore migliorato:

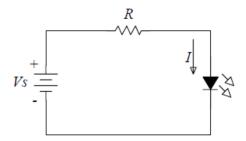

Aggiunta di una capacita' in parallelo al carico

Semi-ciclo positivo: Diodo \sim c.chiuso $\rightarrow V_{out} \sim V_C \sim V_{in}$ Semi-ciclo negativo: Diodo \sim c.aperto $\rightarrow C$ si scarica attraverso R

ightarrow Se $RC \gg periodo$, riduzione dell'andamento pulsato di V_{out}

e) LED

Emissione di luce al passaggio di corrente, continua o variabile

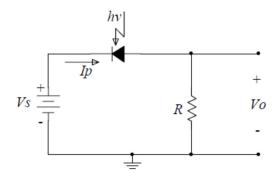

Meccanismo:

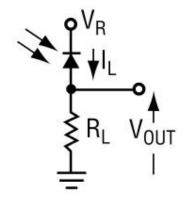
Ricombinazione e - h nello strato di svuotamento quando il diodo e' in conduzione

Intensita' luminosa ∝ Corrente

Colore luce: dipende da $E_{\rm \it gap}$

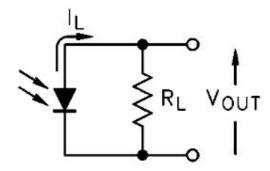
Materiali vari, non $Si:V_g \sim 1.5-2.5 \ V$




f) Fotodiodo

Passaggio di corrente in presenza di radiazione luminosa quando il diodo e' interdetto

Meccanismo:


Formazione di coppia e - h nell'assorbimento di 1 fotone

Modo fotoconduttivo:

Richiede polarizzazione inversa

Modo fotovoltaico:

Usato nelle celle solari

Proprieta' resistive e reattive del diodo

a) Resistive

Pol. inversa:

$$R_{eq} \to \infty$$

Pol. diretta:

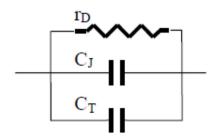
$$\begin{split} I &= I_{S} \left(e^{\frac{V}{V_{T}}} - 1 \right) \\ \frac{dI}{dV} &= \frac{I_{S}}{V_{T}} \left(e^{\frac{V}{V_{T}}} - 1 \right) \approx \frac{I}{V_{T}} \\ &\to R_{din} \approx \frac{V_{T}}{I} \sim \frac{0.026}{I} \Omega = 26 \ \Omega \ @ \ I = 1 \ mA \end{split}$$

b) Reattive

- Capacita' di transizione \sim Cap. del depletion layer

$$C_T = \frac{A}{V^{\alpha}}, \quad A, \alpha$$
 dipendente dal tipo di giunzione

Dominante per pol. inversa


- Capacita' di diffusione: dovuta allo storage di carica nella giunzione

 $Q = I\tau_{\scriptscriptstyle F}, \quad \ \ \, au_{\scriptscriptstyle F}$ tempo di transito dei portatori nella giunzione

$$C = \frac{dQ}{dV} = \tau_F \frac{dI}{dV} = \frac{\tau_F}{V_T} I$$

Dominante per pol. diretta

Circuito equivalente del diodo in conduzione:

