

Higgs-boson spin-parity and width

Roberto Covarelli

Seminario Universitá di Torino, 24 Novembre 2012

Outline

- The LHC and the CMS detector
- After Higgs discovery
- Spin-parity measurement
 - The «MELA» technique
- Width measurement
 - Theory review of off-shell Higgs production
 - Experimental techniques and combination with on-shell analysis
 - Upper limits on Higgs width and combination

LHC and CMS

Higgs production mechanisms

- Main production mechanisms at pp colliders
 - DIS: $p = 3q (+g + \overline{q})$

Higgs decay modes

Here we examine the ZZ decay mode

There are many more

R. Covarelli

After Higgs discovery

- Great progress since "Higgs boson" discovery in CMS
 - Observation in boson decay channels
 - Evidence in fermion channels
 - Mass determination
 - CMS measurement:
 125.1 ± 0.4(stat.) ± 0.2(syst.) GeV

Looks more and more like the SM Higgs boson

Analysis overview

- Phys. Rev. D 89 (2014) 092007
- Use 7 and 8 TeV data (2011-2012)
- Event selections:
 - Two pairs of leptons (electrons or muons), isolated and prompt, of opposite sign and same flavor
 - Z_1 : closest to the Z boson mass Z_2 : the remaining with highest scalar sum of p_T
 - At least one lepton has $p_T > 20$ GeV, and another has $p_T > 10$ GeV
 - ▶ 40 < m_{Z1} < 120 GeV; 12 < m_{Z2} < 120 GeV
- Background:
 - Irreducible background is $q\overline{q} \rightarrow ZZ$, modeled from MC
 - Reducible background is Z+X (Z and WZ, at least one lepton is non-prompt): much smaller, evaluated using a "fake rate" method, with control regions in data

 $H \rightarrow ZZ \rightarrow 2121'$

How to measure a particle spin-parity?

- Infer from kinematics of decay products (in particular angles in space)
- Simplest case: $pp \rightarrow S \rightarrow S_1S_2$
 - No spin: spherical-harmonic part of the mother particle's wavefunction is constant → isotropic decay (no preferred direction for decay product emission)
- Other important cases:
 - ▶ pp → S → V₁V₂ : $\cos\theta^*$ (angle between pp-axis and V₁ direction) has a peculiar distribution depending on V polarization. For massless V (= only transversely polarized): $\frac{dN}{d\cos\theta^*} \sim \cos^2\theta^*$
 - pp → S → V₁V₂ → 4f : up to 7 independent angles/quantities to be analyzed, some of those independent of production plane («helicity angles»)

Input variables

▶ $pp \rightarrow H \rightarrow ZZ \rightarrow 4I =$ $pp \rightarrow S \rightarrow V_1V_2 \rightarrow 4f$

MELA discriminant

In the matrix element likelihood approach (MELA), design specific discriminants for J^P = 0⁺ vs. other hypotheses:

$$\mathcal{D}_{J^P} = \frac{\mathcal{P}_{0^+}^{\mathrm{kin}}}{\mathcal{P}_{0^+}^{\mathrm{kin}} + \mathcal{P}_{\mathrm{bkg}}^{\mathrm{kin}}} = \left[1 + \frac{\mathcal{P}_{J^P}^{\mathrm{kin}}(m_{Z_1}, m_{Z_2}, \vec{\Omega} | m_{4\ell})}{\mathcal{P}_{0^+}^{\mathrm{kin}}(m_{Z_1}, m_{Z_2}, \vec{\Omega} | m_{4\ell})}\right]^{-1}.$$

- Built with 7 variables completely describing kinematics (m_{Z1}, m_{Z2}, five angles)
- P_{0+,(JP)} are joint probabilities for scalar particle or alternative hypotheses

Example: Higgs vs. pseudoscalar or spin-2

Spin-parity results

- «Toy-MonteCarlo» method:
 - Generate many fake datasets (same size as the observed data) corresponding to 0⁺ or alternative spin-parity hypotheses
 - Compute likelihood ratio for each dataset
 - Compare to observation

Property measurements - width

- Direct decay width measurements at the peak limited by experimental resolution:
 - $\underline{f(m)} \sim \underline{BW(m, \Gamma)} \otimes \underline{R(m, \sigma)}$
 - If $\Gamma \leq \sigma$, not possible to disentangle natural width
 - SM Higgs width at $m_H = 125.0 \text{ GeV}$ is $\Gamma_H = 4.15 \text{ MeV}$
 - Experimental resolution is $\sigma \sim 1-3$ GeV for $H \rightarrow ZZ \rightarrow 4I$

A different idea...

 Assume a dummy (relativistic BW) resonance "R" with
 m = 100 and variable width

$$f(m) \sim \frac{1}{(m^2 - m_R^2)^2 + m_R^2 \Gamma_R^2}$$

• **On-shell:**
$$\int_{m_R-n\Gamma_R}^{m_R+n\Gamma_R} f(m)dm \sim \frac{1}{m_R\Gamma_R}$$

• Off-shell:
$$\int_{m_0}^{+\infty} f(m) dm \sim \frac{1}{m_0^2}$$

- Ratio of the two gives Γ !
- Experimentally, this never worked before because of tiny off-shell yields and backgrounds

Higgs decays

Summary by D. De Florian @ Higgs Couplings 2013

Decay amplitude can produce a significant deformation of the Higgs lineshape

Threshold effects

$$|\mathcal{M}_d(H \to f\bar{f})|^2 \sim M_f^2 q^2 \quad \text{for } \sqrt{q^2} \gtrsim 2 M_f$$
$$|\mathcal{M}_d(H \to VV)|^2 \sim (q^2)^2 \quad \text{for } \sqrt{q^2} \gtrsim 2 M_V$$

resulting in a lineshape strongly enhanced at large virtualities

The idea in detail

N. Kauer and G. Passarino (JHEP 08 (2012) 116)

gluon-gluon fusion production

• Off-shell $H^* \rightarrow VV (V = W, Z)$

Peculiar cancellation between BW trend and decay amplitude creates an enhancement of H(125) cross-section at high m_{VV}

$$\frac{d\sigma_{\rm gg \to H \to ZZ}}{dm_{ZZ}^2} \propto g_{\rm ggH}g_{\rm HZZ} \frac{F(m_{ZZ})}{(m_{ZZ}^2 - m_{\rm H}^2)^2 + m_{\rm H}^2\Gamma_{\rm H}^2}$$

About 7.6% of total cross-section in the ZZ final state, but can be enhanced by experimental cuts

	${\rm Tot}[{\rm pb}]$	$M_{\rm ZZ}>2M_Z[\rm pb]$	R[%]
$gg \to H \to \text{ all}$	19.146	0.1525	0.8
$gg \to H \to ZZ$	0.5462	0.0416	7.6

Constraint on width F. Caola, K. Melnikov (Phys. Rev. D88 (2013) 054024) J. Campbell et al. (arXiv:1311.3589)

$$\frac{d\sigma_{\rm gg \rightarrow H \rightarrow ZZ}}{dm_{ZZ}^2} \propto g_{\rm ggH}g_{\rm HZZ} \frac{F(m_{ZZ})}{(m_{ZZ}^2 - m_{\rm H}^2)^2 + m_{\rm H}^2\Gamma_{\rm H}^2}$$

Can be used to set a constraint on the total Higgs width:

$$\sigma_{gg \to H \to ZZ}^{on-peak} = \frac{\kappa_g^2 \kappa_Z^2}{r} (\sigma \cdot BR)_{SM} \equiv \mu \sigma \cdot BR)_{SM} \qquad \qquad \kappa_g = g_{ggH} / g_{ggH}^{SM} \\ \frac{d\sigma_{gg \to H \to ZZ}^{off-peak}}{dm_{ZZ}} = \kappa_g^2 \kappa_Z^2 \frac{d\sigma_{gg \to H \to ZZ}^{off-peak,SM}}{dm_{ZZ}} = \mu r \frac{d\sigma_{gg \to H \to ZZ}^{off-peak,SM}}{dm_{ZZ}} \qquad \qquad r = \Gamma_H / \Gamma_H^{SM}$$

• Once the "signal strength" μ is fixed from an independent source a determination of r is obtained

g_0000

The 41 and 212v final states

- 4l final state ($I = e, \mu$)
 - At high mass, basically only background is qq̄ → ZZ
 - Fully reconstructed state → can use matrix element probabilities of lepton 4-vectors to distinguish between gg and qq production
- > 2I2v final state (I = e, μ)
 - Much larger BR (x6) but smaller acceptance (tight p_T selection)
 - Rely on transverse mass distributions

Yields in signal-enriched region

21

$H \to Z Z \to 2l 2 \nu$

Analysis overview

- 6 times higher branching fraction compared to 4l final state
 - Branching ratio matters in high mass region where cross section is low
- Use only 8 TeV data
- Z+jets background is several orders of magnitude higher (fake E^{miss} due to hadronic energy mis-measurement)
- Other backgrounds
 - Irreducible: non-resonant ZZ, WZ
 - Non-resonant (not involving a Z boson): top production, WW
- Analysis variable is transverse mass:

$$m_{\rm T}^2 = \left[\sqrt{p_{{\rm T},\ell\ell}^2 + m_{\ell\ell}^2} + \sqrt{E_{\rm T}^{\rm miss^2} + m_{\ell\ell}^2}\right]^2 - \left[\vec{p}_{{\rm T},\ell\ell} + \vec{E}_{{\rm T}}^{\rm miss}\right]^2$$

$m_{\rm T}$ distribution and yields

Systematic uncertainties

- Theoretical uncertainties
 - QCD renormalization and factorization scales
 - Variation of Parton Distribution Functions (PDFs)
- Experimental uncertainties
 - Lepton trigger, identification, isolation efficiencies
 - In the 2l2v analysis, uncertainties on and jet energy scale are propagated to E_T^{miss}
 - Background estimations from data
 - Uncertainty on integrated luminosity
 - Limited statistics in MC or data control samples

Combined results

The 13 TeV run

- A I3-TeV run is ongoing (2016-2018) expect > 100 fb⁻¹
- Next steps:
 - Measure fraction of pseudoscalar component (if Higgs is not a P eigenstate)

Back up

41 mass

Input to Dgg in signal-enriched region

Yields vs width (loose Missing ET cut)

Systematics

Source	Uncertainty [%]		
Experimental uncertainties			
Luminosity	2.6		
Anti b-tagging	1-3		
Lepton ID+Isolation	2		
Lepton momentum scale	1-2		
Jet energy scale	1		
PU effects, uE_T^{miss}	1-3		
Trigger	2		
non-resonant background estimation from data	15+shape		
Z+jets estimation from data	25+shape		
Theory uncertainties			
pdf, gluon-gluon initial state	6-11		
pdf, quark-quark initial state	3.3-7.6		
QCD scale, gluon-gluon initial state (ggZZ)	7+shape		
QCD scale, quark-quark initial state (qqVV)	5.8-8.5+shape		
$gg \rightarrow ZZ$ k-factor uncertainty	10		
Underlying event and parton shower	6		

Effect of Γ / coupling scalings

R. Covarelli

PHANTOM settings

LO generation

- NNLO/LO k-factor is 6% and independent on m_{ZZ} (from CERN Yellow Report 3)
- Do not apply explicitly, normalize cross-section at the peak relatively to ggF
- Central scale mZZ/ $\sqrt{2}$
 - Same scale and PDF variations as ggF \rightarrow effect much smaller (1-2%)
- Signal, background, interference not available separately. Generate total amplitudes with r = 1, 10, 25 (and equal coupling scalings) and extract the 3 components from:

$$\begin{pmatrix} p_1\\p_{10}\\p_{25} \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1\\10 & \sqrt{10} & 1\\25 & 5 & 1 \end{pmatrix} \begin{pmatrix} S\\I\\B \end{pmatrix}$$

$$\mathcal{D}_{\mathrm{gg},a} = \frac{\mathcal{P}_{\mathrm{gg},a}}{\mathcal{P}_{\mathrm{gg},a} + \mathcal{P}_{\mathrm{q}\bar{\mathrm{q}}}} = \left[1 + \frac{\mathcal{P}_{\mathrm{bkg}}^{\mathrm{q}\bar{\mathrm{q}}}}{a \times \mathcal{P}_{\mathrm{sig}}^{\mathrm{gg}} + \sqrt{a} \times \mathcal{P}_{\mathrm{int}}^{\mathrm{gg}} + \mathcal{P}_{\mathrm{bkg}}^{\mathrm{gg}}}\right]^{-1}$$

Depends on parameter a (relative weight of signal in the likelihood ratio). Since the expected exclusion is r ~ 10, use a = 10

$2l_{2v}$: breakdown by channel

μμ

Results with no systematics

37