

Higgs-boson spin-parity and width

Roberto Covarelli

Seminario Universitá di Torino, 24 Novembre 2012

Outline

- The LHC and the CMS detector
- After Higgs discovery
- Spin-parity measurement
* The «MELA» technique
- Width measurement
- Theory review of off-shell Higgs production
- Experimental techniques and combination with on-shell analysis
- Upper limits on Higgs width and combination

LHC and CMS

CMS Detector

Pixels Tracker ECAL HCAL Solenoid Steel Yoke Muons

STEREL RETURN YOKR
~13000 tonnes

Brass + plastic scintillator $\sim 7 \mathrm{k}$ channels

SIILCON TRRACKRRR
Pixels ($100 \times 150 \mu \mathrm{~m}^{2}$) $\sim 1 \mathrm{~m}^{2} \quad \sim 66 \mathrm{M}$ channels

Microstrips ($80-180 \mu \mathrm{~m}$) $\sim 200 \mathrm{~m}^{2} \quad \sim 9.6 \mathrm{M}$ channels

CRYSTAL ELLECTROMAGNETIC CALORIMIETER (ECAL)
$\sim 76 \mathrm{k}$ scintillating PbWO_{4} crystals

PRESEHOWIRR
Silicon strips
$\sim 16 \mathrm{~m}^{2} \quad \sim 137 \mathrm{k}$ channels

PORWARD
CAILORIMIETER
Steel + quartz fibres $\sim 2 \mathrm{k}$ channels

MUON CIBIAMTBRIRTR

Barrel: 250 Drift Tube \& 480 Resistive Plate Chambers Endcaps: 468 Cathode Strip \& 432 Resistive Plate Chambers

Higgs production mechanisms

- Main production mechanisms at pp colliders
- DIS: $p=3 q(+g+\bar{q})$

Gluon-gluon Fusion (ggF)

Higgs decay modes

- Here we examine the ZZ decay mode
, There are many more

After Higgs discovery

- Great progress since "Higgs boson" discovery in CMS
- Observation in boson decay channels
- Evidence in fermion channels
- Mass determination
- CMS measurement: $125 . I \pm 0.4$ (stat.) ± 0.2 (syst.) GeV

Looks more and more like the SM Higgs boson

$$
\mu=\sigma / \sigma_{S M}
$$

Analysis overview

- Phys. Rev. D 89 (2014) 092007
- Use 7 and 8 TeV data (20II-20I2)
- Event selections:
- Two pairs of leptons (electrons or muons), isolated and prompt, of opposite sign and same flavor
- Z_{1} : closest to the Z boson mass Z_{2} : the remaining with highest scalar sum of $\mathrm{P}^{\text {T }}$
- At least one lepton has $\mathrm{pt}^{2}>20 \mathrm{GeV}$, and another has $\mathrm{pt}^{>}>10 \mathrm{GeV}$
- $40<\mathrm{mzI}<120 \mathrm{GeV} ; \mathrm{I} 2<\mathrm{mzz}<120 \mathrm{GeV}$
- Background:
- Irreducible background is $q \bar{q} \rightarrow Z Z$, modeled from MC
- Reducible background is $Z+X$ (Z and WZ, at least one lepton is non-prompt): much smaller, evaluated using a "fake rate" method, with control regions in data

$\mathrm{H} \rightarrow \mathrm{ZZ} \rightarrow 2121^{\prime}$

CMS Experiment at LHC, CERN
Data recorded: Mon May 28 01:35:47 2012 CEST Run/Event: 195099 / 137440354
Lumi section: 115

How to measure a particle spin-parity?

- Infer from kinematics of decay products (in particular angles in space)
- Simplest case: $\mathrm{Pp} \rightarrow \mathrm{S} \rightarrow \mathrm{S}_{1} \mathrm{~S}_{2}$
- No spin: spherical-harmonic part of the mother particle's wavefunction is constant \rightarrow isotropic decay (no preferred direction for decay product emission)
- Other important cases:
${ }^{1} \mathrm{Pp} \rightarrow \mathrm{S} \rightarrow \mathrm{V}_{1} \mathrm{~V}_{2}: \cos \theta^{*}$ (angle between pp -axis and $\mathrm{V}_{\text {}}$, direction) has a peculiar distribution depending on V polarization. For massless V (= only transversely polarized): $\mathrm{dN} / \mathrm{d} \cos \theta^{*} \sim \cos ^{2} \theta^{*}$
, $\mathrm{PP} \rightarrow \mathrm{S} \rightarrow \mathrm{V}_{1} \mathrm{~V}_{2} \rightarrow 4 \mathrm{f}$: up to 7 independent angles/quantities to be analyzed, some of those independent of production plane («helicity angles»)

Input variables

$\mathrm{PP} \rightarrow \mathrm{H} \rightarrow \mathrm{ZZ} \rightarrow 4 \mathrm{I}=$
$\mathrm{PP} \rightarrow \mathrm{S} \rightarrow \mathrm{V}_{1} \mathrm{~V}_{2} \rightarrow 4 \mathrm{f}$

- SM H(125 GeV)

0 - (125 GeV)
2+m (125 GeV) qqZZ

MELA discriminant

- In the matrix element likelihood approach (MELA), design specific discriminants for $\mathrm{J}^{\mathrm{P}}=0^{+}$vs. other hypotheses:
$\mathscr{D}_{J^{P}}=\frac{\mathscr{P}_{0^{+}}^{\text {kin }}}{\mathscr{P}_{0^{+}}^{\text {kin }}+\mathscr{P}_{\text {bkg }}^{\text {kin }}}=\left[1+\frac{\mathscr{P}_{J^{P}}^{\text {kin }}\left(m_{Z_{1}}, m_{Z_{2}}, \vec{\Omega} \mid m_{4 \ell}\right)}{\mathscr{P}_{0^{+}}\left(m_{Z_{1}}, m_{Z_{2}}, \vec{\Omega} \mid m_{4 \ell}\right)}\right]^{-1}$.
- Built with 7 variables completely describing kinematics $\left(m_{z 1}, m_{z 2}\right.$, five angles)
- $\mathrm{P}_{0+,(\mathrm{P})}$ are joint probabilities for scalar particle or alternative hypotheses

Example: Higgs vs. pseudoscalar or spin-2

Spin-parity results

- «Toy-MonteCarlo» method:
- Generate many fake datasets (same size as the observed data) corresponding to 0^{+}or alternative spin-parity hypotheses
- Compute likelihood ratio for each dataset
- Compare to observation

R. Covarelli

Property measurements - width

- Direct decay width measurements at the peak limited by experimental resolution:
- $\underline{f(m)} \sim \underline{B W}(m, \Gamma) \otimes \underline{R}(m, \sigma)$
- If $\Gamma \ll \sigma$, not possible to disentangle natural width
- SM Higgs width at $\mathrm{m}_{\mathrm{H}}=125.0 \mathrm{GeV}$ is $\Gamma_{\mathrm{H}}=4.15 \mathrm{MeV}$
- Experimental resolution is $\sigma \sim \mathrm{I}-3 \mathrm{GeV}$ for $\mathrm{H} \rightarrow \mathrm{ZZ} \rightarrow 4 \mathrm{I}$

A different idea...

- Assume a dummy (relativistic BW) resonance " R " with $\mathrm{m}=100$ and variable width

$$
f(m) \sim \frac{1}{\left(m^{2}-m_{R}^{2}\right)^{2}+m_{R}^{2} \Gamma_{R}^{2}}
$$

On-shell: $\int_{m_{R}-n \Gamma_{R}}^{m_{R}+n \Gamma_{R}} f(m) d m \sim \frac{1}{m_{R} \Gamma_{R}}$

- Off-shell: $\int_{m_{0}}^{+\infty} f(m) d m \sim \frac{1}{m_{0}^{2}}$
- Ratio of the two gives Γ !
- Experimentally, this never worked before because of tiny off-shell yields and backgrounds
m

Higgs decays

Decay amplitude can produce a significant deformation of the Higgs lineshape
Threshold effects

$$
\begin{array}{ll}
\left|\mathcal{M}_{d}(H \rightarrow f \bar{f})\right|^{2} \sim M_{f}^{2} q^{2} & \text { for } \sqrt{q^{2}} \gtrsim 2 M_{f} \\
\left|\mathcal{M}_{d}(H \rightarrow V V)\right|^{2} \sim\left(q^{2}\right)^{2} \quad \text { for } \sqrt{q^{2}} \gtrsim 2 M_{V}
\end{array}
$$

can compensate the $\frac{1}{q^{4}}$ in

$$
D_{H}\left(q^{2}\right)=\frac{1}{\left(q^{2}-M_{H}^{2}\right)^{2}+\Gamma_{H}^{2} M_{H}^{2}}
$$

resulting in a lineshape strongly enhanced at large virtualities

The idea in detail

Off-shell $\mathrm{H}^{*} \rightarrow \mathrm{VV}(\mathrm{V}=\mathrm{W}, \mathrm{Z})$

gluon-gluon fusion production

Peculiar cancellation between BW trend and decay amplitude creates an enhancement of $\mathrm{H}(\mathrm{I} 25)$ cross-section at high m_{V}

$$
\frac{d \sigma_{\mathrm{gg}} \rightarrow \mathrm{H} \rightarrow \mathrm{ZZ}}{d m_{\mathrm{ZZ}}^{2}} \propto g_{\mathrm{gg}} \mathrm{H} \mathrm{H}_{\mathrm{HZZ}} \frac{F\left(m_{\mathrm{ZZ}}\right)}{\left(m_{\mathrm{ZZ}}^{2}-m_{\mathrm{H}}^{2}\right)^{2}+m_{\mathrm{H}}^{2} \Gamma_{\mathrm{H}}^{2}}
$$

- About 7.6\% of total cross-section in the ZZ final state, but can be enhanced by experimental cuts

Constraint on width

$$
\frac{d \sigma_{\mathrm{gg} \rightarrow \mathrm{H} \rightarrow \mathrm{ZZ}}}{d m_{\mathrm{ZZ}}^{2}} \propto g_{\mathrm{gg}} g_{\mathrm{HZZ}} \frac{F\left(m_{\mathrm{ZZ}}\right)}{\left(m_{\mathrm{ZZ}}^{2}-m_{\mathrm{H}}^{2}\right)^{2}+m_{\mathrm{H}}^{2} \Gamma_{\mathrm{H}}^{2}}
$$

Can be used to set a constraint on the total Higgs width:

$$
\begin{aligned}
& \left.\sigma_{\mathrm{gg} \rightarrow \mathrm{H} \rightarrow \mathrm{ZZ}}^{\text {on-peak }}=\frac{\kappa_{\mathrm{g}}^{2} \kappa_{\mathrm{Z}}^{2}}{r}(\sigma \cdot \mathrm{BR})_{\mathrm{SM}} \equiv \bumpeq \sigma \cdot \mathrm{BR}\right)_{\mathrm{SM}} \\
& \frac{d \sigma_{\mathrm{gg} \rightarrow \mathrm{H} \rightarrow \mathrm{ZZ}}^{\text {off }}}{d m_{\mathrm{ZZ}}}=\kappa_{\mathrm{g}}^{2} \kappa_{\mathrm{Z}}^{2} \frac{d \sigma_{\mathrm{gg} \rightarrow \mathrm{H} \rightarrow \mathrm{ZZ}}^{\text {off-peak }}}{d m_{\mathrm{ZZ}}}=\mu r \sigma_{\mathrm{gg} \rightarrow \mathrm{H} \rightarrow \mathrm{ZZ}}^{d \sigma_{\mathrm{ZZ}}}
\end{aligned}
$$

$$
\begin{aligned}
& \kappa_{g}=g_{\mathrm{ggH}} / g_{\mathrm{ggH}}^{\mathrm{SM}} \\
& \kappa_{\mathrm{Z}}=g_{\mathrm{HZZ}} / g_{\mathrm{HZZ}}^{\mathrm{HM}} \\
& r=\Gamma_{\mathrm{H}} / \Gamma_{\mathrm{H}}^{\mathrm{SM}}
\end{aligned}
$$

- Once the "signal strength" μ is fixed from an independent source a determination of r is obtained
- Caution: the interference with continuum $g g \rightarrow Z Z$ is not negligible at high m_{Zz}

The 41 and $212 v$ final states

Generator-level distributions with approximated CMS
experimental cuts

- $4 \mid$ final state $(I=e, \mu)$
- At high mass, basically only background is $q \bar{q} \rightarrow \mathrm{ZZ}$
- Fully reconstructed state \rightarrow can use matrix element probabilities of lepton 4 -vectors to distinguish between gg and qव production
- $212 v$ final state ($l=e, \mu$)
- Much larger BR (x6) but smaller acceptance (tight P_{T} selection)
- Rely on transverse mass distributions

Yields in signal-enriched region

$\mathrm{H} \rightarrow \mathrm{ZZ} \rightarrow 212 v$

Analysis overview

- 6 times higher branching fraction compared to 41 final state
- Branching ratio matters in high mass region where cross section is low
- Use only 8 TeV data
- Z+jets background is several orders of magnitude higher (fake ETmiss due to hadronic energy mis-measurement)
- Other backgrounds
- Irreducible: non-resonant ZZ, WZ
- Non-resonant (not involving a Z boson): top production, WW
- Analysis variable is transverse mass:

$$
m_{\mathrm{T}}^{2}=\left[\sqrt{p_{\mathrm{T}, \ell \ell^{2}}+m_{\ell \ell}{ }^{2}}+\sqrt{E_{\mathrm{T}}^{\text {miss }}{ }^{2}+m_{\ell \ell^{2}}}\right]^{2}-\left[\vec{p}_{T, \ell \ell}+\vec{E}_{T}^{\text {miss }}\right]^{2}
$$

m_{T} distribution and yields

		ee	$\mu \mu$
	gg signal $\left(\Gamma_{\mathrm{H}}=\Gamma_{\mathrm{H}}^{\mathrm{SM}}\right)$	2.2 ± 0.3	2.6 ± 0.3
	gg background	4.9 ± 0.8	5.9 ± 0.9
(a)	total $\operatorname{gg}\left(\Gamma_{\mathrm{H}}=\Gamma_{\mathrm{H}}^{\mathrm{SM}}\right)$	4.4 ± 0.7	5.3 ± 0.8
(b)	total gg $\left(\Gamma_{\mathrm{H}}=10 \times \Gamma_{\mathrm{H}}^{\mathrm{SM}}\right)$	18.3 ± 2.5	21.5 ± 2.7
	VBF signal $\left(\Gamma_{\mathrm{H}}=\Gamma_{\mathrm{H}}^{\mathrm{SM}}\right)$	0.15 ± 0.01	0.17 ± 0.01
	VBF background	0.56 ± 0.04	0.66 ± 0.04
(c)	total VBF $\left(\Gamma_{\mathrm{H}}=\Gamma_{\mathrm{H}}^{\mathrm{SM}}\right)$	0.43 ± 0.03	0.48 ± 0.03
(d)	total VBF $\left(\Gamma_{\mathrm{H}}=10 \times \Gamma_{\mathrm{H}}^{\mathrm{SM}}\right)$	1.14 ± 0.07	1.27 ± 0.07
	$\mathrm{qq} \rightarrow \mathrm{ZZ}$	21.7 ± 2.0	25.9 ± 2.1
(e)	WZ	11.0 ± 1.2	12.7 ± 1.3
	t̄t/tW $/ \mathrm{WW}$	3.3 ± 1.1	4.2 ± 1.4
	$\mathrm{Z}+$ jets	1.5 ± 0.9	2.4 ± 1.4
(a+c+e)	total expected $\left(\Gamma_{\mathrm{H}}=\Gamma_{\mathrm{H}}^{\mathrm{SM}}\right)$	42.3 ± 2.8	51.0 ± 3.2
$(\mathrm{~b}+\mathrm{d}+\mathrm{e})$	total expected $\left(\Gamma_{\mathrm{H}}=10 \times \Gamma_{\mathrm{H}}^{\mathrm{SM}}\right)$	57.0 ± 3.7	67.9 ± 4.2
	observed	39	52

Systematic uncertainties

- Theoretical uncertainties
- QCD renormalization and factorization scales
- Variation of Parton Distribution Functions (PDFs)
- Experimental uncertainties
- Lepton trigger, identification, isolation efficiencies
- In the $212 v$ analysis, uncertainties on and jet energy scale are propagated to $\mathrm{E}^{\mathrm{m}}{ }^{\text {miss }}$
- Background estimations from data
- Uncertainty on integrated luminosity
- Limited statistics in MC or data control samples

Combined results

Observed (expected) 95\% CL limit:
$r<5.4$ (8.0)
p-value $=0.25$
Best fit value:
$r=0.4^{+1.8}-0.4$

The 13 TeV run

- A $13-\mathrm{TeV}$ run is ongoing (2016-20I8) - expect $>100 \mathrm{fb}^{-1}$
- Next steps:
- Measure fraction of pseudoscalar component (if Higgs is not a P eigenstate)
- Measure Higgs width!!!

CMS Integrated Luminosity, pp, 2016, $\sqrt{s}=13 \mathrm{TeV}$

R. Covarelli

Back up

41 mass

Input to Dgg in signal-enriched region

Yields vs width (loose Missing ET cut)

Systematics

Source	Uncertainty [\%]
Experimental uncertainties	
Luminosity	2.6
Anti b-tagging	$1-3$
Lepton ID+Isolation	2
Lepton momentum scale	$1-2$
Jet energy scale	1
PU effects, uE Eiss	$1-3$
Trigger	2
non-resonant background estimation from data	$15+$ shape
Z+jets estimation from data	$25+$ shape
Theory uncertainties	
pdf, gluon-gluon initial state	$6-11$
pdf, quark-quark initial state	$3.3-7.6$
QCD scale, gluon-gluon initial state (ggZZ)	$7+$ shape
QCD scale, quark-quark initial state (qqVV)	$5.8-8.5+$ shape
gg \rightarrow ZZ k-factor uncertainty	10
Underlying event and parton shower	6

Effect of Γ / coupling scalings

PHANTOM settings

- LO generation
- NNLO/LO k-factor is 6% and independent on $\mathrm{m}_{\text {zz }}$ (from CERN Yellow Report 3)
- Do not apply explicitly, normalize cross-section at the peak relatively to ggF
- Central scale $m Z Z / \sqrt{ } 2$
- Same scale and PDF variations as ggF \rightarrow effect much smaller (I-2\%)
- Signal, background, interference not available separately. Generate total amplitudes with $\mathrm{r}=\mathrm{I}, \mathrm{I} 0,25$ (and equal coupling scalings) and extract the 3 components from:

$$
\left(\begin{array}{c}
p_{1} \\
p_{10} \\
p_{25}
\end{array}\right)=\left(\begin{array}{ccc}
1 & 1 & 1 \\
10 & \sqrt{10} & 1 \\
25 & 5 & 1
\end{array}\right)\left(\begin{array}{l}
S \\
I \\
B
\end{array}\right)
$$

Full formula of MELA D_{gg}

$$
\mathcal{D}_{\mathrm{gg}, a}=\frac{\mathcal{P}_{\mathrm{gg}, a}}{\mathcal{P}_{\mathrm{gg}, a}+\mathcal{P}_{\mathrm{q} \overline{\mathrm{q}}}}=\left[1+\frac{\mathcal{P}_{\mathrm{bkg}}^{\mathrm{q} \bar{q}}}{a \times \mathcal{P}_{\mathrm{sig}}^{\mathrm{gg}}+\sqrt{a} \times \mathcal{P}_{\mathrm{int}}^{\mathrm{gg}}+\mathcal{P}_{\mathrm{bkg}}^{\mathrm{gg}}}\right]^{-1}
$$

- Depends on parameter a (relative weight of signal in the likelihood ratio). Since the expected exclusion is $r \sim 10$, use $a=10$

212v: breakdown by channel

Results with no systematics

