Laboratorio di Relativita'

II – Postulati di Einstein e trasformazioni di Lorentz

Postulati della Relativita' Ristretta

• I postulato: Principio di relativita' einsteiniano

Le leggi fisiche sono le stesse in ogni SRI

 II postulato: Principio della costanza della velocita' della luce

La velocita' della luce nel vuoto ha lo stesso valore in tutti i SRI

Commenti

- Postulati basati su fatti sperimentali:
 - Impossibile identificare un sistema di riferimento assoluto (etere)
 - Evidenza che qualunque misura della velocita' della luce nel vuoto da' il valore c, indipendentemente dal SRI usato
- Conseguenze
 - Le equazioni della fisica sono invarianti in forma nel passare da un SRI ad un altro
 - Le trasformazioni di Galilei devono evidentemente essere sostituite

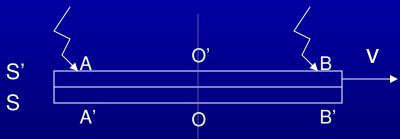
Relativita' della simultaneita' - I

Due SRI, S e S', in moto relativo; S' ha velocita' v rispetto a S

Per t = 0, origini O, O' coincidenti

Punti *A,A*'e *B,B*'simmetrici rispetto a *O,O*'

Due eventi: caduta di due fulmini nei punti $A \in B (=A',B')$ per t=0



A causa della velocita' finita di propagazione della luce:

Per O, fermo in S, equidistante da A e B : eventi simultanei Per O', fermo in S': eventi non simultanei: B' arriva prima di A', perche' i tempi di arrivo sono diversi, pur essendo uguali distanze e velocita' (c e' la stessa in tutti i SRI)

Relativita' della simultaneita' - II

Ma: per il principio di relativita', il punto di vista di *O'* e' valido quanto quello di *O*. Poiche' per *O'* gli eventi non sono simultanei [il flash di A' arriva prima di quello di B', pur essendo i due punti equidistanti da O' e c uguale per tutti e due], questa dovrebbe anche essere la conclusione di *O*, in contrasto con quanto dedotto dallo stesso *O* nel SRI *S*. Chi ha ragione?

Nessuno dei due, o tutti e due La simultaneita' di due eventi non ha significato assoluto

Relativita' della simultaneita' - III

Attenzione agli equivoci!

L'indipendenza di *c* dal *SRI* e' essenziale: per ipotesi, *O* e *O'* conoscono la loro velocita' relativa; quindi, <u>se la vel.</u> della luce dipendesse dal SRI usato, *O'* potrebbe correggere i tempi di arrivo che osserva per i due flash e concludere anche lui che gli eventi sono simultanei:

$$T_{B}' = t_{B}' - \frac{L}{2(c+v)}, T_{A}' = t_{A}' - \frac{L}{2(c-v)} = T_{B}'$$
 secondo TdG

Questo e' cio' che faremmo p.es., nel caso di segnali sonori. La simultaneita' in questo caso avrebbe significato assoluto

Conseguenze...

La relativita' della simultaneita' fa prevedere conseguenze

Misura delle lunghezze: si effettua localizzando <u>simultaneamente</u> gli estremi di un oggetto. Se la simultaneita' e' relativa, metri in movimento relativo segnano lunghezze diverse

→ La distanza spaziale dipende dal SRI usato!

Misura dei tempi: si effettua localizzando <u>simultaneamente</u> la posizione delle lancette. Se la simultaneita' e' relativa, orologi in moto relativo segnano un tempo diverso

→ L'intervallo temporale dipende dal SRI usato!

La trasformazione di Lorentz - I

• Come si descrive, nei soliti due SRI, *S* e *S'*, la propagazione del fronte d'onda sferico propagato da un breve flash luminoso?

$$S: x^{2} + y^{2} + z^{2} = c^{2}t^{2}$$

$$S': x'^{2} + y'^{2} + z'^{2} = c^{2}t'^{2}$$

• Le coordinate *x,y,z,t* rappresentano l'evento "Arrivo del fronte d'onda nel punto P(x,y,z) al tempo t", visto in S; le coordinate con il primo rappresentano lo stesso evento, visto in S'

$$x^{2} + y^{2} + z^{2} - c^{2}t^{2} = 0$$

$$x^{2} + y^{2} + z^{2} - c^{2}t^{2} = 0$$

$$x^{2} + y^{2} + z^{2} - c^{2}t^{2} = x^{2} + y^{2} + z^{2} + z$$

La trasformazione di Lorentz - II

Relazione fondamentale:

$$x^{2} + y^{2} + z^{2} - c^{2}t^{2} = x'^{2} + y'^{2} + z'^{2} - c^{2}t'^{2}$$

Invarianza dell'*intervallo* (spazio-temporale) fra due eventi, rispetto a trasformazioni di coordinate fra due SRI

Come e' fatta la trasformazione, che deve sostituire le TdG?

- Deve essere lineare (perche' un moto uniforme deve trasformarsi in un moto uniforme...)
- Le coordinate trasversali rispetto a v devono rimanere invariate
- Deve lasciare invariato l'intervallo definito sopra (costanza di c...)

La trasformazione di Lorentz - III

Dalle premesse di puo' dedurre la forma delle trasformazioni di Lorentz.

Per il caso in cui:

S, S' hanno assi paralleli

$$\mathbf{v} \parallel \mathbf{x}$$

S, S' hanno origini coincidenti per t = t' = 0

esse sono:

$$x' = \frac{1}{\sqrt{1 - v^2/c^2}} (x - vt)$$

$$y' = y$$

$$z' = z$$

$$t' = \frac{1}{\sqrt{1 - v^2/c^2}} (t - vx/c^2)$$

Nel caso generale, equazioni simili, piu' complicate, nelle quali compaiono tutte le componenti della velocita' relativa

La trasformazione di Lorentz - IV

Trasformazione inversa: si trova

$$x = \frac{1}{\sqrt{1 - v^2/c^2}} (x' + vt')$$

$$y = y'$$

$$z = z'$$

$$t = \frac{1}{\sqrt{1 - v^2/c^2}} (t' + vx'/c^2)$$

Conformemente all'intuizione, essa si ottiene cambiando v in -v, che e' la velocita' di S vista da S'.

Notazione usata universalmente:

$$\beta = \frac{\mathbf{v}}{c}, \quad \gamma = \frac{1}{\sqrt{1 - \mathbf{v}^2/\mathbf{c}^2}} \equiv \frac{1}{\sqrt{1 - \beta^2}}$$

TdL→TdG

Nel limite di piccole velocita':

$$x' = \frac{1}{\sqrt{1 - v^2/c^2}} (x - vt) \xrightarrow{\frac{v}{c} \to 0} x - vt$$

$$y' = y$$

$$z' = z$$

$$t' = \frac{1}{\sqrt{1 - v^2/c^2}} (t - vx/c^2) \xrightarrow{\frac{v}{c} \to 0} t$$

Le trasformazioni di Lorentz tendono dunque a quelle di Galilei?

Attenzione: se $c \rightarrow \infty$, effettivamente le cose stanno cosi' in senso rigoroso; se pero' c resta finita, allora in senso stretto non e' vero che le TdL vanno nelle TdG. Infatti, se x e' sufficientemente grande $t \neq t$ anche per velocita' basse...

La relativita' della simultaneita' rimane come elemento differenziante fra TdG e TdL anche a piccole velocita'

Conseguenze delle TdL

Tre conseguenze di importanza fondamentale, che istituiscono differenze radicali rispetto alle TdG:

Contrazione delle lunghezze

Perdita della nozione di spazio assoluto: la distanza spaziale fra due punti dipende dal SRI usato per misurarla

Dilatazione dei tempi

Perdita della nozione di tempo assoluto: la distanza temporale fra due eventi dipende dal SRI usato per misurarla

De-sincronizzazione degli orologi

Orologi sincronizzati in un SRI appaiono sfasati, in misura proporzionale alla loro distanza dall'origine, in un altro SRI

Tutte e tre fortemente controintuitive

Contrazione delle lunghezze

Sbarra lunga L nel suo SRI di riposo; qual e' la sua lunghezza in un SRI in cui essa si muove con velocita' v, nella direzione della sua lunghezza?

L =
$$x_2 - x_1$$
 lunghezza nel sistema di riposo

 $L' = x_2'(t') - x_1'(t')$ lunghezza nel sistema in cui la sbarra si muove

 $x_1 = \gamma \left[x_1'(t') + \beta t' \right]$
 $x_2 = \gamma \left[x_2'(t') + \beta t' \right]$
 $\Rightarrow L = \gamma \left[x_2'(t') - x_1'(t') \right] = \gamma L'$
 $\Rightarrow L' = \frac{L}{\gamma} = L\sqrt{1-\beta^2} < L$

Le coordinate che definiscono la lunghezza in S'sono quelle dei punti che concidono *simultaneamente* in S'con gli estremi della sbarra (definizione naturale).

Le distanze *longitudinali* fra punti misurate in un SRI in cui i punti sono in moto sono contratte del fattore $1/\gamma$ rispetto al SRI in cui sono in quiete Le distanze *trasversali* restano invariate nel passare da un SRI ad un altro

Dilatazione dei tempi

Orologio in quiete nell'origine del SRI S: intervallo di tempo fra due eventi = Δt

Intervallo di tempo fra gli stessi eventi misurato in S'_{r} in moto con velocita' ν :

$$\begin{split} \Delta t &= t_2 - t_1 \\ t_1' &= \gamma t_1 \\ t_2' &= \gamma t_2 \end{split} \rightarrow \Delta t' = t_2' - t_1' = \gamma \left(t_2 - t_1 \right) > \Delta t \end{split}$$

Per coppie di eventi che si verifichino in una sola posizione spaziale. l'intervallo temporale fra i due eventi e' piu' grande in ogni SRI che sia in moto rispetto a quello in cui il punto considerato sia in quiete

De-sincronizzazione degli orologi

Schiera di orologi, equispaziati in *S* della distanza *d*: se in quiete possono essere sincronizzati reciprocamente.

P.es., l'istante t=0 e' segnato <u>simultaneamente</u> da tutti gli orologi in S, indipendentemente dalla loro posizione

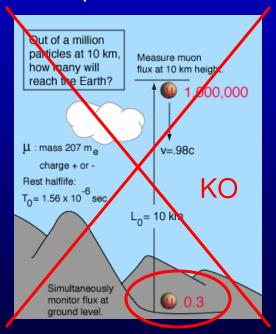
Ma in S' i vari orologi segnano:

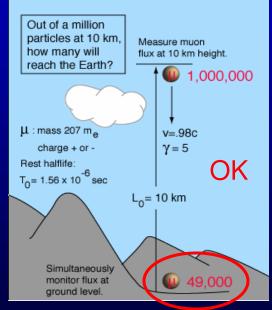
$$t' = \gamma (t - \beta x/c) \rightarrow t_i' = -\gamma \beta x_i/c = -\gamma \beta id/c$$
 $i = 0, \pm 1, \pm 2, \dots$

Essi quindi non sono piu' sincronizzati

Realta' degli effetti

Non si tratta di effetti illusori, dovuti a qualche manipolazione delle unita' di misura! Modo di dimostrarlo: conseguenze su quantita' misurate Esempio: decadimento dei muoni cosmici (Rossi e Hall, 1941; ...)





SRI del terreno:

 $\tau = \tau_0 \ \gamma = 7.8 \ \mu s$ $T = L/v = 10/(0.98 \ 300000) = 34 \ \mu s$ $I = I_0 \ 2^{-T/\tau}$ $I = I_0 \ 2^{-34/7.8} = I_0 2^{-4.36} = I_0 0.049$

SRI del muone:

L =
$$L_0/\gamma = 0.2L_0 = 2 \text{ km}$$

T = $L/v = 6.8 \mu \text{s}$
 $I = I_0 2^{-T/\tau}$
 $I = I_0 2^{-6.8/1.56} = I_0 2^{-4.36} = I_0 0.049$

Non relativistico

Relativistico

Trasformazione delle velocita'

La legge di trasformazione dedotta dalle TdG deve essere cambiata.
Differenziando le TdL:

$$\begin{cases} x' = \gamma(x - \beta ct) \rightarrow x' + dx' = \gamma \left[x + dx - \beta c \left(t + dt \right) \right] \\ y' = y \rightarrow y' + dy' = y + dy \\ z' = z \rightarrow z' + dz' = z + dz \\ t' = \gamma \left(t - \beta x/c \right) \rightarrow t' + dt' = \gamma \left[t + dt - \beta \left(x + dx \right)/c \right] \end{cases} \rightarrow \begin{cases} dx' = \gamma \left[dx - \beta cdt \right] \\ dy' = dy \\ dz' = dz \\ dt' = \gamma \left[dt - \beta dx/c \right] \end{cases}$$

Nuova velocita':

$$\begin{aligned} \mathbf{v}_{x}' &= \frac{dx'}{dt'} = \frac{[dx - \beta c dt]}{[dt - \beta dx/c]} = \frac{\frac{dx}{dt} - \beta c}{1 - \frac{dx}{dt} \frac{\beta}{c}} = \frac{\mathbf{v}_{x} - \beta c}{1 - \frac{\beta}{c} \mathbf{v}_{x}} & \xrightarrow{\mathbf{v}_{x} \to c} \frac{c - \beta c}{1 - \beta} = c \quad ! \\ \mathbf{v}_{y}' &= \frac{dy'}{dt'} = \frac{dy}{\gamma [dt - \beta dx/c]} = \frac{\frac{dy}{dt}}{\gamma \left(1 - \frac{dx}{dt} \frac{\beta}{c}\right)} = \frac{\mathbf{v}_{y}}{\gamma \left(1 - \frac{\beta}{c} \mathbf{v}_{x}\right)} & \text{Accordo con} \\ \mathbf{v}_{z}' &= \frac{dz'}{dt'} = \frac{dz}{\gamma [dt - \beta dx/c]} = \frac{\frac{dz}{dt}}{\gamma \left(1 - \frac{dx}{dt} \frac{\beta}{c}\right)} = \frac{\mathbf{v}_{z}}{\gamma \left(1 - \frac{\beta}{c} \mathbf{v}_{x}\right)} \end{aligned}$$

Interpretazione delle esperienze

Interpretazione relativistica di due esperimenti:

- Aberrazione stellare
- Fizeau

Trattazione relativistica dell'effetto Doppler

Si usano le TdL e la legge relativistica di composizione delle velocita'

Aberrazione stellare - I

Descrizione relativistica del fenomeno

Evento di emissione del segnale luminoso (supposto istantaneo), che

supponiamo si propaghi nel piano xy, in S:

$$x = r \cos \alpha$$
$$y = r \sin \alpha$$
$$z = 0$$
$$t = -r/c$$

y y' + ν α α' ν χ,χ'

In *S'*, per mezzo delle TdL:

$$\begin{cases} x' = \gamma (r \cos \alpha + \beta c r/c) \\ y' = r \sin \alpha \\ z' = 0 \end{cases} \rightarrow \tan \alpha' = \frac{y'}{x'} = \frac{\sin \alpha}{\gamma (\cos \alpha + \beta)} = \frac{\tan \alpha}{\gamma (1 + \beta \sec \alpha)}$$

Aberrazione stellare - II

Per $\beta \rightarrow 0$, $\gamma \rightarrow 1$, e quindi , in accordo con la formula pre-relativistica:

$$\tan \alpha' \approx \tan \alpha \left(1 - \frac{\beta}{\cos \alpha}\right) = \tan \alpha - \frac{\beta \sin \alpha}{\cos^2 \alpha}$$

$$\tan \alpha' = \tan \left(\alpha + \delta \alpha\right) \simeq \tan \alpha + \frac{d \left(\tan \alpha\right)}{d \alpha} \delta \alpha = \tan \alpha + \sec^2 a \delta \alpha$$

$$\rightarrow \delta \alpha \sec^2 a \approx -\frac{\beta \sin \alpha}{\cos^2 \alpha} \rightarrow \delta \alpha \approx -\beta \sin \alpha \rightarrow \delta \alpha \Big|_{\alpha = \pi/2} \approx -\beta = -\frac{v}{c}$$

Inoltre, nella descrizione relativistica si mostra che il fenomeno dell'aberrazione e' correttamente previsto nella teoria ondulatoria, e non solo nell'approssimazione geometrica dell'ottica dei raggi

Esperimento di Fizeau

Come al solito, due SRI:

S (laboratorio), S'(sistema di quiete per l'acqua corrente) Velocita' della luce in S':

$$v_x' = c/n$$
, $v_y' = 0$, $v_z' = 0$

In S:

$$\begin{cases} v_{x} = \frac{v_{x}' + \beta c}{1 + \beta v_{x}' / c} = \frac{c/n + \beta c}{1 + \beta/n} = \frac{c}{n} (1 + \beta n) (1 + \beta/n)^{-1} \\ v_{y} = 0 \\ v_{z} = 0 \end{cases}$$

Per $\beta \rightarrow 0$:

$$\mathbf{v}_{x} = \frac{c}{n} (1 + \beta n) (1 + \beta / n)^{-1} \approx \frac{c}{n} (1 + \beta n) (1 - \beta / n)$$

$$\approx \frac{c}{n} \left(1 + \beta \left(n - \frac{1}{n} \right) \right) = \frac{c}{n} + v \left(1 - \frac{1}{n^{2}} \right)$$
OK con dati sperimentali

Effetto Doppler in RR - I

Effetto ben noto nella fisica pre-relativistica:

Lunghezza d'onda aumenta se sorgente e ricevitore sono in moto di allontanamento, diminuisce se sono in moto di avvicinamento Lunghezza d'onda nel SRI di quiete della sorgente: λ_0 . Formula classica:

Due impulsi luminosi emessi con intervallo dt, velocita' radiale u_r

- \rightarrow Differenza di cammino per i due $u_r dt$
- \rightarrow Differenza di tempo di arrivo per i due $\Delta t = dt + u_{s}/c dt$
- \rightarrow Differenza di lunghezza d'onda per i due: $\lambda_0 = cdt$, $\lambda = c\Delta t \rightarrow \lambda/\lambda_0 = 1 + u_p/c$

Effetto Doppler in RR - II

Correzione relativistica

L'intervallo dt, definito nel SRI dell'osservatore, corrisponde all'intervallo dt/γ nel SRI della sorgente, nel quale viene definita λ_0 . Quindi:

$$\frac{\lambda}{\lambda_0} = \gamma \left(1 + \frac{u_r}{c} \right) \to \frac{1}{\sqrt{1 - u^2/c^2}} \left(1 + \frac{u}{c} \right) = \sqrt{\frac{1 + \beta}{1 - \beta}} \text{ se u} \equiv u_r \text{ (pura vel. radiale)}$$

Si noti che, contrariamente al caso pre-relativistico, c'e' cambiamento di Lunghezza d'onda anche per puro moto trasversale (effetto Doppler trasverso: effetto relativistico)