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Abstract

The direct CP violation parameter Re(ε′/ε) has been measured from the decay rates of neutral kaons into two pions using the
NA48 detector at the CERN SPS. The2001 running period was devoted to collecting additional data under varied conditions
compared to earlier years (1997–1999). The new data yield the result: Re(ε′/ε)= (13.7 ± 3.1)× 10−4. Combining this result
with that published from the 1997, 98 and 99 data, an overall value of Re(ε′/ε) = (14.7 ± 2.2)× 10−4 is obtained from the
NA48 experiment.
 2002 Elsevier Science B.V. All rights reserved.

1. Introduction

CP violation was discovered 38 years ago in the de-
cays of neutral kaons [1]. Recently CP violation in the
B0 mesons has also been observed [2]; nevertheless
neutral kaons remain a privileged system for the study
of the phenomenon.
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CP conservation would imply that theKS and
KL particles are pure CP-eigenstates and thatKL

decay only into CP= −1 andKS into CP= +1 final
states. The observed signal of the forbiddenKL → 2π
decays (CP= +1) indicates that CP is not a conserved
symmetry.

CP violation can occur via the mixing of CP
eigenstates, calledindirect CP violation, represented
by the parameterε. CP violation can also occur in the
decay process through the interference of amplitudes
with different isospins. This is represented by the
parameterε′ and is calleddirect CP violation.

In the Standard Model of electro-weak interaction,
CP violation is naturally accommodated by an irre-
ducible complex phase in the quark mixing-matrix
[3]. Current theoretical predictions ofε′/ε range
∼ −10× 10−4 to ∼ +30× 10−4 [4].

Experimentally, it is convenient to measure the
double ratioR of decay widths, which is related to the
ratio ε′/ε as follows:

R = Γ (KL → π0π0)

Γ (KS → π0π0)

/
Γ (KL → π+π−)
Γ (KS → π+π−)

(1)≈ 1− 6× Re(ε′/ε).

In 1993, two experiments published their final re-
sults: NA31 [5] measured Re(ε′/ε) = (23.0 ± 6.5)×
10−4, and the result of E731 [6] was Re(ε′/ε) =
(7.4 ± 5.9) × 10−4. Recently, two experiments an-
nounced results from samples of their total statis-
tics. NA48 published a result of Re(ε′/ε) = (15.3 ±
2.6) × 10−4, using data collected in 1997 [7], 1998
and 99 [8], and KTeV presented a preliminary result
of Re(ε′/ε) = (20.7 ± 2.8)× 10−4 [9] on data accu-
mulated in 1996 [10] and 97. These observations con-
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firmed the existence of a direct CP-violation compo-
nent.

This Letter reports a measurement of Re(ε′/ε)
performed using the 2001 data sample, recorded in
somewhat different experimental conditions by the
NA48 experiment.

After the 1999 data-taking period, the drift cham-
bers of the experiment were damaged by the implo-
sion of the beam tube. The data taking in 2001 took
place with rebuilt drift chambers. Thanks to the pos-
sibility of a better SPS duty cycle, increased by a fac-
tor 1.8 with respect to the 1998–1999 running period,
the data could be taken at a 30% lower beam inten-
sity, allowing the insensitivity of the result to intensity-
related effects to be checked, and the statistics for the
final ε′/ε measurement by NA48 to be completed. The
statistics accumulated during the 93 days of the 2001
data-taking period is roughly half of the total statis-
tics accumulated in the 263 days of the 1998 and 1999
periods.

Details of the apparatus and of the data analysis can
be found in [8], here only the differences with respect
to the 1998–1999 data-taking will be stressed.

2. The method

Re(ε′/ε) is derived from the double ratioR. The
experiment is designed to exploit cancellations of sys-
tematic effects contributing symmetrically to different
components of the double ratio.

The four decay modes are collected simultaneously,
which minimises the sensitivity of the measurement to
accidental activity and to variations in beam intensity
and detection efficiency. In the analysisKS events are
further weighted by theKL/KS intensity ratio to elim-
inate the small and slow variations of theKL andKS

beam intensities. To maintain the simultaneous data-
taking ofπ0π0 andπ+π− decays, dead-time condi-
tions affecting one mode are recorded and applied of-
fline in all modes.

KL andKS decays are provided by two nearly-
collinear beams with similar momentum spectra, con-
verging to the centre of the main detector. The same
decay region is used for all modes. In order to min-
imise the acceptance correction due to the difference
in mean decay lengths,KL decays are weighted as
a function of their proper lifetime, such that theKL

decay distribution becomes similar to that ofKS . In
this way, the accuracy of the result does not rely on
a detailed Monte Carlo simulation of the experiment
and only small remaining differences in beam diver-
gences and geometries need to be corrected using
Monte Carlo simulation. To be insensitive to residual
differences in the beam momentum spectra, the analy-
sis is performed in bins of kaon energy.

KS decays are distinguished fromKL decays by a
coincidence between the decay time and the registered
times of the protons producing theKS beam. As the
same method is used forπ+π− and π0π0 decays,
the double ratio is sensitive only to differences in
misidentification probabilities between the two decay
modes and not to their absolute values.

Finally, high-resolution detectors are used to detect
theπ+π− andπ0π0 final states in order to minimise
residual backgrounds which do not cancel in the
double ratio.

3. Beams and detectors

3.1. Beams

TheKL andKS beams [11] are produced in two
different targets by protons from the same CERN SPS
beam. In the 2001 run the SPS had a cycle time
of 16.8 s with a spill length of 5.2 s and a proton
momentum of 400 GeV/c.14 Since theKS andKL

beams are produced concurrently, theKS/KL ratio is
maintained stable to within±10%.

The primary, high-flux proton beam (∼ 2.4 ×
1012 protons per pulse) impinges on theKL target
(a 400 mm long, 2 mm diameter rod of beryllium),
with an incidence angle of 2.4 mrad relative to
the KL beam axis. The charged component of the
outgoing particles is swept away by bending magnets.
The neutral beam passes through three stages of
collimation and the fiducial region starts at the exit
of the “final” collimator, 126 m downstream of the
target. At this point, this neutral beam is dominated
by long-lived kaons, neutrons and photons; only small

14 The cycle time was 14.4 s, the spill length 2.38 s and the proton
momentum 450 GeV/c in the 1998 and 1999 runs. The effective
spill length, given by the remaining time structures in the beam is
≈ 3.6 s in 2001, compared to≈ 1.7 s for the 1998–1999 data.
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fractions of the most energetic short-lived components
(KS andΛ) survive.

The protons not interacting in theKL target are
directed onto a mechanically bent mono-crystal of
silicon [12]. A small fraction of protons satisfies the
conditions for channelling and is bent to produce a
collimated beam of∼ 5×107 protons per pulse, which
is then deflected back onto theKL beam axis and
finally directed to theKS target (of similar dimensions
as theKL target) located 72 mm above theKL

beam axis. A combination of a sweeping magnet and
collimator selects a neutral beam at 4.2 mrad to the
incoming protons. The decay spectrum of kaons at the
exit of the collimator (6 m downstream of the target) is
similar to that in theKL beam, with an average energy
of 110 GeV.15 Two-pion decays from this beam come
almost exclusively fromKS decays.

The tagging station (Tagger) is located on the path
of theKS proton beam after the bent crystal. It consists
of two ladders of 12 scintillator strips each, covering
the beam horizontally and vertically [13]. A proton
crosses at least two scintillators, one horizontal and
one vertical. The reconstructed time per counter has
a resolution of∼ 140 ps, and two pulses 4–5 ns apart
can be resolved.

The beginning of theKS decay region is sharply
defined by an anticounter (AKS), located at the exit
of theKS collimator [14]. It is composed of a photon
converter followed by three scintillator counters. Its
main purpose is to veto all upstream decays from the
KS beam.

The decay region is contained in an evacuated
(< 3× 10−5 mbar) 90 m long tank with a 0.9 mm
(0.003 radiation length) thick polyamide (Kevlar)
composite window at the end. The neutral beam
continues in a 16 cm diameter evacuated tube to
the beam dump, downstream of all detector ele-
ments.

3.2. Detectors

Charged particles from decays are measured by a
magnetic spectrometer [15] composed of four drift

15 Despite the different proton momentum in the 1998 and 1999
runs, theKL andKS spectra remain similar, depending only on the
choice of production angles to compensate for the length of theKS

collimator.

chambers with a dipole magnet (inducing a trans-
verse momentum-kick of 265 MeV/c in the horizon-
tal plane) between the second and third chambers.
These chambers and their interconnecting beam tube
are aligned along the bisector between the converging
KS andKL beam axes. Each chamber is comprised of
eight planes of sense wires, two horizontal, two ver-
tical and two along each of the 45◦ directions. In the
third chamber, only the horizontal and vertical planes
are instrumented. The average efficiency per plane is
99.5%, with a radial uniformity better than±0.2%.
The space point resolution is≈ 95 µm. The momen-
tum resolution isσ(p)/p = 0.48%⊕ 0.009%× p,
where the momentump is in GeV/c. These perfor-
mance figures are similar to those obtained previously
[8].

The magnetic spectrometer is followed by a scintil-
lator hodoscope, composed of two planes segmented
in horizontal and vertical strips. Fast logic combines
the strip signals (arranged in four quadrants) for use in
the first level of theπ+π− trigger.

A liquid krypton calorimeter (LKr) is used to
reconstructK → 2π0 decays. It is a quasi-homoge-
neous detector with an active volume of∼ 10 m3

of liquid Krypton. Cu–Be–Co ribbon electrodes of
40 µm× 18 mm× 125 cm define∼ 13000 cells (each
with 2 cm× 2 cm cross-section) in a structure of
longitudinal projective towers pointing to the centre
of the decay region [16]. The calorimeter is 27
radiation lengths long and fully contains electro-
magnetic showers with energies up to 100 GeV. The
energy resolution of the calorimeter isσ(E)/E =
(3.2 ± 0.2)%/

√
E ⊕ (9 ± 1)%/E ⊕ (0.42± 0.05)%

with E in GeV [17]. The LKr calorimeter also is
used, together with an iron-scintillator calorimeter,
to measure the total deposited energy for triggering
purposes.

Finally, at the end of the beam line, muon counters
are used to identifyKL → πµν(Kµ3) decays.

Two beam counters are used to measure the in-
tensity of the beams: one is located at the extreme
end of theKL beam line (KL monitor) and the other
(KS monitor) views theKS target station. For the 2001
data taking, anotherKL monitor with a higher count-
ing rate was added and aKS monitor near the tagging
station was installed. These allow better measurements
of the beam structures to be made down to a time scale
of ≈ 200 ns.
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3.3. Triggers

The rate of particles reaching the detector is around
400 kHz. The trigger is designed to reduce this rate
to less than 10 kHz, with minimal loss from dead
time and inefficiencies. A part of the read-out rate is
reserved for redundant low-bias triggers that collect
data used for the direct determination of the trigger
inefficiencies.

Triggers initiated by the beam monitors are used to
record the accidental activity, with rates proportional
to KL andKS decay rates. Beam monitor signals are
down-scaled and delayed by 69 µs corresponding to
the periodicity of the slow proton extraction (3 SPS
revolutions).

3.3.1. Trigger forπ0π0 decays
The trigger forπ0π0 decays [18] operates digi-

tally on the analogue sums of signals from 2× 8 cells
(in both horizontal and vertical orientations) of the
LKr calorimeter. These sums are converted into kine-
matic quantities by a “look-up table” system.

The trigger requires an electro-magnetic energy
deposit greater than 50 GeV, a centre of energy
(distance between the extrapolated kaon impact point
at the calorimeter plane and the beam axis) smaller
than 25 cm, and a decay vertex less than 5KS

lifetimes (τS) from the beginning of the decay volume.
Requesting less than 6 peaks within 9 ns in both
projections helps to reject background fromKL →
3π0 (this condition is released if accidental activity is
detected close in time).

A trigger for 3π0 decays, given by the down-scaled
π0π0 trigger without the peak condition, is used for
tagging studies.

3.3.2. Trigger forπ+π− decays
The π+π− decays are triggered with a two-level

trigger system. At the first level, the rate is reduced to
100 kHz by a coincidence of three fast signals: oppo-
site quadrant coincidence in the scintillator hodoscope
(Qx ), hit multiplicity in the first drift chamber inte-
grated over 200 ns, and the total calorimetric energy
(Etot, with a threshold of 35 GeV).

The second level of theπ+π− trigger [19], con-
sisting of hardware coordinate builders and a farm of
asynchronous microprocessors, reconstructs tracks us-
ing data from the drift chambers. Triggers are accepted

if the tracks converge to within 5 cm, their opening an-
gle is smaller than 15 mrad, the reconstructed proper
decay time is smaller than 4.5τS and the reconstructed
ππ mass is greater than 0.95mK .

4. Event reconstruction and selection

4.1. π0π0

K → π0π0 decays are selected using only data
from the LKr calorimeter. The reconstruction of pho-
ton showers and the details of the small corrections
applied to the energy and position measurements can
be found in [8] and [20]. Photon showers in the en-
ergy range 3–100 GeV are used. Fiducial cuts are ap-
plied to ensure that the photon energies are well mea-
sured: the shower position should be more than 15 cm
away from the axis of the beam tube, more than 11 cm
away from the outer edges of the calorimeter and more
than 2 cm away from a defective calorimeter channel
(≈ 0.4% of the channels).π0π0 decays are selected by
requiring four showers which are reconstructed within
±5 ns of their average time and fulfill the cuts above.
The minimum distance between photons is required to
be more than 10 cm. To reduce the background from
KL → 3π0 decays, events are rejected which have an
additional cluster of energy above 1.5 GeV and within
±3 ns of the time of theπ0π0 candidate.

From the measured photon energiesEi and im-
pact point positions on the calorimeterxi, yi , the dis-
tanceD from the decay vertex to the calorimeter is
computed as follows, assuming that the invariant mass
of the four showers is the kaon mass (mK ):

(2)D =
√
�i�j>iEiEj ((xi − xj )2 + (yi − yj )2)

mK

.

The average resolution on the decay vertex position is
about 55 cm, and the resolution on the kaon energy is
≈ 0.5%.

The invariant massesm1 andm2 of the two photon
pairs are computed usingD and compared to the
nominalπ0 mass (mπ0). For this, the followingχ2

variable is constructed:

(3)

χ2 =
[
(m1 +m2)/2−mπ0

σ+

]2

+
[
(m1 −m2)/2

σ−

]2

.



J.R. Batley et al. / Physics Letters B 544 (2002) 97–112 103

The mass combinationsm1 + m2 andm1 − m2 are
to good approximation uncorrelated.σ+ and σ− are
the resolutions of(m1 + m2)/2 and (m1 − m2)/2
parameterised from the data as a function of the lowest
photon energy. Typical values ofσ+ andσ− are 0.4
and 0.8 MeV/c2. Out of the three possible photon
pairings, the one with the lowestχ2 value is kept. To
select goodπ0π0 candidates and reject the residual
background fromKL → 3π0 decays, the cutχ2 <

13.5 is applied.
The event time is computed by combining eight

time estimators from the two most energetic cells of
each cluster. An average resolution of 220 ps is thereby
obtained.

4.2. π+π−

The π+π− events are reconstructed from tracks
using hits in the drift chambers of the spectrometer;
the track momenta are calculated using the measured
magnetic field map and alignment constants.

A vertex position is calculated for each pair of
tracks with opposite charge after correcting for the
small residual magnetic field due to the magnetisation
of the vacuum tank (∼ 2 × 10−3 Tm). The average
resolution on the longitudinal vertex position is about
50 cm, whereas the transverse position resolution
is around 2 mm. Since the beams are separated
vertically by about 6 cm in the decay region, a clean
identification ofKS andKL decays is possible using
the reconstructed vertex position.

Only tracks with momenta greater than 10 GeV/c

and not closer than 12 cm to the centre of each
chamber are accepted. The separation of the two tracks
at their closest approach is required to be less than
3 cm. The track positions, extrapolated downstream,
are required to be within the acceptance of the LKr
calorimeter and of the muon veto system, in order to
ensure proper electron and muon identification.

The kaon energy is computed from the opening
angleθ of the two tracks upstream of the magnet and
from the ratio of their momentap1 andp2, assuming
aK → π+π− decay:

EK =
√

R
θ2

(
m2
K −Rm2

π

)
,

(4)whereR = p1

p2
+ p2

p1
+ 2.

This measurement of the kaon energy is independent
of the absolute magnetic field and relies mostly on the
knowledge of the geometry of the detector.

A variableA related to the decay orientation in the
kaon rest frame is defined asA = |p1−p2|/(p1+p2).
A cut is applied toA (A < min(0.62,1.08–0.0052×
EK), whereEK is in GeV), to remove asymmetric
decays in which one of the tracks could be close to the
beam tube where the Monte Carlo modelling is more
critical. This cut also removesΛ→ pπ− decays.

To reject background from semileptonicKL de-
cays, events with tracks consistent with being either
an electron or a muon are rejected. To identify elec-
trons, the ratioE/p of the energy of the matching
cluster in the LKr calorimeter to the track momentum
is computed. Pion candidate tracks are required to sat-
isfy E/p < 0.8. Tracks are identified as muons if hits
are found in time in the muon counters near the extrap-
olated track impact point.

For goodπ+π− events, the reconstructed mass
mππ should be consistent with the kaon mass. The
resolution on the invariant massσm is typically
2.5 MeV/c2. An energy-dependent cut at±3σm is ap-
plied. A further reduction of background from semi-
leptonic decays is achieved with a cut based on the
transverse momentum of the kaon. To define a selec-
tion which is as symmetric as possible betweenKL

andKS decays, the variablep′
T is used, defined as

the component of the kaon momentum orthogonal to
the line joining the production target and the point
where the kaon trajectory crosses the plane of the
first drift chamber. To selectπ+π− candidates, the cut
p′2
T < 2× 10−4 GeV2/c2 is applied.

The time of theπ+π− decay is determined from
hits in the scintillator hodoscope associated with the
tracks and has a resolution of∼ 150 ps. The events
with insufficient information to determine the decay
time accurately are discarded. This inefficiency is
0.1% and is measured to be equal forKS andKL.

4.3. KS tagging

A decay is labelledKS if a coincidence is found
(within a ±2 ns interval) between its event time and
a proton time measured by the Tagger. Fig. 1 shows
the time distributions forKS andKL decays toπ+π−
which have been identified as such by their vertex
positions in the vertical direction. A similar procedure
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Fig. 1. Time coincidence forKS andKL π+π− decays, identified
by their reconstructed vertex.

is not possible forπ0π0 decays; therefore tagging
provides the only way to distinguishKS fromKL. The
selection ofKS andKL samples is done by means of
tagging for both theπ+π− andπ0π0 modes, so that
systematic effects are mostly symmetric.

The probability that aKS decay is assigned to the
KL beam, due to coincidence inefficiencies, is denoted
by αSL. This tagging inefficiency is directly measured
in theπ+π− mode, using the vertical vertex position,
and is(1.12± 0.03)× 10−4, dominated by the Tagger
inefficiency. The inefficiency could be different for
π+π− and π0π0 decays, since different detectors
are used. The difference between the two modes is
estimated using a large sample ofKS andKL decays
into 2π0 and 3π0 where one of the photons converts
into an electron–positron pair. The time from the LKr
clusters can then be compared with the scintillator-
hodoscope time from the two tracks. The conclusion
is that theπ0π0 and π+π− tagging inefficiencies
agree within an uncertainty of±0.5 × 10−4, which
corresponds to an uncertainty onR of ±3×10−4. The
tagging inefficiency can also be measured directly in
π0π0 events with a subsequentπ0 → e+e−γ Dalitz
decay, which allows theKS to be identified from the
two-track vertex. However this method is statistically
limited. Another cross-check is performed in special

runs where onlyKS are present; it gives a tagging
inefficiency in agreement with the result above.

The probability that aKL decay is identified as a
KS decay due to an accidental coincidence between
the event and a proton is called accidental tagging
and is denoted asαLS . It is measured in theπ+π−
mode to be(8.115 ± 0.010) × 10−2.16 The αLS
difference, &αLS , between theπ0π0 and π+π−
modes is estimated by measuring the probability to
find a proton within time windows 4 ns wide, located
before or after the event time in taggedKL events
(i.e., events with no proton in coincidence). Ten
windows are chosen, centred at 5 ns intervals from
the event time so as to follow the 200 MHz structure
of the proton beam. The extrapolation from the side
windows to the coincidence window is performed
in the π+π− mode with vertex-selectedKL and
in the π0π0 mode using 3π0 decays, which come
almost entirely from theKL beam (the very small
contribution from theKS beam being subtracted). The
measured value of&αLS = α00

LS − α±
LS = (+3.4 ±

1.4) × 10−4 corresponds to a correction onR of
(+6.9 ± 2.8) × 10−4. The origin of this effect is
discussed in Section 6.2.

4.4. Definition of the decay region

The fiducial ranges in kaon energyEK and in
proper timeτ used to count events are chosen to
be 70< EK < 170 GeV and 0< τ < 3.5τS , where
τ = 0 is defined at the position of the AKS counter
and τS is theKS mean lifetime. ForKL events, the
decay time cut is applied on reconstructedτ , while
for KS events the cut atτ = 0 is applied using the
AKS to veto decays occurring upstream. The nominal
τ = 0 positions defined by the AKS differ by 21.0 ±
0.5 mm betweenπ+π− andπ0π0 decays. The veto
inefficiency is 0.36% forπ0π0 events and 0.22% for
π+π− decays. Given the fractions of decays occurring
upstream of the AKS position (respectively 5.8% and
4.0%), the correction to be applied to the double ratio
is (1.2± 0.3)× 10−4.

KS → ππ decays can be produced in both beams
by scattering of beam particles in the collimators and,
in the case of theKS beam, in the AKS counter. To

16 It was(10.649±0.008)×10−2 in the 1998–1999 data sample.



J.R. Batley et al. / Physics Letters B 544 (2002) 97–112 105

reduce this contamination, a cut on the extrapolated
kaon impact point at the level of the LKr calorimeter
is applied to all events. Forπ0π0 decays, it is defined
as the energy-weighted averagex, y positions of the
four showers at the face of the LKr calorimeter.
For π+π− decays, it is the momentum-weighted
average position of the tracks measured upstream of
the spectrometer magnet and projected onto the face
of the LKr calorimeter. The extrapolated kaon impact
point is required to be within 10 cm of the intersecting
beam axes. The radii of theKL andKS beam spots
are respectively 3.6 cm and 4.6 cm, so effects related
to resolution smearing are negligible.

4.5. Data quality selection

Data collected in theπ+π− mode are affected by
an overflow condition in the drift chambers which
resets the front–end readout buffers when there are
more than seven hits in a plane within a 100 ns
time interval. This occurs mostly when an accidental
particle generates an electromagnetic shower upstream
of the spectrometer and sprays the drift chambers with
particles. To maintain the highest reconstruction and
trigger efficiencies, events used in the analysis are
required to have no overflows within±312 ns of the
event time. To minimise possible effects ofKL/KS

intensity variation and to equalise the beam intensities
seen by good events, this requirement is applied to
bothπ+π− andπ0π0 decays. The resulting event loss
is 11% in the 2001 data sample. This is significantly
smaller than the 20% loss observed in the 1998–1999
data, due to the lower instantaneous beam intensity
and to smaller noise in the drift chambers. Other
dead time conditions affecting the first and the second
levelπ+π− trigger (≈ 0.3%17) are also recorded and
applied in the analysis toπ0π0 decays.

Because of large beam intensity variations at the
very beginning of the spill, data from the first 0.2 s
are not used in the analysis. The corresponding loss of
events is≈ 1% and cancels in the ratio betweenπ0π0

andπ+π− decays.

17 It was 1.6% in the 1998–1999 data.

5. R corrections and systematic uncertainties

The data are divided into 20 bins in kaon energy,
each 5 GeV wide. The numbers ofKS andKL can-
didates are corrected for the mistagging probabilities
discussed previously. The total numbers of events are
1.546× 106 KL → π0π0, 2.159× 106 KS → π0π0,
7.136× 106 KL → π+π− and 9.605× 106 KS →
π+π−.

Corrections for trigger efficiencies, background
subtractions and residual acceptance differences be-
tweenKL andKS are applied separately in each en-
ergy bin before computing the average ofR.

5.1. Trigger efficiencies

The π0π0 trigger efficiency is measured using a
control sample of events triggered by a scintillating
fibre detector located inside the LKr calorimeter. The
efficiency is found to be(99.901±0.015)%.The small
inefficiency isKS–KL symmetric and no correction to
the double ratio need be applied.

The π+π− trigger efficiency is (98.697 ±
0.017)%.18 The difference between theπ+π− trigger
efficiency forKS andKL decays is computed in each
energy bin. The overall correction on the double ratio
is (5.2 ± 3.6)× 10−4, where the uncertainty is given
by the statistics of the control samples used to measure
the efficiency.

5.2. Backgrounds

5.2.1. Background to theπ0π0 mode
The background to theKL → π0π0 signal comes

uniquely fromKL → 3π0 decays, while theKS mode
is background free. TheKL → 3π0 background has
a flatχ2 distribution. To estimate this background, a
control region is defined by 36< χ2 < 135. The ex-
cess ofKL candidates in this region over a Monte
Carlo expectation forπ0π0 decays is used to extrap-
olate the background in the signal region. The Monte
Carlo includes the effect of non-Gaussian tails in the
calorimeter resolution so as to reproduce the observed
distribution in theKS sample.

18 It was (97.782± 0.021)% in 1998–1999. The improvement
comes from the lower beam intensity and the better efficiency of
the drift chambers in 2001.
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The background is subtracted from theKL →
2π0 sample in bins of kaon energy and the resulting
correction on the double ratio, taking into account
the uncertainties in the non-Gaussian tails and in the
background extrapolation, is(−5.6± 2.0)× 10−4.

5.2.2. Background to theπ+π− mode
The background fromΛ → pπ− in the KS →

π+π− sample is negligible after the cut on the track
momentum asymmetry.

The residualKe3 and Kµ3 backgrounds in the
KL sample are estimated by defining two control
regions in themππ–p′2

T plane. The first region, 9.5<
(mππ − mK) < 19.0 MeV/c2 and 300< p′2

T <

2000 MeV2/c2, is dominated byKe3 events, while the
second,−17.0< (mππ −mK) <−12.0 MeV/c2 and
300< p′2

T < 500 MeV2/c2, contains roughly equal
numbers ofKe3 andKµ3 events.

The background distributions in the control regions
are modelled by aKe3 sample, selected withE/p >

0.95, and by aKµ3 sample, obtained by reversing the
muon veto requirement; the tails in theKL → π+π−
distribution are estimated from theKS sample. The
result is then extrapolated to the signal region.

The overallKe3 background fraction is 10.5 ×
10−4, theKµ3 background is 4.0 × 10−4. The back-
ground subtraction is applied in bins of kaon energy
and the resulting correction on the double ratio is
(14.2 ± 3.0) × 10−4, where the error has been esti-
mated by changing the control regions and the mod-
elling of the resolution tails.

Kaon decays toπ+π−γ have been shown to have
a negligible effect onR [8].

5.2.3. Collimator scattering
In theKS beam, the cut on the extrapolated kaon

impact point is stronger than thep′2
T cut applied to

π+π− decays, and therefore the contribution of beam
scattering is removed symmetrically from both final
states. On the contrary, in theKL beam, thep′2

T cut
which is applied only in theπ+π− mode is stronger
and therefore the small residual contribution from
scattered events must be subtracted from theπ0π0

sample.
The correction for this asymmetry is computed

from reconstructedKL → π+π− candidates with an
invertedp′2

T cut. The scattered events are extracted

from the peak at the kaon mass in themππ invariant
mass distribution. The correction toR is applied in
bins of energy and it amounts to(−8.8± 2.0)× 10−4.

5.3. Acceptance

TheKS andKL acceptances are made very simi-
lar in both modes by weightingKL events according
to their proper decay time. The weighting factor takes
into account the small interference term. A small dif-
ference in acceptances remains, related to the differ-
ences inKS andKL beam sizes and directions. This
residual correction is computed using a large-statistics
Monte Carlo simulation (4× 108 generated kaon de-
cays per mode). The largest contribution to the correc-
tion comes from the difference between theKS and
KL beams near the beam axes in the spectrometer for
π+π− decays. The acceptance correction related to
theπ0π0 mode is small.

The systematic uncertainty on the acceptance cor-
rection is evaluated by varying theKS beam halo,
the beam positions and shapes, and the drift-chamber
inefficiencies. The resulting systematic uncertainty is
±3.0 × 10−4. A detailed comparison between a fast
simulation and a GEANT [21] based simulation of
the spectrometer was performed on the 1998–1999
sample. This resulted in an additional systematic un-
certainty of±2.3 × 10−4. The final correction toR
for the acceptance is:&R(acceptance) = (+21.9 ±
3.5(MCstat)± 4.0(syst))× 10−4.

5.4. Energy and distance scales

The determinations of the kaon energy, the decay
vertex and the proper time in theπ0π0 mode rely
on measurements of the photon energies and positions
with the calorimeter.

The absolute energy scale is adjusted usingKS →
π0π0 decays. The energy scale is set such that the
average value of the reconstructed decay position
in a range centred around the anticounter matches
the value found in a Monte Carlo simulation. This
measurement of the energy scale is checked using data
taken during special runs (so-calledη runs) with a
π− beam striking two thin targets located near the
beginning and the end of the fiducial decay region,
producingπ0 andη with known decay positions. From
two-photon decays ofπ0 and η, the reconstructed
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vertex position can be computed using theπ0 or theη
mass value (theη mass value is taken from [20]), and
compared to the nominal target positions. Continuum
production of 2π0 events is also used, with the
advantage that the final state is very similar to the
one of kaon decays. The two targets give energy
scales consistent to better than 10−4. The uncertainty
on the overall energy scale is estimated from these
comparisons to be±3 × 10−4. The corresponding
uncertainty on the double ratio is±2× 10−4.

Non-linearities in the energy response are studied
usingKe3 decays, where the electron energy measured
in the calorimeter can be compared to the momentum
measured in the spectrometer, and using data from the
η runs. Parameterising the deviations from linearity as
&E/E = α/E + βE, α is constrained to±10 MeV
andβ is bound to be in the range±2 × 10−5 GeV−1.
Taking also into account larger deviations from linear-
ity observed in the regionEγ < 6 GeV, the resulting
uncertainty on the double ratio is±3.8× 10−4.

The uniformity of the calorimeter response over its
surface is optimised usingKe3 decays and checked us-
ing π0 decays from theη runs. Bias on the double
ratio can arise from a dependence of the energy re-
sponse on the photon impact radiusr. Parameterising
this effect as&E/E = γ r, γ can be bound to be in
the range±10−3 m−1. In the region close to the beam
tube, residual variations are smaller than 0.2%. The
systematic uncertainty on the double ratio from these
effects is±1.6× 10−4.

Uncertainties in the correction of energy leakage
from one cluster to another can lead to an apparent
non-linearity and bias the double ratio. The correction
used in the data is based on the transverse shower-
profile measured during special runs in which single
monochromatic electrons were sent to the calorimeter.
The uncertainty in the shower profile is taken to be the
difference between this measurement and the predic-
tion of the GEANT Monte Carlo simulation. The re-
sulting uncertainty on the double ratio is±1.1×10−4.

The measurements of photon positions and the
transverse size-scale of the calorimeter are adjusted
and checked usingKe3 decays, comparing the recon-
structed cluster position with the electron track impact
point extrapolated to the calorimeter. The associated
uncertainty on the double ratio is±1.6× 10−4.

In the computation of the decay vertex position,
the photon positions must be extrapolated to the

longitudinal position of the maximum of the shower
to account correctly for deviations of the photon
directions from the projectivity of the calorimeter.
Comparing data and Monte Carlo simulation inKe3
decays, the uncertainty on this position is±2 cm. The
resulting uncertainty on the double ratio is±1.6 ×
10−4.

Finally, the effect of non-Gaussian tails in the en-
ergy response is minimised by the choice of the pro-
cedure used to adjust the overall energy scale. Resid-
ual effects are investigated by applying to the Monte
Carlo samples a parameterisation of non-Gaussian
tails in the energy response (arising mostly from
photo-production of hadrons early in the electromag-
netic shower) derived fromKe3 andη data. No bias on
the double ratio is observed within the Monte Carlo
statistical error which is±1.0× 10−4.

Adding all the above uncertainties in quadrature,
the total systematic error on the double ratio from the
measurements of the photon energies and positions is
found to be±5.3× 10−4.

Forπ+π− decays, the vertex position is measured
from the reconstructed tracks and is completely de-
termined by the detector geometry. As a check, the
reconstructed anticounter position can be measured
in KS → π+π− decays. The value obtained agrees
with the nominal position to better than 1 cm.19 Un-
certainties in the geometry of the detector are at the
level of 2 mm for the distance between the first two
drift chambers, and 20 µm/m for their relative trans-
verse scale. This corresponds to possible deviations of
≈ ±2 cm on the reconstructed AKS position. The cor-
responding uncertainty on the double ratio measure-
ment is±2.0 × 10−4. The asymmetry in theKS and
KL event losses, which could arise from the effect
of non-Gaussian tails in thep′2

T resolution, is smaller
than 2.0 × 10−4. The overall uncertainty on the dou-
ble ratio from the reconstruction ofπ+π− decays is
therefore±2.8× 10−4.

6. Intensity effects

6.1. Uncertainty onR due to accidental effects

Most of the accidental activity in the detector is
related to kaon decays in the high-intensityKL beam.

19 The difference was 2 cm in the 1998–1999 data.
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The overlap of extra particles with a good event may
result in the loss of the event in the reconstruction
or the selection,20 depending on the time and space
separation of the activity in the detector. This effect
is minimised by the simultaneous collection of data in
the four channels and by the fact thatKS and weighted
KL decays illuminate the detector in a similar way.
The possible residual effect on the double ratio can
be separated into two components: intensity variations
between the two beams coupled to different, intensity-
dependent, event losses in theπ+π− andπ0π0 modes
(intensity difference), and a residual difference in the
illumination betweenKS andKL decays coupled to a
variation of the event loss with the impact points of the
K0 decay products (illumination difference).

6.1.1. Intensity difference
If the losses depend, as expected, linearly on theKL

beam intensity, the intensity difference effect is given
by:

(5)&R =&λ
&I

I
,

where&λ is the difference between the mean losses
in π+π− andπ0π0, and&I/I is the difference in the
meanKL beam intensity as seen byKL andKS events.

The accidental rate can be measured directly from
the activity in the detector within the readout time-
window before each event. Comparing the rate of
out-of-time LKr clusters and out-of-time tracks in
good KS,KL → π+π− decays,&I/I is found to
be respectively (+0.4 ± 0.4)% and (+0.6 ± 0.3)%,
where the quoted uncertainties are only statistical. For
this measurementKS andKL are identified by the
decay vertex position to avoid the correlation between
mistagging probability and beam intensity. The bias
on &I/I from the fact that this measurement uses
good reconstructed decays is a negligible second-
order effect. The measurement of accidental activity
is illustrated in Fig. 2.

The KL beam intensity for each event can also
be estimated using the information from theKL

beam monitor, integrating the intensity over a 200 ns
time window. The difference between the average
intensities as seen byKS andKL decays is found to

20 The losses in the trigger are already accounted for in the
measurement of the trigger efficiency.

Fig. 2. Probability of accidental activity in the LKr in the≈ 150 ns
readout window, as a function of the time during the spill, forKS

andKL decays toπ+π−.

be (−0.08 ± 0.04)%, where the quoted uncertainty
is only statistical. The systematic uncertainty on this
measurement is estimated to be less than 1%. Another
method to study the correlation of the two beams,
which does not rely on the use of good events, consists
of a direct computation of the correlation between the
KL andKS beam monitor counts, using events taken
uniformly in time. To avoid statistical fluctuations in
the rate measurements, this is done using a 15 µs
integration time of the beam monitors. All known
KL/KS variations take place on a much longer time
scale. This method confirms that&I/I is consistent
with 0 within 1%. The final estimate for&I/I is
(0± 1)%.

The beam-induced event losses can be evaluated
by overlaying data with beam monitor (BM) triggers
taken in proportion to the beam intensity, which repro-
duce the ambient activity as seen by the detectors. De-
tector information from the original events and the BM
triggers are superimposed at the raw-data level and the
overlayed events undergo the standard reconstruction
and analysis procedure. Losses and gains from migra-
tion of events around the cuts are taken into account.
When estimating the event losses related to accidental
activity, the losses related to doubling the noise effect
inherent in this procedure must be removed. The net
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event losses induced by the accidental activity are at
the level of 1 to 2%. The dominant source of event
loss is found to be the appearance of the drift chamber
overflow condition in the overlayed event. This loss is
higher forπ+π− decays than forπ0π0 because of the
presence of at least two drift chamber hits per plane for
the originalπ+π− decay. From this procedure,&λ is
found to be 1.0%. The overlay procedure can also be
applied starting from a Monte Carlo sample of origi-
nalπ+π− andπ0π0 decays. In this case,&λ is found
to be 0.65%. The statistical uncertainties on&λ from
the overlay samples are less than 0.1%. The difference
between the two estimates is attributed to the lower
hit-multiplicity in the Monte Carlo samples compared
to the data.

&λ can also be estimated directly from the data,
by comparing the ratio ofπ+π− and π0π0 events
obtained in the normalKL + KS beam runs and in
pureKS runs, in which the accidental activity is one
order of magnitude smaller. This leads to&λ= (0.9±
0.6)%. Similarly,&λ can be checked by dividing the
data into bins ofKL beam intensity and looking at
the variations in the ratio ofπ+π− andπ0π0 events.
This leads to an estimate in agreement with the values
above. In conclusion, from this study the final estimate
of &λ is (1.0 ± 0.5)%. This value is typically 30%
lower than the estimate derived for the 1998–1999
data-taking period, as expected from the lower beam
intensity in 2001.

Finally, the linearity of the losses with intensity can
be checked by looking at the losses as a function of
the beam intensity given by the BM triggers. Fig. 3
shows the accidental event losses in theπ+π− and
π0π0 modes as a function of the beam intensity from
the overlay procedure applied to Monte Carlo events.

Taking into account all the above results, the
estimate of the uncertainty on the double ratio related
to differences in intensity-dependent losses is±1.1×
10−4.21

6.1.2. Illumination difference
The illumination-difference effect has been esti-

mated from the overlay samples, computing separately
the losses forKS andKL events. This computation

21 For the 1998–1999 sample, this uncertainty was estimated to
be±3.0× 10−4.

Fig. 3. Beam-induced net event losses as a function of instantaneous
intensity in arbitrary units. Lines are drawn to guide the eyes.

has been performed using both data and Monte Carlo
original events. In the first case, the value obtained is
(+0.9±3.5)×10−4, in the second it is (+1.4±2.8)×
10−4, where the quoted uncertainties are the statistical
errors from the overlay samples. As expected, there is
no evidence of a significant effect, and we use as un-
certainty on the double ratio±3.0× 10−4.

6.1.3. Overall uncertainty onR and cross-check
Combining the two above uncertainties in quadra-

ture, the total uncertainty onR from accidental effects
is ±3.1× 10−4. This uncertainty is dominated by the
statistical error of the overlay procedure.

The overlay method can also be used to estimate
the combination of the two effects. For this,KS events
are overlayed only with BM triggers from theKS

monitor andKL events only with BM triggers from
theKL monitor. This method relies on the accuracy
of the BM triggers to estimate correctly theKL–KS

intensity difference. From this method, the overall
accidental effect on the double ratio is found to be
(4.7 ± 4.9) × 10−4, where the quoted error is the
statistical uncertainty from the overlay sample. The
systematic uncertainty from the accuracy of the BM
triggers is expected to be< 2×10−4. From this cross-
check, there is no evidence of any unexpected effect
on the double ratio.
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6.1.4. In-time activity from theKS target
The techniques above do not take into account any

additional detector activity in theKS beam generated
by the same proton which produced theKS event.
Studies of this background, mostly searching in the
LKr calorimeter for additional clusters in 2π0 events
from pureKS beam runs, allow an upper bound on the
effect onR of 1× 10−4 to be set.

6.2. Origin of&αLS

The accidental tagging probabilityαLS depends
only on the proton beam intensity seen by the Tagger
and, consequently, it is to first order the same forπ0π0

andπ+π−. However, because the event selection is
more sensitive to accidentals forπ+π− events, we
expect a difference of the measuredαLS for theπ0π0

andπ+π− samples due to beam-intensity variations
with time. A quantitative understanding of the effect
of accidental activity on selected events can be reached
by studying the BM trigger overlays.

A value&αLS = (+3.5 ± 0.4)× 10−4 is expected
from the overlay of data, where the error is only
statistical. Using loss and gain probabilities from the
overlay Monte Carlo samples instead of data we find
&αLS = (+2.0± 0.4)× 10−4.

In Fig. 4 the variation of&αLS within the spill is

Fig. 4. Measured compared to predicted values of&αLS as a
function of the time during the spill.

shown and compared with the overlay computation.
Most of the difference in accidental tagging between
theπ0π0 andπ+π− modes comes from the beginning
of the spill where the instantaneous intensity is higher
and the beam intensity variations more significant.

Another source of event losses is the inefficiency
of theπ+π− trigger. The intensity-dependent part is
studied separately and its effect on&αLS is estimated
to be(0.4± 0.2)× 10−4.

The observed&αLS value of(+3.4± 1.4)× 10−4

is therefore well reproduced both qualitatively and
quantitatively.

7. Result

The effect on the result of the corrections described
above, and the various sources of systematic uncer-
tainties are summarised in Table 1.

Fig. 5 shows the measured double ratio after cor-
rections as a function of the kaon energy.

The final result for the double ratio from the 2001
data set isR = 0.99181± 0.00147± 0.00110, where
the first error is the statistical error from the 2π

samples, and the second is systematic. Out of this
systematic uncertainty,±0.00065 is due to the finite
statistics of the control samples used to study the
systematic effects.

Fig. 5. Measured double ratioR in kaon energy bins.
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Table 1
Corrections and systematic uncertainties on the double ratioR (2001 data)

in 10−4

π+π− trigger inefficiency +5.2 ±3.6 (stat)
AKS inefficiency +1.2 ±0.3
Reconstruction ofπ0π0 – ±5.3
Reconstruction ofπ+π− – ±2.8
Background toπ0π0 −5.6 ±2.0
Background toπ+π− +14.2 ±3.0
Beam scattering −8.8 ±2.0
Accidental tagging +6.9 ±2.8 (stat)
Tagging inefficiency – ±3.0
Acceptance statistical +21.9 ±3.5 (stat)
Acceptance systematic +21.9 ±4.0
Accidental activity intensity difference – ±1.1
Accidental activity illumination difference – ±3.0 (stat)
KS in time activity – ±1.0

Total +35.0 ±11.0

Many cross-checks of the stability of the result have
been performed, by varying some of the selection cuts
and by searching for a dependence of the result on
several variables, such as the beam intensity, the time
during the spill, and the data-taking period. No sig-
nificant variation in the result is observed. An analy-
sis adopting a different scheme for data compaction,
filtering, selection and correction procedures was also
performed in addition to the one presented here. Its re-
sult fully confirms the above measurement.

The corresponding value of the direct CP-violation
parameter Re(ε′/ε) from formula (1) is:

Re(ε′/ε)= (13.7± 2.5± 1.1± 1.5)× 10−4,

where the first uncertainty is the pure statistical error
from the 2π samples, the second is the systematic
error coming from the statistics of the control samples,
and the third is the contribution of the other systematic
uncertainties. Combining the errors in quadrature, the
result is:

Re(ε′/ε)= (13.7± 3.1)× 10−4.

This result is in good agreement with the published
value from the 1997–1999 data: Re(ε′/ε) = (15.3 ±
2.6)× 10−4.

The comparison of the present and earlier results
is particularly significant since they were obtained
from data taken at different average beam intensities.
The correlated systematic uncertainty between the two
results is estimated to be±1.4 × 10−4. Taking this

correlation into account, the combined, final result on
Re(ε′/ε) from the NA48 experiment is:

Re(ε′/ε)= (14.7± 1.4± 0.9± 1.5)× 10−4,

or, with combined errors:

Re(ε′/ε)= (14.7± 2.2)× 10−4.
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