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1. Introduction 
 

For the purpose of understanding and evaluating some systematic effects on the measurement of the 

double ratio, it is important to know how well the two beams are correlated in time. For example, a 

different temporal trend for the two beam currents may give rise to differential effects of 

accidentals. So one is led to envisage methods to quantify this correlation, using sample readings 

from beam counters or other estimators to measure how much the two beam intensities diverge 

instantaneously from one another. It is the purpose of this short note to clarify what is meant by 

measurement of  this correlation, and to indicate quantitatively the extent to which any 

measurement of this kind  will be statistically limited and/or systematically biased. Since nothing 

new is  being presented here, this note should be taken as just a summary of the most relevant 

formulas and numbers. 

 

1. Beam-beam (de)correlation: an unifying approach 
 

The fundamental idea behind NA48 is to collect simultaneously the four decay modes. In this way, 

many systematic effects on the double ratio vanish to first order. However, this is only true provided 

the two beam currents are instantaneously proportional. There are at least two systematic effects 

potentially distorting the double ratio, and whose effect strongly depend on the ratio of 

instantaneous intensities 

 

(a) differential loss/gain of events in the four modes due to accidental activity 

(b) differential charged/neutral tagging dilution 

 

It will be shown in the following that the systematic effect of both these can be traced to the 

correlation between the two beams   

 

(a) Accidental loss/gain rate 

 

We start by recalling the well-known formula for the rate of accidental coincidences originating  

from a pair of input channels 
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This expression holds  as long as  

 

 

If one assumes that all the accidental activity orignates from the KL beam only, and for sake of 

simplicity takes that the only effect is a loss of events, one can write down simple expressions for 

the accidental losses of  events. These are strong assumptions, however they can be easily relaxed to 

take into account the effect of the KS beam, and the gain of events as well. One is therefore led to 

the following expressions for the rate of event losses: 

 

 

Here we have defined 

 

 

In our view, there is no serious question on the validity of the algebra above , other than the need of 

taking into account small effects like KS-originated accidental activity and little more. The problem 

is thus restricted to finding the best way of estimating the four numbers n+-,00
L,S  from the available 

data set.  

 

A way of measuring  these rates takes advantage from the collected random events. These are in 

any respect 'pedestal' events taken at a rate proportional to the beam intensities. These randoms are 

then linearly overlayed to a sizeable fraction of good COMPACT candidates, according to their 

timestamp, which are then passed again through the standard reconstruction chain. It must be 

stressed that each random is overlayed to a large number of candidates (more than 10).  By counting 

the event losses and gains in each mode one can estimate the double ratio distortion as indicated 

above. This way one is indeed  doing the experiment two times, first with the natural accidental 

activity (which cannot be eliminated, of course), and then with the activity artificially doubled. 

Since random triggers are collected at a rate proportional to beam intensities, and one estimates that 

the losses are proportional to beam intensities, and one is overlaying essentially the whole statistical 

sample, the added artificial gain-loss (measurable) can be taken as a good estimator of the natural 

gain-loss (not measurable). The whole algebra involved is quite simple as one compares the real, 

accidental induced loss to the artificially, random induced one: 
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where the correlator g(t-t’) measures the effectiveness for gain-loss at time t of accidental activity   

at time t’.  One expects for real accidental effects g(t-t’) to be zero everywhere except in a narrow 

window around t'-t=0. On the other hand, for artificially  induced gain-loss, g(t-t’) is shifted by a 

random amount h  within the window (-d/2,+d/2), d being the average interval between successive 

randoms: the higher the random rate, the smaller  the window, and the better  the approximation. 

Therefore one can write 

 

 

 

Therefore one obtains: 

 

To the extent the two ‘currents’ of real accidentals and randoms are proportional to the beam 

currents, this is easily interpreted as meaning that  the total loss is proportional, for real accidentals, 

to the beam-beam cross-correlation at zero delay , while for randoms it is proportional to the cross-

correlation averaged over the delay interval (-d/2,+d/2).  This observation allows in principle for an 

evaluation of the random induced loss as estimator of the real loss: If one is able to measure the 

cross-correlation one can tell how good is the approximation of the zero delay value by the window 

average.It must be stressed that any deviation of the cross-correlation from being constant over the 

interval (-d/2,+d/2)  will introduce a bias in the random estimation of the accidental correction. One 

then observes that  the total loss can be re-written as a sum over all the random and good events, 

rather than over time: 
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where pjk is the probability that random k kills event j. The main problem being how to ensure that 

random triggers really provide a faithful picture of the accidental acitivity seen by each event, some 

care should be paid to the overlaying strategy. Since one is interested in measuring the loss  per 

decay mode, the correct way of overlapping is to add to each event of a given type the activity seen 

by the closest random trigger originated by the same beam.. The weak point of this method, arisng 

from its practical implementation, is that there is frequently a very long delay between the time of 

the candidate event and the time the random trigger is taken, the average delay being of the order of 

70 ms. So the effect of the accidental is verified at the wrong time, due to the very low random rate. 

Nevertheless, if random triggers do cover  the full range of event timestamps with good uniformity, 

then over the full run period one may have the random time  statistically as close as desidered to the 

event time. It is our understanding that, in this statistical sense, the system bandwith (i.e., the 

sensitivity of the method to fast, relative variations of intensities) is quite large, however  this is true 

only in a statistical sense. It requires the stochastic processes of event generation and accidental 

activity to be quasi-stationary along the whole run in order to be a faithful description of the effect 

of accidentals. 

 

(a) Charged/neutral dilution 

 

 

 

2. The beam currents 
 

The two beam currents can be modeled as two quasi-stationary stochastic processes IS(t) and IL(t) . 

Quasi-stationary means that they may have a trend in time, however on a  scale much longer than 

their intrinsic self-correlation time. Without introducing a detailed description of the time structure 

of the processes, one may assume that both can be written as a combination of a deterministic 

component sS,L(t) , with its own trend in time, and a stochastic component, originating from the 

statistical nature of the production process in the target and from the granular time structure of the 

proton beam current  

 

 

In a broad sense, the stochastic component can be understood as a shot noise current adding up to 

the signal current. The interesting quantities one may want to measure are 

 

 

 

 

 

 

 

)()()( ,,, tntstI LSLSLS +=

L

2/

2/

S

2/

2/

LS

2/

2/

I ofn correlatio-self    )()(
1

)(

I ofn correlatio-self    )()(
1

)(

I and I ofn correlatio-cross    )()(
1

)(

dttItIR

dttItIR

dttItIR

LLLL

SSSS

LSSL

ττ

ττ

ττ

−
∆

=

−
∆

=

−
∆

=







∆+

∆−

∆+

∆−

∆+

∆−



these expressions being taken in the linit of very large ∆. By taking the above expansion for both IS 

and IL, one sees that of the four crossed products, only  sSsL will survive for ∆ very large. Indeed, 

what matters in practice for evaluating differential effects is the beam-beam total 

(deterministic+stochastic) correlation over the limited sample time. Any residual noise-noise and 

noise-signal correlation, due to the finite sample size, builds up what can be called the statistical 

error on the measurement. I have sketched in App. A a short derivation of the relationship between 

cross-correlation and cross-spectrum of the two currents.  

 

3. Errors (statistical and bias) in the measurement of cross/self-correlation 
 

The statistical error on the correlation arises from both the finite sample length, and the limited 

bandwidth of the measurement. For sake of completeness, I’m reporting here the relevant 

expressions of the fractional error for a  for a pair of stochastic signals [1]: 

 

 

 

where  

 

As an example, by taking B = 1 KHz, T = 2.5 s, one has 

 

As for systematic errors, they mostly come from the limited bandwith of the measurement. It is 

quite obvious that a limited bandwith, besides  increasing the statistical error as shown in the 

formula above, will also reduce the sensitivity to fast oscillations of the correlation under study, 

thereby effectively introducing some systematics. This is equivalent to say that the correlation 

function will be effectively time integrated and smoothed, as better seen in the frequency domain. 

Indeed, the signal cross-/self-power spectrum, consisting of a deterministic and a stochastic 

component, is effectively distorted by the transfer function of the measurement. Since the 

deterministic component is different in each particular case, one should not expect the same effects 

of a given  transfer function in all cases. 

 

              

4. Sampling errors in the measurement of cross/self-correlation 
 

The process of sampling the currents introduces systematic and statistical errors. This should be 

expected, since the sampling process is nothing else than a special kind of filter applied to the 

signals. In the present case, where one is taking repeated measurements of  the total counts in a time 
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window of width T every τ seconds, the measured sampled current can be taken as given by the 

following generic expression 

 

 

where T is the duration and nτ is the midpoint of the n-th sampling window. The effect of sampling 

is better understood in the frequency domain. It can be shown (see Appendix B) that the spectrum 

of the sampled signal , besides being made periodic by the sampling, is damped at frequencies 

above the cutoff frequency 2/T by the amount sin(ωT/2)/(ωT/2). This spectrum distortion makes up 

some contribution to the systematic error due to sampling. Another, more important systematic 

effect is originated by the aliasing of the Fourier components above the Nyquist frequency 1/2τ . 

Since normally τ>>Τ, the effective bandwith of the measurement in fixed by 1/2τ. In principle, 

experimental data should be filtered by removing components above that limit, in order to avoid 

introducing spurious spectral contributions. Note however that for the important case where T=τ 

(i.e. by taking the integration window as wide as the sampling interval), one is effectively damping 

the frequency spectrum above ωNyquist (see App.B).The quoted bandwith corresponds to a rise time 

of about 4τ for a step variation in time of the correlation, so that the parameter 4τ  may be taken as 

an indicator of the time sensitivity of the measurement. Statistical errors can be evaluated just by 

taking the expression for Rij(0), as shown in Appendix C. For the practically important case where 

one is sampling quasi-stationary signals (like we do in NA48), one can get the approximate 

expressions 

 

 

By taking typical values for KS and KL beam currents, as measured in NA48 by our  beam monitors, 

of  105 Hz  and 2 106 Hz, one gets 

 

 

 

Remembering that N = Tburst/τ, by keeping T<τ I have plotted in fig. 1 these fractional 

errors, together with the rise time of a step variation of the correlation, as originated by the finite 

bandwith of  the measurement, as functions of   τ  for different values of sample width T .  
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This may be useful to appreciate the intrinsic limits of our experimental measurement. The whole 

point of making such a discussion of the relative weight of statistical and systematic errors is that 

one does not know a priori the deterministic frequency spectrum of the beam currents. So, if one 

suspects that  some periodic components actually modulate the Poissonian flux of the beams, it is 

quite natural to try to bring them into evidence. However, the analysis sketched above shows that, 

for each given value of (T, τ), there is a natural lower limit for the detection of any such component, 

given by the shot noise floor in the beam currents. Conversely, any attempt to measure the beam-

beam correlation to a given statistical significance is bound to yield a limited time resolution.  
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Appendix A 

 

Cross-correlation and cross-power spectrum of the two currents 

 

The cross-correlation of the two beam currents can be evaluated by taking both as quasi-stationary, 

δ-correlated  Poissonian processes. In this case, the total current can be also taken as a similar 

process. Then one obtains, by assuming RLS(τ)=RSL(τ): 

 

 

 

 

 

In the above expressions for RLL, RSS one can recognize  a signal term rL,S 
2 and a shot noise term 

rL,Sδ(τ), as expected for the self-correlation of a Poissonian, constant average current. Conversely, 

RSL is a pure signal cross-correlation, independent noise sources being uncorrelated when integrated 

over the full time axis. When integrated over a finite time interval, some noise term can be expected 

to contribute there too. The corresponding cross-power spectrum is evaluated as the Fourier 

transform of the cross-correlation as  

 

 

  

To the approximation where the original cross-spectrum is δ-like, the sampled cross-spectrum is 

unchanged, except for the factor (τ/T)2 .This translates into a still flat cross-correlation with the 

same factor (τ/T)2. Any frequency structure above the cutoff frequency  4π/T in the cross-spectrum 

is however damped by the factor (sinx/x)2. Due to the sampling period τ, any  structure above the 

Nyquist frequency π/τ is folded back into the bandwith at a spurious frequency. These expressions 

for RLS(τ), RLS(ω)    can be maintained  also for time varying currents, provided the time scale of 

their variation is large. In the latter case, rL,S should be taken as (slow) functions of time. 
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Appendix B 

 

Derivation of the frequency spectrum for the sampled signal 

 

 

Having defined the sampled current signal IS(t), one can compute its frequency spectrum as follows: 

By recalling that 

 

 

 

 

one easily obtains  

 

  

 

 

 

  
Then, by substituting back into the original expression 

 

which is 
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This shows that the spectrum of the sampled current is made periodic by the sampling process. It is 

also damped, within each period, above the cutoff frequency ωcutoff 
(n)= ±(2πn/τ)±(4π/T). One may 

then look for the effect of sampling on the cross-spectrum of the two currents 
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Appendix C 

 

Calculation of the statistical error on the sampled cross/self correlation 

 

It has been shown in Appendix A that the original self-correlation contains a shot noise term, giving 

rise to a statistical error on the signal term, while the cross-correlation is noise-free. One can 

calculate the statistical error on both self- and cross-correlation after the sampling process as 

follows: starting from the expression 

 

 

 

 

by assuming Poissonian fluctuactions in the rates, we derive the following formula  for the variance 

of Rij(0) 

 

 

  

These last expressions can be rewritten in terms of the instantaneous rates rL, rS: 
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The expression for σR – cross does not take into account any correlation between nS and nL. Such a 

correlation is originated, for example, by sampling with a variable gate length (see App. D below 

for details). For the case of  BCTR and KSM rates, it can be shown that the correction is rather 

small (<15%) 



Appendix D 

 

Statistical correlation induced by non-constant gate width 
 

 

One should point out that one of the available data sets, consisting of incremental readout of the 

KSM and BCTR scalers between successive triggers,  contains a statistical (exponential) 

distribution of sampling intervals, coming from the Poissonian fluctuations in the trigger rate. 

Closer analysis shows that these data feature a strong S-L correlation originated by the non-uniform 

sampling. Indeed, count integration over a variable gate length always originates some level of 

correlation. By taking an exponential gate length distribution 

 

 

the joint statistical distribution for nS and nL can be obtained by folding dN/dt to a pair of Poisson 

distributions with average values   

 

From 

 

 

 

 

 

one gets 

 

 

Now, this expression for P be cannot factorized as a product 

 

 

 

 

 

so nS and nL are statistically correlated. This corresponds to our expectation: when t is large, both nS 

and nL tend to be large, and conversely when t is small. This has no consequences on the estimate of 

IS,L and CLS,LL,  which are obtained by taking the ratio between  nS , nL and ∆t, however should not 

be neglected when computing the statistical errors. On the other hand, for uniform sampling times 

correlation vanishes. 
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