Le radiazioni: usi, danni e miti

Come orientarsi fra scienza, pseudoscienza e nuove paure

Radiazioni: che cosa sono?

Una definizione molto semplificata:

Trasporto di energia, da una sorgente a un bersaglio, con o senza trasporto di materia:

con effetti diversi sul bersaglio,

a seconda della natura e dell'energia

Natura delle radiazioni

- Campi elettromagnetici
 - Originati da cariche elettriche accelerate

Onde radio, radar, microonde

Originati da processi negli atomi

Raggi IR, luce, raggi UV, raggi X

- Radiazioni nucleari
 - Originati da disintegrazioni di certi nuclei atomici

Radiazione α, β, γ , raggi cosmici

In ogni caso...

- Interagiscono con la materia, vivente e non
- Vari modi di interagire
- In ogni caso

Cessione di energia

- Ionizzazione di atomi e molecole oppure
- Riscaldamento
- Altri piccoli effetti

Ionizzazione

- Atomi e molecole:
 - Elettroni legati a nuclei atomici
- Radiazione di energia elevata
 - Molta energia ceduta al singolo atomo
 - Possibilita'che uno o piu' elettroni siano staccati dall'atomo
 - Conseguenza: rottura di legami chimici, variazioni nella struttura molecolare

Riscaldamento

- Radiazione di energia modesta: piccolo assorbimento di energia da parte della singola molecola
 - Esempio: La molecola d'acqua assorbe volentieri energia da campi elettromagnetici a microonde (onde radio ad alta frequenza), senza ionizzarsi
- L'energia assorbita riscalda l'insieme delle molecole che assorbono:
 - Forno a microonde (grande), telefonino (piccolissimo)

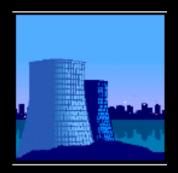
Esempi: radiazioni ionizzanti

Apparecchio a RX

Acceleratore di particelle

Sorgente radioattiva

Reattore nucleare


Raggi cosmici

Esempi: radiazioni non ionizzanti

Trasmettitore radio/TV, Radar

Telefono cellulare

Forno a microonde

Linea ad alta tensione*

Motore elettrico a c. alternata*

*uso improprio: meglio campo elettromagnetico

Impatto sul progresso tecnologico

Campi elettromagnetici

- Trasporto e distribuzione dell'energia elettrica, usi quotidiani e industriali
- Energia solare
- Comunicazioni: telefon(in)o, radio/TV, radar (trasporti via terra, mare, aria), Internet, satelliti, fibre ottiche
- Diagnostica e terapia medica (raggi X, TAC, laser, risonanza magnetica, radar terapia, ...)

Impatto sul progresso tecnologico

Radiazioni nucleari

- Produzione di energia (centrali nucleari)
- Diagnostica medica (Scintigrafia, Raggi gamma, PET,...)
- Terapia medica (Cobalto, acceleratori lineari, adroterapia, ...)
- Archeologia, beni culturali (datazione, restauro,..)

Una invenzione controversa?

No: tutti fenomeni naturali

Le radiazioni sono state <u>scoperte</u>, non inventate

I campi elettromagnetici sono presenti in natura (fulmini, c. magnetico terrestre, luce, fondo fossile a microonde)

Anche le radiazioni ionizzanti sono un fenomeno naturale (raggi cosmici, radioattivita' ambientale)

Il fondo di radiazione ionizzante

Origini diverse

- Sole e raggi cosmici
- Rocce, materiali

- Il nostro corpo (isotopi radioattivi, come il Potassio 40)
- Sorgenti artificiali (Raggi X, televisori, ...)

La dose

- Concetto chiave per tutto il problema
- Quantità di radiazione assorbità (Analogia: medicinale)
- Dipende da
 - tipo, energia, intensita' della radiazione
 - estensione dell'esposizione (Analogia: tintarella)
- Si misura in rem (sottomultiplo: millirem)

Fondo ambientale di radiazione

Dose annua da sorgenti naturali

Circa 300 mrem/anno

Radon	200 mrem
Corpo umano	40 mrem
Rocce	28 mrem
Raggi cosmici	27 mrem

Dose annua da sorgenti artificiali

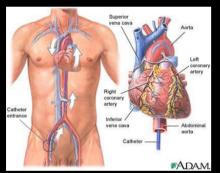
Circa 70 mrem/anno

	Usi medici	53 mrem
٠	Prodotti di consumo	10 mrem
٠	Un volo transatlantico	2 mrem
٠	Guardare la TV	1 mrem
٠	Fallout da esplosioni atomiche	<1 mrem
٠	Produzione di energia	<1 mrem

Esempi di sorgenti ambientali - 1

Cibi, particolarmente quelli ricchi in potassio

Radiografie; es. panoramica dentale > 10 mrem



Fumo; 30 sigarette > 1000 mrem/anno, equivalente a circa 1500 RX al torace!

Esempi di sorgenti ambientali - 2

Volo ad alta quota; equipaggio 200-300 mrem/anno

Cateterismo cardiaco: > 2000 mrem

Piazza S.Pietro: esposizione superiore a quella consentita negli ambienti di lavoro di una centrale nucleare

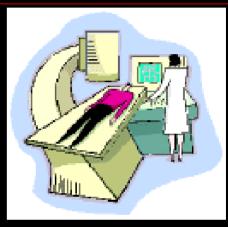
Esempi di sorgenti ambientali - 3

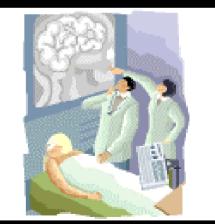
Orologio luminoso – 8 mrem/anno

Minatore in miniera di uranio - 300 mrem/anno

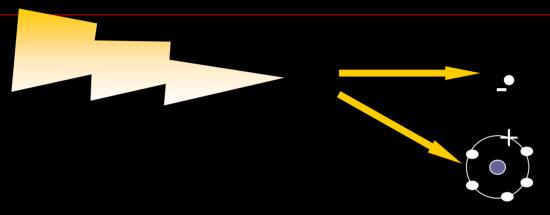
Acqua potabile, emanazione da intonaco, pareti: *radon* 200 mrem/anno

Ma quali sono gli effetti biologici?


Radiazioni ionizzanti: dipende dalla dose ricevuta


<u>Alte dosi</u>: effetti molto gravi, talvolta letali

Usate per curare tumori


<u>Basse dosi</u>: effetti molto piccoli, difficili da mettere in evidenza

Usate in diagnostica

L'origine del danno biologico

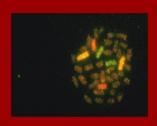
Creazione di radicali liberi, specie chimiche molto attive

Attivazione di reazioni biochimiche che alterano la struttura cellulare

La madre di tutte le biomolecole...

DNA

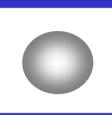
Un gene puo' cambiare il suo segnale per produrre una


proteina

Codice

Mutazione

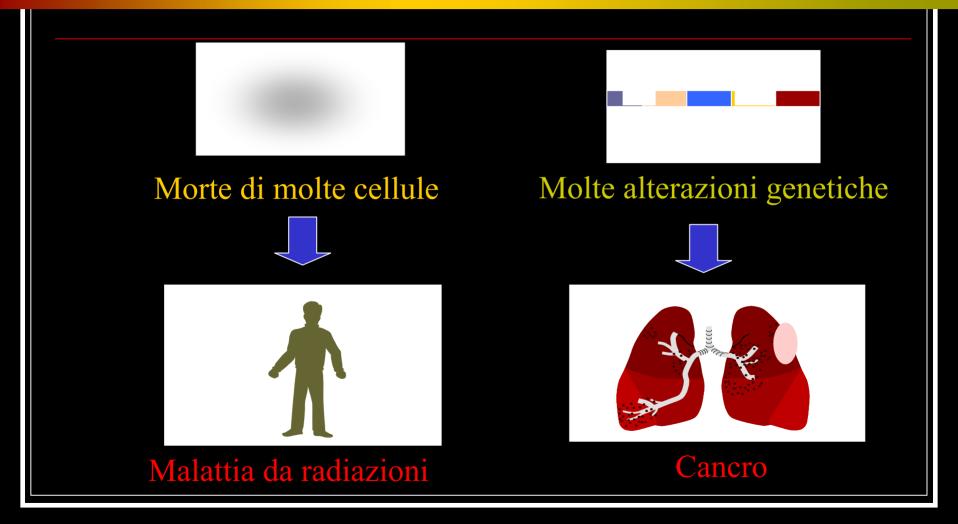
Talvolta un gene specifico muta e non e' piu' in grado di produrre la sua proteina


Aberrazioni cromosomiche

Talvolta il danno colpisce un intero cromosoma, che si spezza o ricombina in modo anormale

Instabilita' genomica

Talvolta il danno al DNA produce cambiamenti tardivi che possono contribuire all'insorgere del



<u>Distruzione</u> cellulare

II DNA danneggiato puo' causare apoptosi,

la morte programmata della cellula

Effetti sul nostro corpo: alte dosi

Effetti sul nostro corpo: basse dosi

- *Alcuni osservati chiaramente:*
 - Aumento di attivita' di "riparazione genetica"
 - Adattamento della "risposta cellulare"
- Altri non osservati in modo certo:
 - Instabilita' genomica?
 - Mutazioni?
 - Cancro?

Effetti a basse dosi: ci sono o no??

- Perche' potrebbero non esserci?
 - Le cellule usano meccanismi biochimici di autoriparazione, estremamente efficaci
- Perche' e' cosi' difficile osservarli?
 - Presenza di radiazione di fondo ambientale
 - Molte cause del cancro, quasi tutte non legate a radiazioni
 - Non c'e' modo di distinguere il cancro indotto da radiazioni da quello indotto da un'altra causa

Quindi, distinguiamo:

Rad. ionizzanti: nella materia, vivente e non, possono rompere legami chimici, guastare o distruggere cellule, introdurre mutazioni nel DNA, ...

Rad. non ionizzanti: non possono rompere legami chimici, possono pero' indurre riscaldamento locale, trasporto di cariche elettriche negli elettroliti biologici, oppure indurre piccolissimi effetti magnetici

Come e' andata a Chernobyl?

Incidente gravissimo

Gravi errori umani in una centrale con standard di sicurezza scandalosamente bassi

Conseguenze sanitarie accertate (Rapporto UNSCEAR all' ONU):

Perdita diretta di circa 50 vite umane Previsione di circa altri 1000 decessi in 30-40 anni Incremento di tumori alla tiroide nei bambini

Per confronto:

Numero tipico di decessi riportato dai media: 30-50000, anche 300000! Folklore:molte mutazioni (pesci giganti, vitelli a tre teste, etc); aumento vertiginoso di malformazioni alla nascita; e molto altro ancora

E l'uranio impoverito?

Uranio: presente in natura

4 parti per milione, praticamente ovunque

3 tonnellate/km³ in mare

Insieme ai fertilizzanti fosfatici

(Guerra in Iraq: equivalente a quello venuto con 17 anni di fertilizzazioni dei terreni)

Ne mangiamo (da sempre) circa 2 microgrammi/anno

Usato (impoverito) per molti scopi pratici (contrappesi, schermature per apparecchi a RX e acceleratori lineari per uso medico, ...)

Uranio e Balcani

- Inchiesta condotta da Mandelli, noto ematologo
- Incidenza complessiva di cancro <u>leggermente</u> <u>ridotta</u> nel contingente che e' stato nei Balcani rispetto a un gruppo di controllo
- Tuttavia, <u>limitata maggior incidenza</u> di linfomi di Hodgkin
- Cause del linfoma di Hodgkin: non conosciute

Uranio

E' certamente vero :

Alte dosi di radiazioni ionizzanti possono provocare leucemie

Ma:

Comportamento biologico e proprieta' fisiche dell'uranio, e i meccanismi e livelli di contaminazione realistici, rendono estrememente improbabile che i casi osservati siano dovuti a radiazioni

E le radiazioni non ionizzanti?

Nessun effetto misurabile, a parte il riscaldamento ad alta frequenza (che, ad alte intensita', diventa "cottura" – vedi forno a microonde)

Usate in radiodiagnostica (risonanza magnetica)

Usate in terapia (radar terapia)

Ma e' proprio vero?

Qual e' allora l'origine della paura delle linee ad alta tensione?

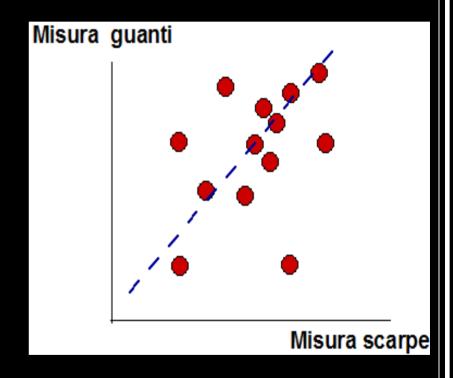
Studio epidemiologico USA del 1979, sulla correlazione fra leucemia infantile ed esposizione a campi magnetici da linee ad alta tensione

Metodologia statistica sbagliata; nessuno studio successivo ha indicato nulla Lo studio epidemiologico

Due modi per stabilire un nesso fra due fenomeni:

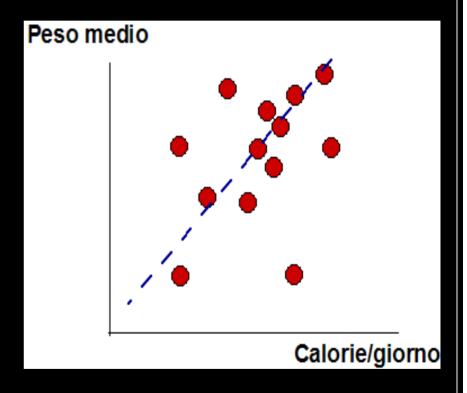
Modo A):

Relazione diretta causa-effetto (Es. avvelenamento da funghi)

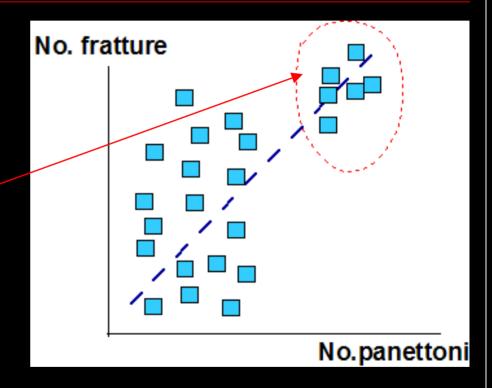

Modo B):

Correlazione statistica fra misure (Es. eccesso di peso-infarto)

La correlazione puo' essere forte oppure debole; se e' debole il grado di fiducia statistico e' molto basso, e l'effetto si distingue male


La correlazione statistica

- Un esempio semplice: misura di scarpe e di guanti
- Donne o uomini con piedi grandi tendono ad avere mani grandi, e viceversa
- Ma la regola non e' assoluta (come la retta tratteggiata)
- La correlazione misura in modo quantitativo la tendenza


Correlazione fra fenomeni - 1

- Esempio:
 - Peso medio e calorie per giorno
- Correlazione chiara
- Cosa c'e' dietro? Meccanismo biochimico di causa-effetto ben noto

Correlazioni fra fenomeni - 2

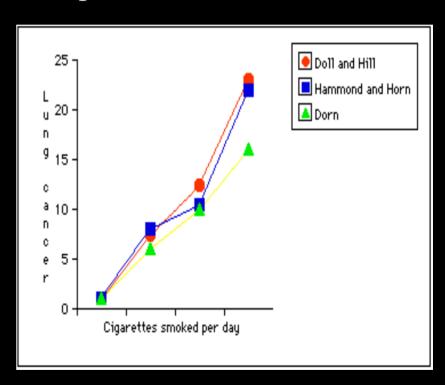
- Altro esempio:
 - numero di fratture della tibia e numero di panettoni consumati per giorno dell'anno
- Mangiare il panettone fa male alle ossa?
- Nessun meccanismo di causa/effetto ipotizzabile

Correlazione e causa-effetto

- Relazione di causa/effetto conosciuta
 - \blacksquare \rightarrow Correlazione sempre osservata
- Correlazione osservata
 - \blacksquare \rightarrow Non necessariamente relazione di causa/effetto!

Tralicci e leucemie - 1

- Lavoro originale: trovata (debole) correlazione fra incidenza di leucemie infantili e <u>codice di</u> allacciamento dell'abitazione alla linea elettrica
- <u>Non c'era</u> la misura dell'esposizione ai campi magnetici generati dalle linee elettriche
- <u>Ma</u>: chi abita vicino ai tralicci tende ad essere piu' povero di chi abita lontano...
- *E*: chi e' piu' povero tende ad ammalarsi di cancro di piu' rispetto a chi e' piu' ricco...


Tralicci e leucemie - 2

- Nessuna ricerca successiva ha portato ad alcuna evidenza di una relazione di causa/ effetto
- Tuttavia: la protesta, la protezione e la bonifica del cosiddetto "elettrosmog" e' diventata nel frattempo un'industria (comitati, avvocati, giudici, partiti, media, imprese specializzate,...) e non e' prevedibile un ritorno alla ragione

Esempio: una correlazione forte

La relazione fumo-tumore polmonare

Ascisse: sigarette al giorno
Da zero a > 1 pacchetto
Ordinate: probabilita' di morte
per tumori al polmone (%)
[Grafico da Kimball]

Esempio: nessuna correlazione

Leucemie e campi elettromagnetici in Danimarca

Ascisse: anni

Ordinate:

Sinistra: incidenza di

leucemie infantili

Destra: potenza elettrica per abitante

[Grafico da R.Adair]

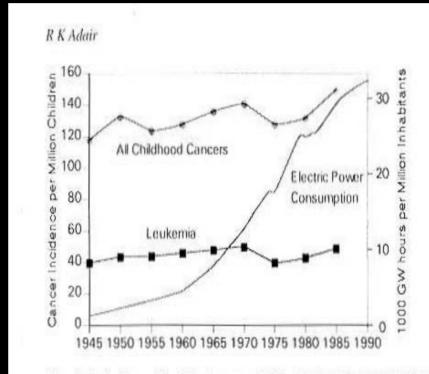


Figure 2. The incidence of all childhood cancer and childhood leukaemia in Denmark [128] from 1945 to 1990 along with the per capita use of electric power.

Malgrado tutto, una morale: anzi due

Ogni cittadino, elettore e contribuente dovrebbe sentire la necessita', nel suo proprio interesse, di interessarsi alla scienza e i suoi metodi: e' tanto indispensabile, per vivere nel mondo di oggi, quanto la patente o la conoscenza delle lingue straniere

Ogni cittadino, elettore e contribuente dovrebbe abituarsi ad accogliere le notizie di argomento scientifico-tecnico diffuse dai media (incluso il Web!) con un po' di cautela: cosi' come tante scoperte mirabolanti di cui si e' informati ogni giorno, molte notizie catastrofiche sono poco conclusive, o fuorvianti, o infondate