Detectors at LHC

CMS

Detector Guidelines

2

Go for:

Excellent muon tracking Excellent e.m. calorimetry Vertexing

Large acceptance High momentum/energy resolution High vertex resolution

Case study:

Muon, Tracking & EM Calorimetry in CMS

Magnetic Analysis & Accuracy - II

4

Take 3 measured points, with single point accuracy σ

Then: $s = x_B - \frac{x_A + x_B}{2}$ $\rightarrow \sigma_s^2 = \sigma^2 + \frac{1}{2}\sigma^2 = \frac{3}{2}\sigma^2$ $\frac{\sigma_{p_\perp}}{p_\perp} = \frac{\sigma_s}{s} = \sqrt{\frac{3}{2}}\frac{\sigma}{s} = \sqrt{\frac{3}{2}}\frac{\sigma 8p_\perp}{0.3BL^2} = \sqrt{\frac{300 \cdot 64}{18}}\frac{\sigma p_\perp}{BL^2}$ $\rightarrow \frac{\sigma_{p_\perp}}{p_\perp} \approx 32.7\frac{\sigma p_\perp}{BL^2}$

 $N \ge 10$, uniformly spaced points:

$$\frac{\sigma_{p_{\perp}}}{p_{\perp}} \approx 28.3 \frac{\sigma p_{\perp}}{BL^2 \sqrt{N+4}}$$

Magnetic Analysis & Accuracy - III

5

$$B = 4T, L = 2m, p_{\perp} = 50 \text{GeV}:$$

$$\rightarrow s \simeq \frac{0.3 \cdot 4 \cdot 4}{400} m \approx \frac{1.2}{100} m \approx 1 \text{ cm}$$

$$\sigma \sim 100 \mu m$$

$$\rightarrow \frac{\sigma_p}{p} \Big|_{p=30 \text{GeV}} \sim 30 \ 10^{-4} = 0.3\%$$

$$\rightarrow \frac{\sigma_M}{M} \Big|_{4\text{tracks}} \sim 0.6\%$$

$$\rightarrow \frac{\sigma_{\langle M \rangle}}{\langle M \rangle} \sim 0.6\% o \rightarrow \sigma_{\langle M \rangle} \ge 80 \text{MeV}$$

Does not include many additional factors \rightarrow Quite optimistic..

Tracking - VI

Effect of instantaneos luminosity: Calibration, Efficiency

18

vs = 8 TeV

and the second state of the second state

Electromagnetic Calorimetry - I

Typical performance (homogeneous):

Technology (Experiment)	Depth	Energy resolution	Date
NaI(Tl) (Crystal Ball)	$20X_0$	$2.7\%/E^{1/4}$	1983
$\operatorname{Bi}_4\operatorname{Ge}_3\operatorname{O}_{12}(\operatorname{BGO})(\operatorname{L3})$	$22X_0$	$2\%/\sqrt{E}\oplus 0.7\%$	1993
CsI (KTeV)	$27X_0$	$2\%/\sqrt{E} \oplus 0.45\%$	1996
CsI(Tl) (BaBar)	$16 - 18X_0$	$2.3\%/E^{1/4} \oplus 1.4\%$	1999
CsI(Tl) (BELLE)	$16X_0$	1.7% for $E_{\gamma} > 3.5 \text{ GeV}$	1998
$PbWO_4 (PWO) (CMS)$	$25X_0$	$3\%/\sqrt{E} \oplus 0.5\% \oplus 0.2/E$	1997
Lead glass (OPAL)	$20.5X_0$	$5\%/\sqrt{E}$	1990 0
Liquid Kr (NA48)	$27X_0$	$3.2\%/\sqrt{E} \oplus \ 0.42\% \oplus 0.09/E$	1998

20

Electromagnetic Calorimetry - II

Typical performance (sampling):

Technology (Experiment)	Depth	Energy resolution	Date	
Scintillator/depleted U (ZEUS)	$20 - 30X_0$	$18\%/\sqrt{E}$	1988	1
Scintillator/Pb (CDF)	$18X_0$	$13.5\%/\sqrt{E}$	1988	
Scintillator fiber/Pb spaghetti (KLOE)	$15X_0$	$5.7\%/\sqrt{E} \oplus 0.6\%$	1995	Sa
Liquid Ar/Pb (NA31)	$27X_0$	$7.5\%/\sqrt{E} \oplus 0.5\% \oplus 0.1/E$	1988	l Ħ
Liquid Ar/Pb (SLD)	$21X_0$	$8\%/\sqrt{E}$	1993	lin
Liquid Ar/Pb $(H1)$	$20 - 30X_0$	$12\%/\sqrt{E}\oplus 1\%$	1998	Q
Liquid Ar/depl. U (DØ)	$20.5X_{0}$	$16\%/\sqrt{E}\oplus 0.3\%\oplus 0.3/E$	1993	
Liquid Ar/Pb accordion (ATLAS)	$25X_{0}$	$10\%/\sqrt{E}\oplus 0.4\%\oplus 0.3/E$	1996	

21

