

The Pierre Auger Observatory

Hunting the Highest Energy Cosmic Rays

I – High Energy Cosmic Rays and Extensive Air Showers

March 2007

Discovery of Cosmic Rays

Hess bei Ballonlandung (1912).

Altitude variation of ionization. (a) Balloon ascent by Hess (1912) carrying two ion chambers. (b) Ascents by Kolhörster (1913, 1914) using ion chambers. (c) Coincidence counter telescope flown by Pfotzer (1936).

Altitude variation of ionisation detected by Hess and Kohlhoster and Pfotzer

PIERRE AUGER

The Cosmic Ray Spectrum

March 2007

E.Menichetti - Villa Gualino, March 2007

PIERRE AUGER

Outstanding Issues

Acceleration Mechanism

GZK

Composition

Point Sources

The Magnetic Mirror

Energy exchange Drift ↔ Revolution

$$v_{\parallel}^2(z) = v_{\parallel}^2(0) - v_{\perp}^2(0) \left[\frac{B(z)}{B(0)} - 1 \right] .$$

Inhomogeneous B field Spiral trajectories around field lines High gradient regions acting like walls

Fermi Mechanism - 2nd Order

Scattering from inhomogeneous, moving B field

Scattering by *B*-field Stochastic process:

 $\Delta E \propto \beta^2 E$

Expect: *Slow, inefficient*

$$E_{1}^{'} = \gamma E_{1} \left(1 - \beta \cos \theta_{1} \right) \\ E_{2} = \gamma E_{2}^{'} \left(1 + \beta \cos \theta_{2} \right)$$
 $\rightarrow \left\langle \frac{\Delta E}{E} \right\rangle_{\theta_{1},\theta_{2}} \approx \frac{4}{3} \beta^{2}$

E.Menichetti - Villa Gualino, March 2007

March 2007

Fermi Mechanism - 1st Order

shock wavefront

supernova interstellar medium Speed=U₁ > Speed=U₂ $\left\langle \frac{\Delta E}{E} \right\rangle_{angles} \sim \frac{4}{3} \frac{R-1}{R} \beta$

As before, scattering by *B* -field irregularities Momentum gain:

 $\delta p/p = +2U_1/c$ head-on acceleration $\delta p/p = -2U_2/c$ tail-on deceleration $\rightarrow \delta p/p = 2(U_1 - U_2)/c > 0$ net gain Expect: *fast, efficient*

Shock compression ratio

Maximum Energy

PIERRE AUGER

Spectral Index, Time Constant

Power law spectrum

 $N(E) \propto E^{-x}$

Fermi 2nd order:

$$x = 1 + \tau_{acc} / \tau_{esc} \gg 1$$

 τ_{acc} >10⁸ yr! KO

Fermi 1st order:

$$x = \frac{R+2}{R-1} \sim 2$$

$$\tau_{acc} \sim 1 \text{ month! OK}$$

Compact sources

Just meaning: non electromagnetic acceleration

Various mechanisms proposed:

Black hole accretion disks Gamma ray bursts Topological defects (monopoles, cosmic strings, ..) UHE v's from decays of high mass particles

Cosmic Microwave Background

Penzias, Wilson & the Antenna

The CMB spectrum (by FIRAS)

March 2007

E.Menichetti - Villa Gualino, March 2007

PIERRE AUGER

CMB Photons

Possible CR interactions:

AUGER

 $p + \gamma (2.7K) \rightarrow n + \pi^{+}$ $p + \gamma (2.7K) \rightarrow p + \pi^{0}$

(G, Z&K - 1965)

 $E_{thresh} \sim ~6~10^{19}~eV~~En.loss~\sim 20\%$ /int

$$p + \gamma (2.7K) \rightarrow p + e^+ + e^-$$

 $E_{\text{thresh}} \sim 1 \ 10^{18} \text{ eV} \quad \text{En.loss} \sim 0.1\%$ /int

The moral: *CR's above threshold bound to lose energy*

The GZK Cutoff

AUGER

So UHECR's just can't propagate beyond, say, 50 Mpc!

Then we should find a suitable source just 'round the corner'. But where?

The High End of the CR spectrum

PIERRE AUGER

Composition Issues

Spectrum

Depth of Shower Maximum in Air vs. E

More on Composition

Proton/Iron Discrimination tied to Intra/Extra-Galactic origin

E.Menichetti - Villa Gualino, March 2007

PIERRE

DEFERVATO

Opening a New Window?

Effect of Extra-Galactic Magnetic Field on CR trajectories –Simulation $E = 10^{18} eV$ $E = 10^{20} eV$

Clearly, around 10²⁰ eV a new astronomy is feasible... ...if Cosmic Rays of that energy are actually observed

The Known Matter (< 21 Mpc)

Matter distribution 7-21 Mpc. Exclusion zones; north array (black), south array (green)

Anisotropies, Point Sources?

Equatorial Coordinates

Controversial results... Issues at stake:

Detection Technique Angular Resolution Statistics!

Cosmic Rays Detection

Direct detection - Up to 10¹⁴ eV

- Main limitation: Flux
- Usually performed by balloons, satellites, ...

Extensive Air Showers – Above 10¹⁴ eV

Primary particle interaction in upper atmosphere Developing shower detected by different techniques

EAS Development

March 2007

E.Menichetti - Villa Gualino, March 2007

PIERRE AUGER

EAS – Cross Section

PIERRE AUGER

EAS – EAS development

Next ~6 slides from R.Engel's simulations See for example:

R.Engel EAS Lectures given at ISAPP 2005 Summer School http://www.isapp2005.to.infn.it/

EAS-I

EAS-II

March 2007

EAS-III

E.Menichetti - Villa Gualino, March 2007

March 2007

EAS-IV

March 2007

EAS-V

EAS - Profiles

EAS - Electron Lateral Distribution

EAS - Muons vs Electrons

E.Menichetti - Villa Gualino, March 2007

EAS- Elongation Rate

Elongation rate

$$D_e = \frac{\langle dX_{\max} \rangle}{d\ln E}$$

$$D_{10} = \frac{\langle dX_{\max} \rangle}{d \lg E} = \ln(10) D_e$$

Photon-induced shower

$$\langle X_{\text{max}}^{\gamma} \rangle \sim X_0 \ln E$$

 $D_{10}^{\gamma} = \ln(10) X_0 \approx 84 \,\text{g/cm}^2$

Elongation rate theorem

Constraint on elongation rate of hadron-induced showers

$$\begin{split} D_{10}^{\text{had}} &= D_{10}^{\gamma} \left(1 - B_n - B_{\lambda} \right) \\ B_n &= \frac{d \ln \langle n(E) \rangle}{d \ln E} \qquad B_{\lambda} &= \frac{-\lambda_{\text{int}}}{X_0} \frac{d \ln \lambda_{\text{int}}}{d \ln E} \end{split}$$

(Linsley, Watson, PRL 46(1981)459)

E.Menichetti - Villa Gualino, March 2007

PIERRE AUGER

EAS Detectors

Long history, dating back to the '60s

Volcano Ranch (USA) – Sampling Haverah Park (UK) – Sampling SUGAR (Australia) - Sampling Yakutsk (Russia) - Sampling Fly's Eye (USA) – Fluorescence <u>AGASA</u> <u>HiRes</u>

AGASA Akeno Giant Air Shower Array

HiRes High Resolution Fly's Eye

Pioneers of FluorescenceTechnique

HiRes

Air fluorescence detectors HiRes 1 - 21 mirrors HiRes 2 - 42 mirrors Dugway, Utah, USA

No Super-GZK flux No Small Scale Clustering Composition Change

E.Menichetti - Villa Gualino, March 2007

March 2007

EAS – The Movie

