

The Pierre Auger Observatory

Hunting the Highest Energy Cosmic Rays

II – EAS Detection at the Pierre Auger Observatory

EAS – The Movie

EAS – Early History

The Hybrid Concept

March 07

Geography - I

Very flat region "Pampa Amarilla" Malargüe (Argentina)

- 35° S latitude 69° W longitude
- \approx 1400 m height
- pprox 875 g/cm²

Very low population density (< 0.1 /km²) Good atmospheric conditions (clouds, aerosol, light...)

Geography - II

The South Site

PIERRE

Total area ~3000 km²

1600 Surface detectors ("water tanks")

24 fluorescencetelescopes6 in each of 4 buildings

Advertisement - I

Topography

Ground Array

March 07

EAS Direction from Timing

FIG. 2. Block diagram of the apparatus with a schematic representation of an air shower about to strike the counters. The counters are in arrangement II.

E.Menichetti - Villa Gualino, March 2007

Light Emission by Muons

Tank Details

E.Menichetti - Villa Gualino, March 2007

PIERRE AUGER OBSERVATORY

From Design to Reality

PM and HV Voltage Divider

9" PM from Photonis HV made on board

E.Menichetti - Villa Gualino, March 2007

Mechatronics, Pedestals

Solar Panels, Antennas

SD Pulse Height from Muons

Signal unit ~ 1 VEM ~ 94 ph.e.

E.Menichetti - Villa Gualino, March 2007

SD P.H. Spectrum for Calibration

Most frequent signals ~ atmospheric muons . . We measure muon lifetime

A/D ratio - sliding average over 3 min of signals > 512

SD Muon Calibration

SD Linearity (Low Signals)

SD: Signal Components

E.Menichetti - Villa Gualino, March 2007

SD FADC Traces

E.Menichetti - Villa Gualino, March 2007

SD - Hunting the Shower I

Concept: Energy from Lateral Distribution !

1) EAS direction from tank timing, position

SD Twin Tanks

Good to check timing resolution

SD - Hunting the Shower II

2) Reconstruct LDF *Fit to empirical formula*

3) Get *S*(1000) Detector signal at ground, 1 km off the core

4) Correct for slant depth $\rightarrow S_{38}(1000)$ Constant Intensity Cut \rightarrow Take 38⁰ Zenith as a Reference

Previous experiments, MCarlo: $E = k S_{38}(1000)$

AUGER Unique Capability: Get k constant from FD

Communications Network

E.Menichetti - Villa Gualino, March 2007

PIERRE AUGER OBSERVATORY

SD Aperture

Relative aperture (trigger included) vs. Energy Full efficiency above 3 EeV

E.Menichetti - Villa Gualino, March 2007

SD – Resolution

Several sources of systematic uncertainty

- 1. VEM calibration
- 2. Timing
- 3. S(1000) slant depth effects (CIC)

FD – Fluorescence Yield

Atmosphere working as a large scale calorimeter

E.Menichetti - Villa Gualino, March 2007

Advertisement - II

FD – Telescope

Four FD Eyes 6x4=24 Telescopes

FD – Telescope

Aperture, UV Filter, Corrector Ring, Pixel Camera, Mirror

March 07

FD – Electronics

Signal Formation

Front-End Electronics

FD – Calibration

Diffuse, uniform camera illumination

Central Laser Facility AUGER "Test Beam"

FD – Corrections

Atmospheric Monitoring: Density, Transparency, Aerosols

Several Gadgets:

Horizontal Attenuation Monitor Balloon Radiosondes CLF LIDAR Phase Function Monitor

Cerenkov subtraction

Based on track geometry, iterative

Unseen Energy

Neutrinos, ... MCarlo: ~ 10 % @ 10 EeV

FD – From Shower to Data

E.Menichetti - Villa Gualino, March 2007

FD – Geometry, Energy, Profile

E.Menichetti - Villa Gualino, March 2007

Hybrid Reconstruction

E.Menichetti - Villa Gualino, March 2007

Hybrid Performance

E.Menichetti - Villa Gualino, March 2007

Energy Calibration with Hybrids

Spectrum

This Statistics: ~ ¹/₂ Year of Full Observatory (~7000 km² sr yr)

(NB: AGASA pre-Vulcano)

Still investigating systematics (e.g.Energy scale still uncertain)

Preliminary: Data difficult to reconcile with AGASA (pre/post-Vulcano)

But: Wait for statistics, reduced systematics

Energy: Systematics ~ \pm 30-50 %; Statistical Error ~15 - 10% Efficiency =100% above 3 EeV A few high energy events

E.Menichetti - Villa Gualino, March 2007

Anisotropies: Exposure, Rates

Galactic Coordinates; E=1÷5 EeV

E.Menichetti - Villa Gualino, March 2007

Anisotropies: AGASA, SUGAR

Next Step: The North Site

