
Single Cell Irradiation Nuclear Microscopy Using a Radioactive Source

P. Rossi,*ound,** B. L. Doyle, J. C. Banks, A. Battistella,lus G. Gennaro,ollar,¶ F. D. McDaniel,** M. Mellon,† E. Vittone,mp,§ G. Vizkelethy, and N. D. Wing*

*Sandia National Laboratories, Albuquerque, NM
**INFN, via Marzolo 8, 35131 Padova, Italy
lusLaboratori Nazionali Legnaro, INFN, Legnaro(PD), Italy
ollarAzienda Ospedaliera, Padova, Italy
¶INFN, Padova, Italy
†Ion Beam Modification and Analysis Laboratory, University of North Texas, Denton, TX
mpDepartment of Experimental Physics of the University, 10125 Turin, Italy
§INFN, 10125 Turin, Italy

Irradiation of a single biological cell, instead of a whole tissue, with ions in a known number and position, is a powerful means to study very low dose biological effectiveness. Present methods employ accelerated ion beams which are 1) either collimated with micro-apertures and affected by a halo of 3–5µm at best, or 2) focused to a sub-micron spot, whose resolution is degraded when extracted into air. We have studied the efficacy of a new micro-radiobiological method, originally developed for materials research. This new approach uses an IPEM, Ion Photon Emission Microscope, which employs a specially shaped Po-210 alpha particle source for in-air irradiation. Alpha particles strike the cells, which are previously grown directly on a 10–20 µm thick scintillating plastic blade and placed in the focal plane of a conventional optical microscope. Photons produced at the single ion impact point are projected at high magnification onto a single-photon position sensitive detector, which provides the position of each ion that hits the cells. Adequacy of this setup for Single Cell Radio-Biology will be discussed. ©2003 American Institute of Physics

doi:10.1063/1.1619736

PACS: 87.64.Gb, 87.80.-y, 29.25.-t