Electrical transport effects due to oxygen content modifications in a
Bi$_2$Sr$_2$CaCu$_2$O$_{8+\delta}$ superconducting whisker

Stefano Cagliero1, Angelo Agostino2, Elisabetta Bonometti2 and Marco Truccato1

1 NIS-Centre of Excellence, Dipartimento di Fisica Sperimentale, and CNISM UdR Torino Università, Via P Giuria 1, I-10125, Torino, Italy
2 NIS-Centre of Excellence, Dipartimento di Chimica Generale ed Organica Applicata, and CNISM UdR Torino Università, Corso Massimo D'Aze-glò 48, I-10125, Torino, Italy

E-mail: cagliero@ph.unito.it

Received 26 April 2007
Published 4 June 2007
Online at stacks.iop.org/SUST/20/667

Abstract

We report a set of resistivity measurements along the a-axis of a
Bi$_2$Sr$_2$CaCu$_2$O$_{8+\delta}$ microscopic superconducting whisker. The effect of the
storage environment on sample ageing has been studied, considering both an
air atmosphere at 273 K and a helium atmosphere at about 300 K for an
overall storage time of about 100 days. It is clearly shown that the material
underwent a remarkable resistivity increase of 26% at 260 K accompanied by
a decrease in the critical temperature of 0.6 K during the whole ageing
period. The helium atmosphere increased the average process rate by about
two orders of magnitude. The present results are in agreement with previous
findings on room temperature structural modifications in Bi$_2$Sr$_2$CaCu$_2$O$_{8+\delta}$
whiskers and can be ascribed to oxygen depletion phenomena from the
material.

1. Introduction

In the past, the Bi–Sr–Ca–Cu–O material has been thoroughly
investigated both in the bulk polycrystalline form and in the
shape of large single-crystal samples. Modifications of the
carrier density induced by changes in the oxygen content have
been studied for these kinds of samples, especially for the
Bi$_2$Sr$_2$CaCu$_2$O$_{8+\delta}$ phase of the system [1–7].

Only recently have some papers been published concerning
the carrier density variation for whisker-like crystals
[8–12]. This delay is probably due to the micrometric size
of the samples, which makes them hard to manage and im-
plies various difficulties in many measurement techniques. In
order to avoid these problems, many researchers focused their
efforts on the development of new synthesis techniques to en-
large the samples sizes, but in many cases these procedures
resulted in defective or biphasic samples, i.e. containing both
the Bi$_2$Sr$_2$CaCu$_2$O$_{8+\delta}$ (Bi-2212) and the Bi$_2$Sr$_2$Ca$_2$Cu$_3$O$_{10+\epsilon}$ (Bi-2223) phases [13–16]. This is a major problem because,
in order to deeply understand the Bi–Sr–Ca–Cu–O whisker
system on the whole, it is very important to study whiskers
characterized by a small amount of defects and by an al-
most single crystalline structure, which is typically achieved
only in single phase samples with micrometric cross-sectional
areas [17–19].

Such an almost ideal structure has been considered
particularly attractive for a number of complex applications
and experiments, which many research groups are currently
pursuing. Among them, we can mention the possible
fabrication of long stacks of intrinsic Josephson junctions (IJJs) by means of focused ion beam etching [20, 21] and
the production of submicrometric SQUIDs [9, 22]. The
high crystal quality of whisker samples has also opened new
perspectives in the study of several quantum physics topics
such as the symmetry of the order parameter, macroscopic
quantum tunnelling and the Josephson vortex lattice [23–28].