Beating the Abbe Diffraction Limit in Confocal Microscopy via Nonclassical Photon Statistics

D. Gatto Monticone,¹,²,³ K. Katamadze,⁴,⁵ P. Traina,⁶ E. Moreva,⁶,⁷ J. Forneris,¹,²,³ I. Ruo-Berchera,⁶ P. Olivero,¹,²,³ I. P. Degiovanni,⁶ G. Brida,⁶ and M. Genovese⁶,⁷

¹Physics Department and NIS Inter-departmental Centre—University of Torino, I-10125 Torino, Italy
²Istituto Nazionale di Fisica Nucleare (INFN) Sezione Torino, I-10125 Torino, Italy
³Consorzio Nazionale Interuniversitario per le Scienze Fisiche della Materia (CNISM) Sezione Torino, I-10125 Torino, Italy
⁴M. V. Lomonosov Moscow State University, 119991 Moscow, Russia
⁵Russian Academy of Sciences, Institute of Physics and Technology, 117218 Moscow, Russia
⁶Istituto Nazionale di Ricerca Metrologica (INRiM), I-10135 Torino, Italy
⁷International Laser Center of M. V. Lomonosov Moscow State University, 119991 Moscow, Russia

(Received 20 June 2014; published 30 September 2014)

We experimentally demonstrate quantum enhanced resolution in confocal fluorescence microscopy exploiting the nonclassical photon statistics of single nitrogen-vacancy color centers in diamond. By developing a general model of superresolution based on the direct sampling of the kth-order autocorrelation function of the photoluminescence signal, we show the possibility to resolve, in principle, arbitrarily close emitting centers.

DOI: 10.1103/PhysRevLett.113.143602 PACS numbers: 42.50.-p, 42.30.Va, 42.50.Ar, 42.50.St

In the last decade, measurement techniques enhanced by using peculiar properties of quantum light [1,2] have been successfully demonstrated in several remarkable real application scenarios, for example, interferometric measurements aimed to reveal gravitational waves and the quantum gravity cation scenarios, for example, interferometric measurements successfully demonstrated in several remarkable real applications. Using peculiar properties of quantum light [1,2], have been demonstrated effectively able to provide superresonated imaging in many specific applications, among which are color centers in diamond [38], they are characterized by rather specific experimental requirements (dual laser excitation system, availability of luminescence quenching mechanisms by stimulated emission, nontrivial shaping of the quenching beam, high power). Furthermore, these techniques are not suitable in applications in which the fluorescence is not optically induced [39,40], so that new methods are required for those applications.

Inspired by the works in [9], in this Letter we develop a comprehensive theory of superresolution imaging of clusters of single photon emitters based on high order Glauber correlation functions \(g^{(k)}(t = 0) \). Our theory discloses the unexpected possibility of approaching an arbitrary resolution just by measuring the spatial map of the correlation up to \(k_0 \)th order when it is reasonable to assume \(g^{(k)} = 0 \) for \(k > k_0 \). For example, two arbitrarily closed emitters can be, in principle, separated just by measuring \(g^{(3)} \) being of course \(g^{(3)} = 0 \). Then, it confirms the indication of [9] that a fair \(1/\sqrt{k} \) improvement of resolution can be obtained with the measurement of \(g^{(k)} \), if no further information is available. We experimentally test the theory of quantum superresolution in the significant case of confocal microscopy for the first time, considering clusters of few NV centers in artificial diamond grown by chemical vapor deposition and using a detector-tree of commercial (non-photon-number-resolving) single photon detectors [18,41]. We demonstrate a resolution increase by sampling the \(g^{(2)} \) of the signal, and a further improvement by measuring \(g^{(3)} \). Furthermore, we show that just by considering the contribution of higher powers of \(g^{(k)} \), when only two centers are relevant (as certified by \(g^{(3)} = 0 \)), larger improvement in the resolution can be obtained, as predicted by the theory. This technique appears particularly valuable since the sampling of \(g^{(2)} \) is a widely used and...