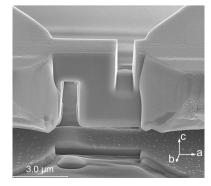
research papers

ISSN 2052-5206


Received 9 November 2015 Accepted 16 June 2016

Edited by P. Bordet, Institut Néel, France

Keywords: high- T_c superconductors; singlecrystal X-ray diffraction; chemical doping; intrinsic Josephson junctions.

CCDC references: 1486062; 1486063

Supporting information: this article has supporting information at journals.iucr.org/b

© 2016 International Union of Crystallography

Effect of Al and Ca co-doping, in the presence of Te, in superconducting YBCO whiskers growth

Lise Pascale,^a Marco Truccato,^{b,c} Lorenza Operti^{a,c} and Angelo Agostino^{a,c}*

^aDepartment of Chemistry and CrisDi Interdepartmental Center for Crystallography, University of Torino, via P. Giuria 7, Torino I-10125, Italy, ^bDepartment of Physics, University of Torino, via P. Giuria 1, Torino I-10125, Italy, and ^cNIS Centre of Excellence, University of Torino, Italy. *Correspondence e-mail: angelo.agostino@unito.it

High- T_c superconducting cuprates (HTSC) such as YBa₂Cu₃O_{7 - x} (YBCO) are promising candidates for solid-state THz applications based on stacks of intrinsic Josephson junctions (IJJs) with atomic thickness. In view of future exploitation of IJJs, high-quality superconducting YBCO tape-like single crystals (whiskers) have been synthesized from Ca-Al-doped precursors in the presence of Te. The main aim of this paper is to determine the importance of the simultaneous use of Al, Te and Ca in promoting YBCO whiskers growth with good superconducting properties ($T_c = 79-84$ K). Further, single-crystal Xray diffraction (SC-XRD) refinements of tetragonal YBCO whiskers (P4/mmm) are reported to fill the literature lack of YBCO structure investigations. All the as-grown whiskers have also been investigated by means of X-ray powder diffraction (XRPD), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). Our results demonstrate that the interplay of Ca, Te and Al elements is clearly necessary in order to obtain superconducting YBCO whiskers. The data obtained from SC-XRD analyses confirm the highly crystalline nature of the whiskers grown. Ca and Al enter the structure by replacing the Y and the octahedral coordinated Cu1 site, respectively, as in other similar orthorhombic compounds, while Te does not enter the structure of whiskers but its presence in the precursor is essential to the growth of the crystals.

1. Introduction

Stacks of intrinsic Josephson junctions (IJJs) with atomic thickness are naturally present in layered high- T_c superconducting cuprates (HTSCs), such as Bi₂Sr₂CaCu₂O_{8 + x} (Bi-2212), $La_{2-x}Sr_{x}CuO_{4}$ (LSCO) and RE-123 (RE = Y, Eu, Gd, Dy, Ho, Er, Tm and Lu), as a result of their crystal structure (Kawae et al., 2005; Kleiner et al., 1992; Kubo et al., 2008; Okutsu et al., 2008). IJJs can be employed as modular elements in the realization of several cryogenic devices such as THz sensors in Wang et al. (2001) and emitters in Ozyuzer et al. (2007), micro-SQUIDs in Sandberg & Krasnov (2005) and quantum computers based on macroscopic quantum tunneling phenomena (Inomata et al., 2005; Martinis et al., 2005). Among the possible IJJ applications, high-frequency devices can take advantage of the large Josephson plasma frequency found in some HTSCs. In particular, $YBa_2Cu_3O_{7-x}$ (Y-123) has the highest Josephson plasma frequency, close to a few THz, because of its low anisotropy and high critical current density (Shibata & Yamada, 1997), which makes it a suitable candidate for the fabrication of these kinds of devices. Furthermore, such properties could be modulated, for instance, by chemical substitutions, as already noticed for Pb-doped Bi-2212 in Kambara et al. (2011). Within this context, we recently investigated the effect of different cationic substitutions