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a b s t r a c t 

Acoustic metamaterials are known as a promising class of materials interacting with acoustic and/or elas- 

tic waves. Band gap formation is one of the most spectacular phenomena that they exhibit. Different ways 

to broaden the attenuated frequency ranges are still being actively explored. It turns out that material 

damping through intrinsic viscoelastic material behaviour, if accurately tailored, may contribute to the 

enhancement of the performance of a properly designed acoustic metamaterial. In this study, a locally 

resonant acoustic metamaterial with periodic multicoated inclusions with viscoelastic layers is investi- 

gated. Multiple attenuation regimes obtained with the considered geometry are joined for a certain level 

of viscosity of the coating layer. The analysis is performed using a generalised Maxwell model, which al- 

lows for an accurate description of nonlinear frequency dependent elastic properties, and thus is widely 

used to model the behaviour of many polymeric materials in a realistic way. The study reveals that vari- 

ation of the material parameters of the rubber coating with respect to frequency influences not only the 

position of the band gaps but also the effectiveness of the wave attenuation in the frequency ranges 

around the band gaps. 

© 2017 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

Acoustic metamaterials are a novel class of materials possess-

ng some unusual properties, uncommon or non-existent in nature.

he mechanism of low-frequency wave attenuation based on the

ocal resonance ( Liu et al., 20 0 0 ) attracts scientific attention due

o various potential applications, e.g., noise insulation ( Jiang et al.,

016 ) or energy harvesting ( Li et al., 2016 ). Unlike phononic crys-

als (PCs), which is another class of materials capable of forming

and gaps (frequency ranges where no wave propagation occurs),

he design of locally resonant acoustic metamaterials (LRAMs)

oes not require periodicity and allows generating subwavelength

and gaps ( Krushynska et al., 2014 ). The number of occurring band

aps can be controlled through the microstructural design, for in-

tance, by exploiting multicoated inclusions proposed by Larabi

t al. (2007) . Such a microstructure has been studied based on 1D

odel of dual-resonators in Huang and Sun (2010) , and has been
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arametrically optimised in Tan et al. (2012) and Chen et al. (2016) ,

eading to a reduced distance between band gaps. 

However, the main limitation in terms of application of LRAMs

s still the fact that the attenuated frequency ranges (even if they

re multiple) are rather narrow. In the literature, a few solutions

ealing with this limitation have been proposed, among which op-

imising the metamaterial topology ( Matsuki et al., 2014 ), coupling

f the effect of local resonance with Bragg scattering ( Krushynska

t al., 2016b; Yuan et al., 2013 ) and using resonators with dis-

ributed resonant frequencies ( Huang and Sun, 2009; Krödel et al.,

015 ). More recently, also the potential influence of material

osses on broadening attenuation regions, has started attracting re-

earchers’ attention ( Krushynska et al., 2016a; Wang et al., 2015 ).

uch a solution seems to be particularly promising considering the

act that material damping is an intrinsic feature of polymeric ma-

erials typically used in LRAMs. 

Studies on damped periodic structures started with the works

f Mead (e.g. Mead, 1973 ) in his analysis of a one dimensional pe-

iodic chain of masses with lossy springs, and by Mukherjee and

ee (1975) who have investigated transient effects in damped lam-

nates. Until recently, available studies mainly focused on PCs. In

 number of works investigating one- and two-dimensional PCs,
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broadening of band gap regions due to the presence of viscoelas-

tic components has been observed ( Frazier and Hussein, 2015;

Zhao and Wei, 2009 ). It has been shown by Oh et al. (2013) that

lossy PCs are more effective than homogeneous viscoelastic me-

dia in terms of energy dissipation. Moreover, in some cases where

more advanced material models have been considered (e.g. gen-

eralised Maxwell), a shift of the attenuation regions, due to the

frequency dependent storage modulus, has been reported Wei and

Zhao (2010) . These predictions have been confirmed by the exper-

imental analysis conducted by Merheb et al. (2008) . Currently, the

studies of damped PCs are taken even further, for instance by in-

cluding defect modes ( Zhu et al., 2016 ). 

The influence of damping on the periodic material’s perfor-

mance is not restricted to the band gap width and position. The

entire band structure changes significantly, as reported in vari-

ous studies (e.g. Laude et al., 2009; Moiseyenko and Laude, 2011 ).

Based on the complex band structure representation, Moiseyenko

and Laude (2011) have found that the losses in a phononic crystal

have stronger impact on the real part than on the imaginary part

of the wave number. However, as shown in Farzbod and Leamy

(2011) , high damping ratios can actually support the wave propa-

gation within attenuation regions by decreasing the imaginary part

of the wave number. In the work of Hussein and Frazier (2010) ,

also the phenomena of branch overtaking and branch cut-off in the

band structure have been observed and studied. 

It turns out that the influence of material damping on the per-

formance of LRAMs differs significantly from the case of PCs. First

of all, not only the losses in the matrix material but also within the

rubber-coated inclusions should be considered. Manimala and Sun

(2014) have shown, considering three types of viscoelastic mod-

els (Kelvin-Voigt, Maxwell and Zener), that tailoring the damp-

ing within the resonators instead of relying on the dissipation in

the matrix material might be beneficial for broadening the atten-

uation spectrum. This has also been confirmed in the works of

Wang et al. (2015) and Krushynska et al. (2016a ), using a locally

resonant acoustic metamaterial with a single coated inclusion. The

viscoelastic behaviour of the rubber coating has been shown to

have a critical impact on the material performance in compari-

son with the damped matrix. Moreover, in case of a LRAM, the

imaginary parts of wave numbers are predominantly influenced

by the material losses and, as a result, the attenuation peaks re-

lated to the local resonances are smoothed. The dissipative ef-

fect that leads to this response has also attracted attention of

researchers. As a consequence, the notion of metadamping has

been introduced by Hussein and Frazier (2013) as an enhance-

ment of material dissipation due to the presence of local reso-

nance. Later studies ( Frazier and Hussein, 2015 ) on both viscoelas-

tic PCs and LRAMs have concluded that the effect of damping on

the band gap size is actually more pronounced in case of PCs.

However, the experimental and theoretical studies performed by

Zhao et al. (2007; 2010) have shown a wide absorption range at

low frequencies for a composite polymer slab with embedded lo-

cal resonators, due to the dissipative mechanisms in the coating

material. 

So far, the analyses of viscoelastic LRAMs typically assume sim-

ple linear viscoelastic models, like the Kelvin-Voigt model, in order

to describe the viscoelastic behaviour of the constituents ( Wang

et al., 2015; Zhao et al., 2007 ). With this model the material prop-

erties become complex, but the real part of the modulus (related

to the elastic response) is still constant and only the imaginary

part (associated with viscous behaviour) changes linearly with fre-

quency. On the other hand, using the generalised Maxwell model,

which has not been used extensively for locally resonant acoustic

metamaterials, allows for a realistic variation of both terms with

respect to frequency and as a consequence more realistically de-

scribes the material behaviour. This is important since most poly-
eric materials have properties that are known to be frequency

ependent ( Macosko, 1994 ). 

In this paper, the multiple band gaps obtained with a partic-

lar microstructure with coaxial multicoated inclusions have been

oined using viscoelasticity of the coatings. Such a concept has re-

ently been introduced in Chen et al. (2016) and was studied based

n a simple linear viscoelastic model in 1D (for longitudinal wave

olarisation only). In the present study, an advanced viscoelastic

odel is used to describe the behaviour of the rubber coating, thus

roviding a more realistic insight into the influence of frequency-

ependent material parameters on the locally resonant acoustic

etamaterial performance. To this aim, a 2D analysis of a locally

esonant acoustic metamaterial based on complex dispersion dia-

rams and power transmission spectra is conducted. The impact of

iscoelastic material properties is studied in detail using the gen-

ralised Maxwell model for the coating layers in the inclusions.

urthermore, it turns out that a correct material model might be

rucial if the focus is on exploiting viscoelasticity for joining band

aps. First, it is observed that due to the variation of elastic pa-

ameters with frequency, the band gap regions exhibit a shift. De-

ending on the elastic properties of the considered material, such

 shift can be significant in some cases, which means that purely

lastic predictions may not be sufficient to determine the band

ap location. Therefore, while designing such a metamaterial, the

ependence of the soft coating material behaviour on frequency

hould be verified. Secondly, if material damping is used for the

urpose of joining band gaps, the target frequency range of wave

ttenuation (within the distance between the band gaps) needs to

verlap with the region where the loss tangent level is sufficiently

igh. Otherwise the effect of bridging may not occur. 

The paper is organised as follows, first, the modelling approach

ased on Bloch theory for obtaining complex dispersion diagrams

nd the finite element calculation of the power transmission spec-

ra are described. Next, in Section 2.2 , details on the considered

eometry and material properties are given. Finally, in Section 3 ,

he results of simulations are presented and discussed in Section 4 .

ection 5 summarises the main conclusions of the paper. 

. Modelling approach 

The dynamic characteristics of a material can be obtained

hrough the study of harmonic wave propagation, which is typi-

ally analysed based on its dispersion relation: the relationship be-

ween frequency ω and wave number k . Some extraordinary prop-

rties of locally resonant acoustic metamaterials are depicted in

uch diagrams, already in the range of real wave numbers where

he presence of band gaps may be captured ( Krushynska et al.,

014; Liu et al., 20 0 0 ). However, due to the continuity principle

or the dispersion curves, branches within the band gap ranges

re present in the domain of complex wave numbers, wherein the

maginary part of the wave number is often used as a measure

f wave attenuation. Therefore, by considering complex band di-

grams (real frequencies and complex wave numbers) information

n spatial wave propagation as well as spatial attenuation of elastic

aves is obtained. The analysis of the complex bands of dispersion

iagrams may also contribute to a better understanding of band

ap formation since tracing the evanescent Bloch waves becomes

ossible ( Wang et al., 2015 ). 

.1. Complex dispersion diagram: formulation based on Bloch theory 

The classical way for obtaining a dispersion relation is based

n Bloch theory. The fundamental theorem for wave propagation

n a periodic, infinite material states that the wave field in such a

edium is also periodic ( Brillouin, 2003; Deymier, 2013 ), and as a

onsequence, the analysis of such a structure can be restricted to
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Fig. 1. Geometry of the unit cell (dimensions are in mm) and the reciprocal cell in 

k -vector space with the shaded area indicating the irreducible Brillouin zone. 

Table 1 

Elastic material properties of the metamaterial components ( ρ denotes density, G 

shear modulus, K bulk modulus, c l and c s longitudinal and shear wave velocities, 

respectively). 

ρ G κ c l c s 
(kg/m 

3 ) (GPa) (GPa) (m/s) (m/s) 

Tungsten ( Handbook, 1990 ) 19,250 161 311 5220 2888 

Rubber ( Still et al., 2013 ) 1300 0.0 0 0 05 1.3 10 0 0 6 

Epoxy ( Liu et al., 20 0 0 ) 1180 1.3 4.6 2320 1055 
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 single unit cell. The application of Bloch theorem ( Kittel, 1971 )

llows to characterise the wave solution in an irreducible Brillouin

one in the following way ( Deymier, 2013 , p. 204): 

 ( x , k , t) = ˜ u ( x , k ) e i ( k ·x −ωt) , (1)

here u denotes the displacement field, ˜ u the Bloch displace-

ent function with spacial periodicity (the same as the periodicity

f the structure), x the position vector, k the wavevector, ω fre-

uency and t time. The dispersion relation can then be easily ob-

ained ( Deymier, 2013 ). The Bloch solution (1) is substituted into

he equation of motion with the additional assumption that the

aterials are isotropic and linear elastic. The strong form of the re-

ulting problem is further converted into a weak form and discre-

ised by means of the finite element method. The resulting eigen-

alue problem is given by the equation: 

K ( k ) − ω 

2 M 

)
u = 0 , (2) 

here K and M denote the stiffness and mass matrices, respec-

ively. Since the eigenvalues λ = ω 

2 are calculated with respect to

he wave number k , this approach is typically called the ω( k ) for-

ulation. 

In order to obtain the complex band structure with complex

ave numbers and real frequencies, a reformulation of the eigen-

alue problem (2) is needed, for which the formulation proposed

n Andreassen and Jensen (2013) is adopted. The analysis is re-

tricted to in-plane wave polarisations, where the wave vector

omponents k x and k y are linearly related as k y = αk x , with α be-

ng a real constant. The eigenvalue problem can then be written in

 first-order form: ̂ K (ω, α) − k x ̂  M 

)̂ u = 0 , (3) 

here ̂ K and 

̂ M denote the new stiffness and mass matrices, re-

pectively, and the periodic displacement is given as ̂  u = [ k x u , u ] T .

q. (3) is solved with respect to real frequencies, for a single unit

ell, assuming periodic boundary conditions. It is known as the

 (ω) approach. 

The k (ω) approach has been used here to incorporate vis-

oelasticity. Since the governing equations may be formulated with

espect to frequency using the Laplace–Carson transform, Laplace

ransform ( Brinson and Brinson, 2008 ) or other, accounting for fre-

uency dependent mechanical properties becomes straightforward.

ollowing such a transformation, the frequency-dependent linear

lastic constitutive relation reads: 

(ω) = κtr ( ε (ω)) I + 2 G ε 

d (ω) , (4)

here κ and G denote the bulk and shear moduli, respectively, and

 

d stands for the deviatoric part of the strain tensor. According to

he elastic-viscoelastic correspondence principle ( Roylance, 2001 ),

he dispersion relation in the case of a viscoelastic material can be

btained by replacing the elastic material parameters with their

requency-dependent counterparts in the constitutive Eq. (4) , pa-

ameters κ and G have been replaced by complex-valued ̂

 κ = ̂

 κ(ω)

nd 

̂ G = ̂

 G (ω) . A detailed description of the viscoelastic material

odel used in this work is given in Section 2.2 . 

.2. Model geometry and material parameters 

A locally resonant acoustic metamaterial with coaxial multi-

oated inclusions is considered. The geometry of the periodic unit

ell of the material is shown in Fig. 1 . Infinite tungsten cylinders

re coated with two layers of rubber alternating with one layer of

ungsten. These multicoated cores are embedded in an epoxy ma-

rix. 

The geometry and dimensions of the investigated unit cell

 Fig. 1 ) have been chosen in order to trigger multiple low frequency

and gaps located close to each other, where the band gaps are
ormed due to the vibration of the heavy masses (in phase motion

or the first band gap, out of phase for the second band gap). The

lling fraction (the ratio between the area of the coated inclusions

nd the area of the entire cell) for the given geometry equals 60%,

hich is at a level where the interactions between adjacent inclu-

ions are not yet affecting the material performance ( Krushynska

t al., 2014 ). 

In order to achieve the elastic wave attenuation within the low

requency range, heavy tungsten masses are used. Tungsten has a

igh mass density, as well as further advantages, such as a low en-

ironmental threat in comparison with lead, typically used in the

iterature. The properties of silicone rubber used in this work are

ased on Still et al. (2013) . The compliant nature of the medium

as been considered as well as the fact that rubber is an essen-

ially (nearly) incompressible material, characterised by a high ra-

io between bulk and shear moduli. The material properties of all

omponents of the metamaterial used in the elastic modelling are

isted in Table 1 . 

For the viscoelastic analysis, frequency dependent material pa-

ameters are used for the coating constituents. The tungsten cores

nd epoxy matrix are assumed linear elastic. The former is mo-

ivated by the fact that metals behave in a nearly elastic manner

or small stresses and low temperatures ( Lakes, 2009 ), whereas the

ater is based on the results reported in Krushynska et al. (2016a ). 

Rubber, which is the material chosen for the coating layers, ex-

ibits relaxation in both bulk and shear properties, as most poly-

ers. However, as pointed out by Lakes (2009) , the change of the

torage shear modulus is orders of magnitude higher than the bulk

odulus variation. Also, the loss peak in the case of shear is much

roader. Therefore, it is reasonable to assume that the bulk mod-

lus remains real and constant ̂  κ = κ, thus frequency independent

 Muhr, 2005 ). The viscoelastic behaviour of the rubber is then de-

cribed by the dependence of the shear modulus ̂ G = ̂

 G (ω) on fre-

uency. In this study, the generalised Maxwell model has been

hosen, which adequately captures experimentally observed stress

elaxation curves ( Ferry, 1980 ). The mechanical analogue of this

odel consists of a series of dashpots and springs arranged in a

arallel manner ( Fig. 2 ). The relaxation of the total shear modulus

ncludes contributions from each dashpot-spring element with an
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Fig. 2. Schematic of generalised Maxwell model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2 

Relaxation times τ i and associated shear moduli G i of three 

viscoelastic materials (A, B and C) described by the five-mode 

Maxwell model. 

Material A Material B Material C 

τ i (s) G i (kPa) τ i (s) G i (kPa) τ i (s) G i (kPa) 

10 −1 2 10 −1 10 10 −1 10 

10 −2 2 10 −2 10 10 −2 10 

10 −3 2 10 −3 10 10 −3 10 

10 −4 2 10 −4 10 10 −5 10 

10 −5 2 10 −5 10 10 −6 10 

∞ 50 ∞ 50 ∞ 50 

0 60 0 100 0 100 
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exponential decay: 

G (t) = G ∞ 

+ 

n ∑ 

i =1 

G i e 
−t/τi , (5)

where n is the number of modes included in the model, G i is a

shear modulus contribution, τ i denotes the relaxation time defined

as τi = ηi /G i , with ηi the dashpot viscosity. For a viscoelastic solid,

the viscosity of one of the dashpots is infinite, which results in the

constant elastic term G ∞ 

in Eq. (5) . An instantaneous shear mod-

ulus is then defined by G 0 = G (t = 0) = G ∞ 

+ 

∑ 

i G i . Finally, the

complex shear modulus is formulated in the frequency domain as

a combination of the storage modulus G 

′ and the loss modulus G 

′ ′ ,
namely, ̂ G (ω) = G 

′ (ω) + i G 

′′ (ω) ( Macosko, 1994 ), where 

G 

′ (ω) = G ∞ 

+ 

n ∑ 

i =1 

G i 

ω 

2 τ 2 
i 

1 + ω 

2 τ 2 
i 

, (6)

G 

′′ (ω) = 

n ∑ 

i =1 

G i 

ωτi 

1 + ω 

2 τ 2 
i 

. (7)

A useful parameter describing the damping property of a viscoelas-

tic material (here rubber) is the loss tangent given by 

tan δ = 

G 

′′ 
G 

′ , (8)

which provides a measure of the ratio of energy lost to energy

stored in a cyclic deformation ( Ferry, 1980 ). 

In the present work, the generalised Maxwell model is first

applied in the form of a single-mode model, i.e. considering one

relaxation time only, in order to study the impact of the fre-

quency of the loss tangent peak on the material performance.

The equilibrium modulus G ∞ 

= 50 kPa has been kept constant, as

well as the instantaneous shear modulus G 0 . The assumed maxi-

mum loss tangent is approaching tan δ = 0 . 1 , which has been re-

ported as a representative value for silicone rubber ( Lakes, 2009 ).

Five relaxation times have been considered separately, namely τi =
{ 10 −1 s , 10 −2 s , 10 −3 s , 10 −4 s , 10 −5 s } , each with the same shear

modulus contribution G i = 10 kPa. The frequency dependent ma-

terial parameters are visualised in Fig. 3 . Note that with increas-

ing relaxation times, the loss tangent peak is shifted to higher fre-

quencies, whereas the storage modulus growth with increasing fre-

quency is less rapid. 

Next, three different rubber materials (denoted by A, B and C)

are described by a five-mode Maxwell model. The parameters are

listed in Table 2 , and the corresponding dependence of the stor-

age modulus and loss tangent values on the frequency is shown in

Fig. 4 . Note that these material models are built by combining the

previously introduced single-modes in specific ways. For material
, a lower value of the individual shear moduli G i of all five re-

axation times is chosen, in order to keep the instantaneous shear

odulus equal to G 0 = 60 kPa. In case of material B, the same five

elaxation times are adopted, but with the individual shear moduli

 i = 10 kPa the same as in the single-mode model, which results

n a higher value of the instantaneous shear modulus G 0 = 100 kPa.

inally, in case of material C, one of the five relaxation times is re-

laced by a shorter one ( τ = 10 −6 s); the instantaneous shear mod-

lus is the same as for material B, i.e. G 0 = 100 kPa. Materials A

nd B have relatively constant loss tangents, while the loss tangent

f material C decreases with frequency. 

.3. Power transmission spectrum analysis 

Since the dispersion diagrams are determined for an infinite pe-

iodic material, the wave propagation in a finite size model is fur-

her evaluated. To this aim, transmission spectra are typically cal-

ulated in order to obtain the amount of wave attenuation. 

The finite element method simulations have been performed

sing COMSOL Multiphysics, following the standard approach given

n e.g. Hsu and Wu (2010) and Lee et al. (2015) in the frequency

omain. The model consists of 8 unit cells arranged in a bar

ith homogeneous matrix material attached at both sides ( Fig. 5 ).

oundary conditions assigned to the structure are as follows: in

he homogeneous matrix material on the left a unit amplitude

ine signal of given frequency is applied by means of imposed dis-

lacements (in x and y direction for longitudinal and shear waves,

espectively); on the left and right sides so-called low-reflecting

oundaries ( COMSOL User’s Guide, 2013 ) have been used in or-

er to mitigate the reflection from the free boundaries. In the fre-

uency domain, the low-reflecting boundary condition is described

y 

· n = −iω d · u (9)

here n is the normal vector to the boundary and d is a diagonal

ensor containing mechanical impedances. The following damping

oefficients have been adopted: d l = c l ρ and d s = c s ρ for normal

nd tangential directions, respectively, where c l and c s denote lon-

itudinal and shear wave velocities of the matrix material, and ρ is

he density of the matrix material. The top and bottom boundaries

re modelled as periodic. Note, that in this transmission set-up,

he waves keep their original polarisations due to the symmetries

f the chosen geometry and the isotropy of the material compo-

ents in combination with periodic boundary conditions (mimick-

ng from top and bottom an infinite material). In addition, a refer-

nce model has been considered, where the locally resonant struc-

ure has been replaced by a homogeneous elastic epoxy material.

t is worth mentioning, that due to the choice of the damping co-

fficients, which match the impedance of the matrix material, the

ow-reflecting boundary fully eliminates reflections in the case of

omogeneous epoxy material, while for the case of metamaterial

t is efficient only to a certain extent. 
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Fig. 3. Frequency dependent parameters of the single-mode Maxwell models with different relaxation times used to simulate a viscoelastic rubber coating: (a) storage 

modulus, (b) loss tangent. 

Fig. 4. Frequency dependent parameters of three viscoelastic materials (A, B and C) described by the five-mode Maxwell model: (a) storage modulus, (b) loss tangent. 

Fig. 5. The numerical set-up for transmission computations. 
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The point of departure for the power transmission analysis is

he time-harmonic averaged energy balance equation, which fol-

owing Cerveny and Psencik (2006) can be written in a general

omplex form (neglecting body forces) as 

 · P̄ = 2 iω( ̄K − Ū ) − P̄ d , (10)

here P̄ = − 1 
2 σ · v ∗ denotes the energy flux; K̄ = 

1 
4 ρv ∗ · v

he kinetic energy, Ū = 

1 
4 Re ( σ : ε ∗) the potential energy,

 ̄d = −ω 

1 Im ( σ : ε ∗) the dissipated power; v stands for veloc-
2 
ty, the bar symbol is a time-harmonic average and an asterisk

enotes a complex conjugate. The use of the complex form of

he energy balance equation in this study is dictated by: (1) the

omplex constitutive law related to the viscoelastic model and (2)

he frequency domain analysis which results in a complex wave

eld (the exponential time factor e −iωt has been assumed). By

eparating the real and imaginary parts of Eq. (10) one obtains: 

 · Re ( ̄P ) = −P̄ d , (11) 
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Fig. 6. Dispersion diagrams for the linear elastic case with G ∞ (a) 3D band structure (b) 2D projections. The band gap regions are shaded. Colours represent wave polarisa- 

tions from shear (blue) to longitudinal (red). Grey solid lines depict the real-valued band structure obtained via the ω( k ) approach. (For interpretation of the references to 

colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 7. Attenuation diagrams for the purely elastic metamaterial with different 

shear moduli of the rubber coating: (a) G ∞ and (b) G 0 . The values of the attenuation 

angle φ are depicted by colours ranging from blue (0) to red ( π /2). (For interpre- 

tation of the references to colour in this figure legend, the reader is referred to the 

web version of this article.) 
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∇ · Im ( ̄P ) = 2 ω( ̄K − Ū ) . (12)

It can be noted that in the literature, the quantities Re ( ̄P ) and

Im ( ̄P ) are called active and reactive powers, respectively ( Carcione

and Cavallini, 1993; Cerveny and Psencik, 2006; Lase et al., 1996 ).

Since the active power carries the information about the energy

flow ( Carcione and Cavallini, 1993 ), the subsequent study is based

on Eq. (11) . 

In order to assess the performance of a finite size metama-

terial, the transmitted active power 1 
2 Re ( σ · v ∗ · n ) spatially inte-

grated over the output section P out (see Fig. 5 ), is compared with

the active power integrated over the output section calculated for

the reference case of homogeneous epoxy P 0 . Power transmission

is therefore given by 

T P = log 10 

P out 

P 0 
. (13)

In addition, for the purpose of evaluating the contribution of

the dissipative mechanisms, the dissipated power for the gener-
lised Maxwell model can be expressed as 

 ̄d = ω 

1 

2 

Im ( σ : ε 

∗) = ωG 

′′ ε 

d : ε 

d∗, (14)

patially integrated over the viscoelastic surface. 

. Results 

In this section, the results of the analysis are presented. Com-

lex band structures have been obtained for the �X border of

he Brillouin zone ( Fig. 1 ) according to the procedure described in

ection 2.1 . In order to assess the performance of the locally reso-

ant acoustic metamaterial, attenuation diagrams have been intro-

uced, where the attenuation factor is given by the angle: 

= arctan 

(
Im (k x ) 

Re (k x ) 

)
, (15)

hich qualitatively indicates the regions of wave attenuation: the

ull wave propagation occurs for an angle φ = 0 . The study is

ompleted by transmission spectra considering longitudinal ( x -

olarised) and shear ( y -polarised) wave propagation separately. 

.1. Elastic case 

The lossless case is considered as a reference for the viscoelastic

etamaterial. In the studies reported in the literature, where due

o the simplicity of the viscoelastic material models, the loss tan-

ent was linearly increasing with frequency and the real part of the

odulus was constant ( Chen et al., 2016; Wang et al., 2015 ), it was

ufficient to present only a single elastic reference case. However,

dopting the generalised Maxwell model results in a frequency de-

endence of the storage modulus. This indicates at least two ref-

rence cases: linear elasticity with a shear modulus of the rubber

oating equal to either the equilibrium modulus G ∞ 

or the instan-

aneous modulus G 0 . These cases are marked as elastic G ∞ 

and

lastic G 0 , respectively. 

Fig. 6 shows the complex band structure and the projections of

he dispersion curves on the real and imaginary planes calculated

or the case elastic G ∞ 

. Purely real, purely imaginary and complex

ands can be distinguished in the diagram, forming two band gaps

n the considered frequency range: the first between 677–815 Hz

nd the second between 906–1092 Hz. For comparison, the clas-

ical real-valued dispersion curves obtained via the ω( k ) approach
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t  
 Hussein et al., 2014 ) are also depicted in Fig. 6 with solid grey lines

nd show perfect agreement with the real branches of the com-

lex band structure (aside from the horizontal branches associated

ith torsional modes which are typically badly resolved with the

 (ω) approach Krushynska et al., 2016a ). It is worth noting that the

echanism opening both band gaps is local resonance of the coax-

al heavy masses, which has been thoroughly described by Larabi

t al. (2007) and Chen et al. (2016) . This aspect distinguishes these

wo band gaps from the ones obtained for a single resonating mass

 Krushynska et al., 2014 ), where the second band gap is related

o the vibration inside the coating layer. Note that the continuity

f the branches in the dispersion diagram is preserved: the real

ranches surrounding the band gaps are connected by bands pass-

ng through the complex domain. Moreover, the bands coinciding

n the symmetry points are sharply bent. 

In Fig. 6 , a distinction between wave types has been introduced,

ollowing Wang et al. (2015) . The colour varying from red to blue

enotes the change of wave polarisation from longitudinal to shear,

espectively. Note, that in the dispersion diagrams, a very low level

f mode conversion in an infinite material is observed. The lon-

itudinal and shear waves show different behaviour, not only on

he real plane projections, where the slope of the curves corre-

ponds to the velocities of the propagating waves, but also inside

he band gap regions, where longitudinal wave is characterised

y purely imaginary branches and the branches corresponding to

hear wave are complex. What is more, sharp cusps of Im( k x ) can

e observed at the band gap opening frequencies for longitudinal

ave, whereas shear wave is characterised by a broader increase

f Im( k x ) values. It should be underlined that this character of the

ispersion curve shapes is present within both band gap regions. 

The results obtained for the dispersion diagram of the elastic G 0 

ase are similar (and therefore not shown here) except for a shift

f the band gap ranges to higher frequencies, namely 742–893 Hz

nd 992–1197 Hz. 

In Fig. 7 , attenuation diagrams are presented, where the colours

anging from blue to red are associated with the lowest value of

he attenuation factor φ ranging from 0 to π /2, respectively, cal-

ulated with Eq. (15) . Ranges where waves have a propagative

haracter are coloured in blue (Im( k x ) = 0), a deep red colour de-

otes band gaps with purely imaginary branches (Re( k x ) = 0 and

→ π /2) and light green to red regions are associated with com-

lex shear wave branches passing through the band gaps ( Fig. 6 ).

n other words, in the elastic case, the band gap regions can be

istinguished by the absence of blue colour, and thus in Fig. 7 , the

entioned shift of the band gaps to higher frequencies between

lastic G ∞ 

and elastic G 0 cases is clearly depicted. 

The power transmission spectra used for the evaluation of the

esults obtained in the previous steps on a finite size structure

re presented in Fig. 8 . Within the band gap ranges predicted by

he Bloch approach (shaded regions), transmission dips can be ob-

erved for both longitudinal and shear waves. Also the shift of the

and gaps between the two elastic cases is again visible. An ap-

arent correspondence exists between the imaginary projection of

he dispersion diagram and the transmission spectra: transmission

f longitudinal waves exhibits a rapid dip whereas the transmis-

ion abatement for shear waves is more gradual within the band

aps. Note that the regions outside the band gaps where the nor-

alised power transmission exceeds 1 and characteristic ripples

ccur can be associated with the eigenfrequencies of the analysed

nite structure. Therefore, their location depends on the chosen

ize of the sample as well as on the applied boundary conditions,

ot exactly matching the impedance of the metamaterial. In turn,

he location of band gaps is not dependent on the considered set-

p; however, the number of unit cells influences the depths of the

ransmission dips. 
l  
.2. Viscoelastic case 

.2.1. Single mode Maxwell model 

In Fig. 9 , the complex band structure as well as its projec-

ions to the real and imaginary planes are presented for a se-

ected viscoelastic case with a single (intermediate) relaxation time

= 10 −3 s. As already indicated in the elastic study, the colours of

he curves are associated with wave polarisation. As a reference,

he dispersion curves obtained for the elastic case with G 0 are

lso presented (in black). This choice is motivated by the attenua-

ion regions being located in both cases within the same frequency

anges. 

The viscoelastic bands for frequencies approaching the elastic

and gap openings are bent out and finally deviate from the ref-

rence ones. Moreover, the previously sharp band corners at the

ymmetry points are significantly smoothed, which is typical for

 band structure of viscoelastic metamaterials ( Wang et al., 2015 );

his occurs at both band gap regions. It should be noted that mate-

ial damping mostly affects the two cusps of the imaginary part of

he wave number of the longitudinal wave, whereas only a slight

ecrease is visible in the case of the shear wave. Moreover, the

ave attenuation in between the former elastic band gap regions is

onfirmed by the non-zero values of Im( k x ). It is worth mentioning

hat in the viscoelastic studies, a band gap in the strict sense does

ot exist. Therefore, the notion of an attenuation range is used fur-

her. 

The attenuation diagrams for single mode Maxwell models with

ifferent relaxation times are presented in Fig. 10 . With an increas-

ng relaxation time in the single mode Maxwell model, a shift in

he position of the attenuation ranges can be observed. This be-

aviour, which has been observed also in studies of other PCs and

RAMs ( Liu et al., 2008 ), can be explained by the variation of the

alue of the rubber shear modulus G 

′ with frequency and has been

emonstrated for a one-dimensional case with a single inclusion

n Manimala and Sun (2014) based on a discrete Zener-type oscil-

ator. Note that a shift of approximately 100 Hz can be observed

or a relatively small variation of storage modulus in the range of

0–60 kPa. In fact, even larger variations of storage modulus, in the

requency range considered, can be encountered in case of silicone

ubber as shown in experimental studies ( Kazemirad et al., 2016;

erheb et al., 2008 ). Since the level of viscosity changes for every

requency, the magnitude of the attenuation angle in between and

round band gaps varies. From this point of view, the favourable

ffect of viscosity is most pronounced in Fig. 10 (b) ( τ = 10 −4 s),

here the attenuation angle between the two attenuation regions

xceeds π /6. 

Based on the attenuation ranges observed in the analysis of

he attenuation spectra, two cases have been selected for a trans-

ission study. The transmission spectrum analysis has been per-

ormed for the relaxation times τ = 10 −4 s and τ = 10 −3 s. The re-

ults are shown in Fig. 11 with a distinction between longitudinal

nd shear waves. As a reference, the results for the elastic cases are

lso shown. In line with the predictions from the dispersion analy-

is, the effect of wave mitigation in the region between the atten-

ation ranges is more pronounced for the case with a relaxation

ime τ = 10 −4 s for both wave polarisations. However, this effect is

n general more pronounced in the case of a shear wave, which

an be explained by the lower group velocity of this wave polari-

ation observed in the region in between band gaps ( Fig. 6 ). It has

een reported ( Laude et al., 2013 ) that flat bands are more affected

y losses. The material damping contributes also to smoothing of

he transmission dips in the longitudinal wave spectrum. In this

ase, attenuation in the ranges between the elastic band gap re-

ions is present, but rather low in magnitude. On the other hand,

he transmission spectrum for the shear wave shows that a low

evel of material damping does not significantly affect the trans-
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Fig. 8. Normalised power transmission spectra for (a) longitudinal and (b) shear wave polarisation for the elastic cases with G ∞ and G 0 . The corresponding band gap regions 

are shaded in blue and grey. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 9. Dispersion diagrams for the viscoelastic single mode Maxwell model with τ = 10 −3 s (a) 3D band structure (b) 2D projections. Colours represent wave polarisa- 

tions from shear (blue) to longitudinal (red). The band gap regions for the elastic G 0 case are shaded and the corresponding dispersion curves are shown in black. (For 

interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 10. Attenuation diagrams for the metamaterial with a viscoelastic rubber coating modelled by single mode Maxwell models with different relaxation times. The values 

of the attenuation angle ( Eq. (15) ) are depicted by colours ranging from blue (0) to red ( π /2). (For interpretation of the references to colour in this figure legend, the reader 

is referred to the web version of this article.) 
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Fig. 11. Normalised power transmission spectra for the metamaterials with a viscoelastic rubber coating modelled by a single mode Maxwell model with two selected 

relaxation times. The longitudinal (a) and shear (b) wave polarisations are presented separately. In the background, the transmission curves and band gap regions for the 

two elastic reference cases are shown. 

Fig. 12. Dissipated power calculated for subsequent pairs of unit cells (starting from the excitation side) for longitudinal (a) and shear (b) wave polarisations; green and 

blue colours denote the viscoelastic case τ = 10 −3 s and τ = 10 −4 s, respectively. (For interpretation of the references to colour in this figure legend, the reader is referred to 

the web version of this article.) 
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ission dips within the band gap regions; in fact, it contributes to

he wave attenuation in a much wider frequency range. With in-

reasing loss tangent, wave mitigation around the band gap regions

lso increases, although, minor smoothing of the transmission dips

s observed as well. In both spectra, the shift of the attenuation re-

ions in terms of frequency due to a frequency dependent value of

he storage modulus G 

′ of rubber is visible. The presented results

re in agreement with the predictions from the dispersion analysis.

The dissipative mechanism occurring in the viscoelastic rubber

oatings is further investigated using dissipation power spectra.

ased on the levels of the dissipated power presented in Fig. 12 ,

he viscous dissipation in space can be assessed. Note, that the

issipated power is divided by the output power P 0 obtained for

he reference epoxy case, in order to account for the increase of

he input power with frequency. First of all, the presence of two

axima in the dissipated power graphs at the band gap openings

or the models with both relaxation times and both wave polar-
t  
sations can be observed. Secondly, most of the dissipation takes

lace within the first two unit cells, which can be inferred from

he small spacing between the plots of the dissipated power for

ncreasing cell numbers. Moreover, it turns out that the total dissi-

ation at the openings of the bang gaps is higher for the viscoelas-

ic case τ = 10 −3 s, even though the values of the loss tangent for

his model are lower at the discussed frequencies. This can be ex-

lained by higher strain values in the presence of local resonance.

 significant level of dissipation can also be noticed in between the

ormer elastic band gap regions for both wave polarisations, with

igher values obtained for the viscoelastic case τ = 10 −4 s, which

s associated with the effect of joining the attenuation regions. 

.2.2. Multi-mode Maxwell model 

Fig. 13 presents diagrams of attenuation angles as a function of

requency for three locally resonant acoustic metamaterials, where

he viscoelastic behaviour of the rubber coating is modelled by

hree different five-mode Maxwell models: materials A, B and C
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Fig. 13. Attenuation diagrams for the metamaterial with a viscoelastic rubber coating of material A (a), material B (b) and material C (c) modelled by multi-mode Maxwell 

models. The values of the attenuation angle ( Eq. (15) ) are depicted by colours ranging from blue (0) to red ( π /2). (For interpretation of the references to colour in this figure 

legend, the reader is referred to the web version of this article.) 

Fig. 14. Normalised power transmission spectra for metamaterials with a viscoelastic rubber coating of material A, B and C modelled by multi-mode Maxwell models. The 

longitudinal (a) and shear (b) wave polarisations are presented separately. In the background, the transmission curves and band gap regions for the reference elastic case G ∞ 
are shown. 
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( Table 2 ). A significant shift of the attenuation ranges can be ob-

served for material A compared to B and C, which largely results

from the significant difference in the value of G 0 between these

materials. In the case of material B ( Fig. 13 (b)) the favourable ef-

fect of joining attenuation ranges occurs (with an attenuation fac-

tor exceeding π /6). In Fig. 13 (a), due to the small loss tangent value

of material A, the attenuation regions are clearly separated, which

can be observed also in Fig. 13 (c), despite the fact that the model

of material C differs, with respect to material B, by only one relax-

ation time ( Table 2 ). Therefore, to ensure the effect of bridging the

attenuation ranges, the loss tangent of the rubber coatings should

at least reach the value of 0.1. Note that the attenuation regions are

broadened also from the top and bottom in all instances, thus, the

total width of the wave mitigation range increases in comparison

with the linear elastic cases. This effect is most pronounced for the

metamaterial with a viscoelastic rubber coating of material B. 

The power transmission spectra for these materials ( Fig. 14 ) are

in good correspondence with the predictions given by the disper-

sion analysis. The location and character of the transmission re-
uction show both the shifts due to growth of the storage modu-

us G 

′ and the desired attenuation in the region between the elas-

ic transmission dips. Note that in the case of materials B and C,

he shift of the band gaps in comparison with material A is more

ronounced, due to the stronger difference between the values of

he storage moduli G 

′ . Furthermore, as demonstrated in the previ-

us section, although the mechanism of joining attenuation ranges

n the case of a longitudinal wave can be observed, in terms of the

ransmission level, it is rather modest. For shear waves, a moderate

ffect of bridging the transmission dips is present even for materi-

ls A and C with rather low loss tangents, and the effect is partic-

larly pronounced for material B that is characterised by a higher

aterial damping. Moreover, material damping for this wave po-

arisation does not significantly affect the band gap regions as for

 longitudinal wave, where the transmission dips at the opening of

he band gaps range are smoothed. 

Based on the dissipated power spectra shown in Fig. 15 , the

osses occurring for different multi-mode viscoelastic models can

e compared. Similar to the single-mode study, the dissipation
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Fig. 15. Dissipated power calculated for subsequent pairs of unit cells (starting from the excitation side) for longitudinal (a) and shear (b) wave polarisations; red, blue and 

yellow colours denote the metamaterials with the rubber modelled by viscoelastic materials A, B, and C, respectively. (For interpretation of the references to colour in this 

figure legend, the reader is referred to the web version of this article.) 
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echanisms are activated within the attenuation ranges, where the

ighest dissipation peaks can be observed at the resonance fre-

uencies. Due to low loss tangent values of the materials A and

, the dissipation at the frequencies in between the resonance fre-

uencies is significantly smaller than for the case of material B.

his corresponds with the modest effect of bridging of the atten-

ation regions for the first two cases. Note, that for material B

he dissipation is significantly high between the attenuation ranges

nd it is only 6 times lower than the dissipation observed at the

and gaps’ opening. It can be also observed that in this case the

issipation covers a broader frequency regime. 

. Discussion 

The study of dispersion characteristics by means of attenuation

iagrams and power transmission analyses has shown that the per-

ormance of locally resonant acoustic metamaterials is highly sen-

itive with respect to the material properties of the coating ma-

erial. Small changes of the frequency-dependent (elastic) shear

odulus result in a significant shift of the band gap ranges. For

he configuration investigated, a difference of 10 kPa for the rub-

er storage modulus G 

′ , which is easily achievable in case of sili-

one rubber ( Kazemirad et al., 2016; Merheb et al., 2008 ), leads to a

hift of approximately 100 Hz. The loss tangent level, which is non-

inear in the Maxwell model, strongly influences the attenuation

erformance of the metamaterial around the band gap frequencies.

herefore, taking into account the typical nonlinear frequency de-

endence of both the storage modulus and the loss tangent of the

oating is essential in order to localise the band gap frequencies

nd correctly assess the influence of material damping. 

In the presented analysis, dissipated power spectra demonstrate

he efficiency of the proposed viscoelastic metamaterial in terms

f energy dissipation. A significant amount of energy is dissipated

t frequencies between resonance attenuation ranges that is the

nderlying mechanism for the effect of band gap bridging. For in-

tance, the dissipation level within the bridged frequency intervals

or the metamaterial modelled with the rubber with almost con-

tant loss tangent approaching 0.1 (material B) was only 6 times

ower than the highest dissipation peaks. 

It has been also demonstrated, that for the purpose of bridg-

ng the wave attenuation ranges, the viscosity of the rubber coat-

ng needs to be sufficiently high in the frequency range of band
aps formation. Otherwise, the effect of bridging separate attenua-

ion regions is not pronounced. For the investigated case, the loss

angent level should reach at least 0.1, which is a moderate value

or silicone rubber. Moreover, the shift of the attenuation ranges

hould be taken into account as well, if the mentioned bridging is

imed at. 

Finally, a material with an optimal value of viscosity should be

hosen since material damping may decrease the level of wave at-

enuation inside the band gap regions (mostly due to the influence

n local resonance). The optimal level of viscosity can be found

ith the aid of the analysis presented in this work by comparing

he dissipated power curves for different loss tangents. For over-

amped cases, the dissipation level will decrease due to the anni-

ilation of resonance effects. 

. Summary and conclusion 

In this paper, the dynamic behaviour of locally resonant acous-

ic metamaterials consisting of multicoated coaxial inclusions of

ubber and tungsten embedded in epoxy has been investigated.

he concept of merging the band gaps by introducing material

iscoelasticity to the rubber coating has been analysed in detail

or longitudinal and shear wave polarisation. For this purpose, the

eneralised Maxwell model, which accounts for a realistic (nonlin-

ar) frequency dependence of both real and imaginary components

f the complex elastic properties, has been adopted. It should be

oted that this model, although it is the most general viscoelastic

odel, has not been yet exploited in the literature for the analysis

f locally resonant acoustic metamaterials, and in particular, with

he purpose of bridging band gaps. 

The analysis presented in this paper shows that the frequency

ependent behaviour of the polymer coating material influences

he response of the metamaterial in a twofold manner. First of

ll, the variation of the storage modulus is reported as being re-

ponsible for the shift of the band gaps in the frequency spectrum.

econdly, the loss tangent value determines the attenuation per-

ormance of the metamaterial. These two observations are crucial

f the effect of band gap bridging is aimed at. The shift of attenua-

ion ranges needs to be taken into account in order to adequately

stimate the frequency regions where the attenuation is being en-

anced with the aid of viscosity. Next, the level of loss tangent in

etween band gaps needs to be sufficiently high for bridging to oc-
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cur. Finally, the optimal variation of loss tangent values should be

found in order to favourably combine the effect of viscous attenu-

ation in between band gaps with the resonance-based attenuation

inside the band gaps. 

The findings presented in this paper may help to understand

and optimise the performance of locally resonant acoustic meta-

materials with viscoelastic constituents. It is clear that more real-

istic modelling is a necessary step towards tuning metamaterials’

behaviour. Moreover, taking advantage of molecular methods for

designing polymers with desired properties ( Brinson and Brinson,

2008 ) and controlling their viscoelastic behaviour (e.g. relaxation

time) may result in manufacturing of metamaterials with a fully

optimised response. Based on the present study and accounting for

currently available routes towards active control of material prop-

erties, for instance by varying the location of loss tangent peak us-

ing electric current or magnetic field ( Wojnar et al., 2014 ), some

new ways of enhancing metamaterial performance can be envi-

sioned. 
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