Tuning the strain-induced resonance shift in silicon racetrack resonators by their orientation

Claudio Castellan,1,* Astghik Chalyan,1,2 Mattia Mancinelli,1,3 Pierre Guilleme,1 Massimo Borghi,1 Federico Bosia,4 Nicola M. Pugno,5,6,7 Martino Bernard,8 Mher Ghulinyan,8 Georg Pucker,8 and Lorenzo Pavesi¹

1Nanoscience Laboratory, Department of Physics, University of Trento, via Sommarive 14, 38123 Trento, Italy
2Russian-Armenian (Slavonic) University, H. Emin 123, 0051 Yerevan, Armenia
3Research Programs, SM Optics s.r.l., via John Fitzgerald Kennedy 2, 20871 Vimercate, Italy
4Department of Physics and Nanostructured Interfaces and Surfaces Centre, University of Torino, via Pietro Giuria 1, 10125 Torino, Italy
5Laboratory of Bio-Inspired and Graphene Nanomechanics, Department of Civil, Environmental and Mechanical Engineering, University of Trento, Via Mesiano 77, 38123 Trento, Italy
6School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London E1 4NS, UK
7Ket Lab, Edoardo Amaldi Foundation, Italian Space Agency, Via del Politecnico scn, 00133 Rome, Italy
8Centre for Materials and Microsystems, Fondazione Bruno Kessler, via Sommarive 18, 38123 Trento, Italy
*claudio.castellan@unitn.it

Abstract: In this work, we analyze the role of strain on a set of silicon racetrack resonators presenting different orientations with respect to the applied strain. The strain induces a variation of the resonance wavelength, caused by the photoelastic variation of the material refractive index as well as by the mechanical deformation of the device. In particular, the mechanical deformation alters both the resonator perimeter and the waveguide cross-section. Finite element simulations taking into account all these effects are presented, providing good agreement with experimental results. By studying the role of the resonator orientation we identify interesting features, such as the tuning of the resonance shift from negative to positive values and the possibility of realizing strain insensitive devices.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

OCIS codes: (130.0130) Integrated optics; (130.3060) Infrared; (130.3120) Integrated optics devices; (130.6010) Sensors; (130.6622) Subsystem integration and techniques; (250.5300) Photonic integrated circuits.

References and links