Cite this: Faraday Discuss., 2018, 208, 287

PAPER

Operando study of palladium nanoparticles inside UiO-67 MOF for catalytic hydrogenation of hydrocarbons⁺

A. L. Bugaev, ^[] *^{ab} Alexander A. Guda, ^[] ^a Kirill A. Lomachenko, ^[] ^c Elizaveta G. Kamyshova, ^[] ^a Mikhail A. Soldatov, ^[] ^a Gurpreet Kaur, ^d Sigurd Øien-Ødegaard, ^d Luca Braglia, ^[] ^{abe} Andrea Lazzarini, ^[] ^d Maela Manzoli, ^[] ^f Silvia Bordiga, ^[] ^{bd} Unni Olsbye, ^[] ^d Karl P. Lillerud, ^[] ^d Alexander V. Soldatov ^[] ^a and Carlo Lamberti ^[] *^{ag}

Received 22nd December 2017, Accepted 22nd January 2018 DOI: 10.1039/c7fd00224f

Functionalization of metal–organic frameworks with metal nanoparticles (NPs) is a promising way for producing advanced materials for catalytic applications. We present the synthesis and *in situ* characterization of palladium NPs encapsulated inside a functionalized UiO-67 metal–organic framework. The initial structure was synthesized with 10% of PdCl₂bpydc moieties with grafted Pd ions replacing standard 4,4'biphenyldicarboxylate linkers. This material exhibits the same high crystallinity and thermal stability of standard UiO-67. Formation of palladium NPs was initiated by sample activation in hydrogen and monitored by *in situ* X-ray powder diffraction and X-ray absorption spectroscopy (XAS). The reduction of Pd^{II} ions to Pd⁰ occurs above 200 °C in 6% H₂/He flow. The formed palladium NPs have an average size of 2.1 nm as limited by the cavities of UiO-67 structure. The resulting material showed high activity towards ethylene hydrogenation. Under reaction conditions, palladium was found to form a carbide structure indicated by *operando* XAS, while formation of ethane was monitored by mass spectroscopy and infra-red spectroscopy.

^aThe Smart Materials Research Center, Southern Federal University, Sladkova 178/24, Rostov-on-Don, 344090, Russia. E-mail: abugaev@sfedu.ru

^bDepartment of Chemistry, NIS Interdepartmental Centre, University of Turin, via P. Giuria 7, 10125 Turin, Italy ^cEuropean Synchrotron Radiation Facility, 71 avenue des Martyrs, CS 40220, 38043 Grenoble Cedex 9, France ^dCentre for Materials Science and Nanotechnology, Department of Chemistry, University of Oslo, Sem Saelands vei 26, 0315 Oslo, Norway

^eCNR-IOM, TASC Laboratory, in Area Science Park, S.S.14, km 163.5, Trieste, I-34149, Italy

Department of Drug Science and Technology and NIS Interdepartmental Centre, University of Turin, via P. Giuria 9, 10125 Turin, Italy

^{*}Department of Physics and CrisDi Interdepartmental Centre, University of Turin, via P. Giuria 1, 10125 Turin, Italy. E-mail: carlo.lamberti@unito.it

[†] Electronic supplementary information (ESI) available: Electron diffraction analysis; cif file of the XRPD refinement. CCDC 1813683. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c7fd00224f