

Original Article

MgB₂ powders and bioevaluation of their interaction with planktonic microbes, biofilms, and tumor cells

P. Badica ^{a,*}, N.D. Batalu ^b, M.C. Chifiriuc ^{c,d}, M. Burdusel ^a, M.A. Grigoroscuta ^a, G. Aldica ^a, I. Pasuk ^a, A. Kuncser ^a, M. Enculescu ^a, M. Popa ^c, L.G. Marutescu ^c, I. Gheorghe ^c, O. Thamer ^c, C. Bleotu ^e, G. Gradisteanu Pircalabioru ^c, L. Operti ^f, V. Bonino ^f, A. Agostino ^f, M. Truccato ^f

^a National Institute of Materials Physics, Street Atomistilor 405A, 077125, Magurele, Romania

^b University Politehnica of Bucharest, Splaiul Independentei 313, 060042, Bucharest, Romania

^c University of Bucharest, Faculty of Biology and the Research Institute of the University of Bucharest (ICUB), Spl.

Independentei 91-95, Bucharest, Romania

^d Academy of Romanian Scientists, Bucharest, Romania

^e Stefan S. Nicolau Institute of Virology - IVN, 285 Mihai Bravu Avenue, Bucharest, Romania

^f University of Turin, Physics and Chemistry Departments, Via P. Giuria 1-7 10125, Torino, Italy

ARTICLE INFO

Article history: Received 21 December 2020 Accepted 2 April 2021

Keywords: MgB₂ nanopowders Antibacterial materials Materials for cancer therapies

ABSTRACT

Commercial nanopowders of MgB₂ were characterized from the viewpoint of granulometric distribution, structure, microstructure, and pH behavior in water. The powders are very different: a higher amount of the MgB₂ phase with a lower tendency for agglomeration determines a higher rate of pH-increase. A higher rate of pH-increase usually produces a stronger antimicrobial activity against Staphylococcus aureus, Enterococcus faecium, Escherichia coli, Pseudomonas aeruginosa, Candida albicans, and Candida parapsilosis reference strains. The variation of the pH-increase rate suggests the possibility of temporo-spatial control of MgB₂ bioactivity, although the contribution of other factors should not be neglected. Remarkably, the efficiency of the MgB₂ powders is higher against biofilms than on microbes in the planktonic state. Further, our experiments confirm the antimicrobial efficiency of MgB₂ in the in vitro tests against 29 methicillin resistant clinical S. aureus isolates and 33 vancomycin resistant E. faecium/faecalis strains, but in this case the biofilms are more resistant than planktonic cells. The MgB₂ treatment of infected mice led to a significant decrease of E. coli colonization in liver, spleen and peritoneal liquid and it also caused changes in the intestinal microbiota. The activity of powders on HeLa and HT-29 tumor cell lines was assessed by inverted microscopy, flow cytometry, and evaluation of the cellular cycle. MgB₂ inhibits tumor cell growth influencing DNA synthesis (S-phase). The obtained results indicate that the tested powders could provide promising solutions for the

* Corresponding author.

E-mail address: badica2003@yahoo.com (P. Badica).

https://doi.org/10.1016/j.jmrt.2021.04.003

2238-7854/© 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http:// creativecommons.org/licenses/by-nc-nd/4.0/).