Università degli Studi di Torino

Scuola di Dottorato in Scienza ed Alta Tecnologia

Indirizzo di Fisica ed Astrofisica

Ciclo XXV

Theory and applications of the Ion Beam Induced Charge (IBIC) technique

Candidate

Jacopo Forneris

Tutor Prof. Ettore Vittone

Coordinator Prof. Guido Boffetta

07/03/2013

"I may not have gone where I intended to go, but I think I have ended up where I needed to be".

Douglas Adams The long dark tea-time of the soul 1988

Table of Contents

Table of Notations	13
Preface	15
Chapter 1	17
The Ion Beam Induced Charge microscopy	
1.1 The interaction of MeV ions with matter	18
1.1.1 Nuclear and electronic energy loss	18
1.1.2 Electron-hole pair creation	19
1.2 The IBIC technique	20
1.2.1 The IBIC set-up	20
1.2.2 The interpretation of the IBIC signal	23
1.3 Applications of IBIC microscopy	24
1.3.1 Characterization of the electronic properties of semiconductors_ 1.3.2 Technological applications and future challenges	24 28
1.4 Discussion	29
Chapter 2	31
Charge induction in semiconductor detectors	
2.1 Charge induction in semiconductor detectors	31
2.1.1 Energy balance of the system	31
2.1.2 The instantaneously induced charge	37
2.1.3 Contribution of the Gunn's term to the induced charge pulse formation	39
2.1.4 An equation for the weighting potential	44
2.1.5 Weighting field and capacitance	46
2.1.6 Contribution of the coupling term to the induced charge pulse formation	48

2.2 Examples and applications	
2.2.1 Parallel plate capacitor	_55
2.2.2 Abrupt Schottky junction in an ideal diode	_57
2.3 Induced charge sharing in Gunn's theory	_57
2.3.1 Definitions and general properties	_58
2.3.2 Charge sharing in a <i>N</i> -electrode device	_60
2.3.3 Charge sharing for position sensitive radiation detection	_67
2.3.4 Topological approach to charge sharing position sensitive detectors	_68
Chapter 3	_71
Numerical tools for the simulation of IBIC experiments	
3.1 Simulation tools and simulation strategies	_71
3.2 The adjoint equation method	_75
3.2.1 The adjoint equation strategy	_75
3.2.2 The adjoint continuity equation	_77
3.2.3 CCE profile of an ideal one-dimensional n-type Schottky junction_	_83
3.3 The Monte Carlo method	_88
3.3.1 The Monte Carlo approach	_89
3.3.2 One-dimensional stochastic charge transport simulation	_90
3.3.3 Monte Carlo approach in higher dimensional geometries	_94
3.3.4 Discussion	_98
Chapter 4	_99
Modeling of IBIC experiments for the characterization of semiconductor device	es
4.1 Lateral IBIC characterization of a 4H-SiC Schottky diode	_99
4.1.1 Experimental	_100
4.1.2 Modeling	_106
4.1.3 Discussion	_111

4.2 Lateral IBIC characterization of a p-type diamond Schottky diode	112
4.2.1 Experimental	112
4.2.2 Modeling	115
4.2.3 Discussion	_119
4.3 Monte Carlo analysis of a charge sharing based p-i-n Si position sensitive particle detector	_120
4.3.1 Experimental	122
4.3.2 Modeling	123
4.3.3 Position sensitive ion detection	129
4.3.4 On the improvement of the position sensitivity resolution	131
4.3.5 Discussion	_133
Chapton F	125
Ion beam microfabrication and IBIC characterization of diamond particle det	135 ectors
5.1 IBIC characterization of a diamond particle detector with buried graphitic micro-electrodes	_136
5.1.1 Experimental	137
5.1.2 Modeling	143
5.1.3 Discussion	144
5.2 Charge transport properties in the cap-layer of an ion-beam	145
micro-fabricated diamond detector	
5 2 1 Evnerimental	146
5.2.1 Experimental	150
5.2.3 Discussion	150 152
5.3 Characterization of an ion-beam-micromachined	_153
5.3.1 Samples and electrical characterization	155
5.3.2 IBIC characterization	156
5.3.3 Discussion	_161
5.4 Sharing of anomalous polarity pulses in an ion-beam-micromachined multi-electrode diamond detector	_162

5.4.1 Theoretical	162
5.4.2 IBIC characterization	165
5.4.3 Discussion	169
Conclusions	171
1. Discussion of results	171
2. Outlook and perspectives	174
Appendix 1	177
of the IBIC technique	
A1.1 Charged particle in a condenser	178
A1.2 Particles decay in a fully depleted diode	179
A1.3 Charged particles in a partially depleted diode	181
A1.4 Lateral IBIC experiment in a partially depleted diode	182
A1.5 Damaged layer in a fully depleted diode	182
A1.6 Frontal IBIC map of a polycrystalline sample	183
Appendix 2	
A2.1 The sequential Monte Carlo code	10E
A2.2 Devellel execution of the Monte Carlo elgenithm	103
A2.2 Parameter execution of the monte carlo algorithm	107
A2.5 remominance of the parallel program execution	190
A2.3.1 Number of simulated ions per generation point A2.3.2 Number of generation points	191 191
A2.3.3 Work-Pool approach and load-balance	193
A2.3.4 Simulation speed-up	195
A2.4 Discussion	197

Appendix 3	199
IAEA Coordinated Research Project: Modeling and validation of ion beam induced damage in semiconductors	
Appendix 4	201
A Monte Carlo software for the simulation of IBIC experiments	
Appendix 5	207
Scientific activities	
Appendix 6	213
Published papers	
Acknowledgements	255
Table of References	259

Table of Notations

Δx	Space step on a discrete grid
Δt	Time step on a discrete grid
δn (δp)	Re-distribution of electron (hole) volume density due to charge screening
	within the Debye's length
ε	Dielectric constant
$\mu_n (\mu_p)$	Electron (hole) mobility
$ ho_0$	Volume charge density at the electrostatic equilibrium
ρ'	Probe charge density generated within the device volume
Σ_i	Surface of the <i>i</i> -th Dirichlet integration boundary
$ au_n(au_p)$	Electron (hole) lifetime
$oldsymbol{\phi}_{bi}$	Built-in potential
ψ_0	Electric potential at the electrostatic equilibrium
ψ	Total electric potential in presence of a volume probe charge density
ψ'	Electric potential associated with the volume probe charge density $\psi { extsf{-}} \psi_0$
Ω	Device integration volume
Α	Electrode's surface
C(V)	Voltage dependent capacitance
CCE	Charge collection efficiency
$D_n\left(D_p\right)$	Electron (hole) diffusivity
d s	Integration area element on the electrodes surface
е	Absolute value of the elementary electric charge
\mathbf{E}_0	Electric field at the electrostatic equilibrium
Ε	Total electric field in presence of a volume probe charge density
E'	Electric potential associated with the volume probe charge density
Jo	Electric current density at the electrostatic equilibrium
J	Electric current density of excess charge carriers
İj	Current induced at the <i>j</i> -th electrode
İj,G	Contribution of the Gunn's term to the current induced at the <i>j</i> -th
	electrode
İ _{j,C}	Contribution of the coupling term to the current induced at the <i>j</i> -th
$I_{n}(I_{n})$	Electron (hole) diffusion length
n	Normal vector to the integration domain's bounding surface
$N_{\rm D}(N_{\rm A})$	Ionized donor (accentor) volume density
$n_0(n_0)$	Native volume density of free electrons (holes) at the electrostatic
10 (00)	equilibrium
n _{init} (p _{init})	Native volume density of free electrons (holes) at the electrostatic
	equilibrium in an unbiased semiconductor
n'(p')	Excess electron (hole) volume density generated within the device volume
n (p)	Total (native and generated) electron (hole) volume density
$n^{+}(p^{+})$	Solution of the adjoint electron (hole) continuity equation
$P_{0,n}(P_{0,p})$	Probability for the electron (hole) to remain at the same position during the time interval Δt

$P_{\pm \mathrm{x},n}\left(P_{\pm \mathrm{x},p}\right)$	Probability for the electron (hole) to move a step right/left during
D_{1} (v)	the time interval Δt Drobability for the electron (hele) to recombine during the time interval At
$\Gamma_{dec,p}(\mathbf{X})$	Field ability for the electron (note) to recombine during the time interval Δt . Total induced charge vector associated with a multi-electrode device
Q O	Total induced charge vector associated with electron (hele) motion a
Q e,h	notion a multi-electrode device
0	Total charge stored within the device volume
$\tilde{O}_{i,0}$	Charge bore by the <i>i</i> -th electrode at the electrostatic equilibrium
O_i	Charge instantaneously bore by the <i>j</i> -th electrode
$Q_{j,G}$	Contribution of the Gunn's term to the charge instantaneously bore by the <i>j</i> -th electrode
$Q_{j,C}$	Contribution of the coupling term to the charge instantaneously bore by the <i>j</i> -th electrode
q	Point-like probe charge density generated within the device volume
q_j	Total charge induced at the <i>j</i> -th electrode by the probe charge distribution
$q_{j,G}$	Contribution of the Gunn's term to the total charge induced at the <i>j</i> -th electrode by the probe charge distribution
Qj,C	Contribution of the coupling term to the total charge induced at the <i>j</i> -th electrode by the probe charge distribution
R _{np}	Linearized Shockley-Read-Hall recombination term
<i>S</i> ₀	Surface charge density at the Neumann boundaries of a device in electrostatic equilibrium
t	Generic time parameter
t ₀	Instant of excess probe charge density generation
Т	Integration time associated with the external electronic chain
V_i	Voltage applied at the <i>i</i> -th electrode
v	Carriers drift velocity vector
W	Depletion region width
х	Generic space coordinates vector
\mathbf{X}_B	Space coordinates vector at the volume boundary surface
\mathbf{X}_{I}	Space coordinates vector associated with the initial position of a point-like probe charge
\mathbf{X}_F	Space coordinates vector associated with the final position of a point-like probe charge
$\partial \psi_0 / \partial V_j$	Weighting potential associated with the <i>j</i> -th electrode
$\partial \mathbf{E}_0 / \partial V_j$	Weighting field associated with the <i>j</i> -th electrode

Preface

The Ion Beam Induced Charge (IBIC) microscopy is an analytical technique that exploits the interaction of MeV ion beams, focused down to a micrometer spot size, with matter to investigate the electronic properties of semiconductor materials and devices.

The reasons for the increasing utilization of the technique for material characterization are given by the wide availability of linear accelerator machines and by the expertise in ionizing radiation detection and signal amplification, both due to the development of nuclear physics research in the past century. On the other hand, the reliability of the IBIC microscopy lies on the existence of a solid theoretical model, allowing to extract from the experimental results almost all the parameters required for the characterization of the electrical and electronic properties of the sample under test.

In my Dissertation, the main features of the IBIC technique are investigated and discussed, together with an overview of the underlying theoretical model and the associated numerical methods for the simulation of experiments.

Theoretical and numerical predictions are tested and validated against experimental data, and are exploited both to perform a characterization of the electronic properties of materials, and to face new challenging applications in physics and technology, such as the development of innovative 2- and 3- dimensional position sensitive ionizing radiation detectors.

In **Chapter 1**, the IBIC microscopy will be introduced in its main features, through the discussion of the underlying physical phenomena, such as ion-matter interaction and charge induction mechanisms, and of the relevant applications in physics experiments and technology development.

In **Chapter 2**, a systematic analysis of the induced charge pulse formation at the electrodes of a semiconductor device is presented. The discussion will focus on charge induction theorems, on relevant application examples and on charge sharing phenomena in multi-electrode devices.

The implementation of the theoretical results for the development of suitable numerical tools to simulate the IBIC signal formation is discussed in **Chapter 3**.

The resulting model, equipped with valuable simulation techniques, will be then validated and exploited in **Chapter 4** in order to model the results of IBIC experiments, aiming at the characterization of emerging wide band-gap semiconductor materials as well as at the optimization of advanced charge sharing particle detection systems.

Finally, **Chapter 5** is devoted to the analysis and the development of novel fully ion-beam-micromachined 3-dimensional diamond particle detectors with integrated graphitic electrodes.