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Object of the research
Study of the radiation hardness of semiconductors

Tool

Focused MeV lon beams
the damage
and
the damage
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Radiation damage is the general alteration of the
operational properties of semiconductor devices induced
by ionizing radiation

Three main types of effects:

- Transient ionization. This effect produces electron-hole pairs; particle
detection with semiconductors is based on this effect.

-Long term ionization. In insulators (oxides), the material does not return to
Its initial state, if the electrons and holes produced are fixed, and charged
regions are induced.

- Dislocations of atoms from their normal
sites in the lattice, producing less ordered structures, with
long term effects on semiconductor properties.
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odeling radiation degradation in solar cells extends satellite lifetime

Robert J. Walters, Scott Messenger, Cory Cress, Maria Gonzalez and Serguei Maximenko
A physics-based model of the effect of radiation on the performance of solar cells in

space may enhance the on-orbit lifetime of Earth-orbiting spacecraft. SPIE 2011
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Figure 2.Measured degradation of a single junction gallium arsenide (GaAs)
solar cell under proton, electron,zand neutron irradiation.2 These data can be
used to empirically determine the energy dependence of the solar-cell
degradation thereby enabling on-orbit performance prediction. Py

Maximum power. http://spie.ora/x43655.xml
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Space environment —

— wide spectrum of ions
(protons) and electrons.

To understand the
performance of a solar cell in
the space radiation
environment, it is necessary to
know how cell degradation
depends on the energy of the
irradiating particle.
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Characterization of radiation induced damage:

Device characteristic after irradiation

Device characteristics Particle Equivalent Displacement
before irradiation Fluence damage factor dose

First order: proportionality, independent of the particle, between the damage factor
and the particle NIEL

NIEL approach:

measurement of K_4 only for one . > K4 Can be estimated for all
particle (at one specific energy) the particles and energies
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Incoming
radiation

Free charge generation
and transport

l

Material Characterization
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Characterization of radiation induced damage:
Induced Charge after irradiation

1”|=CCE=g=1—K-CD:l—Ked-Dd

Qs
Induced Charge
before irradiation Particle Equivalent Displacement

Fluence damage factor dose

MeV lon beams
to induce the damage — DIB=DAMAGING IONS

And

to probe the damage—> PIB=PROBING IONS
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CCE degradation
induced by ion irradiation

Is a function of the damaging ion fluence

Hamamatsu photodiode
Vbias =100 V

DIB= Cl 11 MeV
PIB= He 1.4 MeV

10 100

Fluence (um'z)
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CCE degradation
induced by ion irradiation

Is a function of the ion energy and mass

Hamamatsu photodiode
Vbias =100 V

Eh--Rl 3
L

-
1 R

PIB= He 1.4 MeV Li 2.15 MeV
:

Cl 11 MeV

100

Fluence (um?)
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CCE degradation
induced by ion irradiation

Is a function of the material and/or device

-%-~§:6\§\§\; N-type Fz-Si

T ) R ~_ _g\
. |
Schottky diode

| |
Hamamatsu
p-i-n diode

P-type Fz-Si
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CCE degradation
induced by ion irradiation

Is a function of the polarization state of the device

ias

Hamamatsu photodiode = = 1— K(V
Vbias = 100 V Y b

He 1.4 MeV

100 1000

Fluence (um'z)
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CCE degradation

induced by ion irradiation
Is a function of the probing ions (PIB)

n-type Fz silicon diode n= Yi =1- K(V P|B).q) =1- Ked : Dd

Vbias = 50 V . bias !

—eo—2MeVH
A 45MeVH
—v— 8 MeV He
<4 12 MeV He

Damage induced by 8 MeV He

1000

Fluence (um?)
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Summary

CCE degradation
DIBs(12 MeV and 8 MeV He)

PIBs (1, 2, 4.5 H; 8, 12 MeV He) 5‘: §
Different bias voltages (10,20,50 V) .t;sz\ﬁ
° g
(1]

N-type Si diode

1011 1012

Fluence (cm '2)
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Goals

To correlate the effect of different kinds of radiation on the
properties of materials and devices

To extract parameters directly correlated with the radiation
hardness of the material

Experimental protocol

Model for charge pulse Model for CCE
formation degradation
(IBIC theory) (SRH model)

20 June 2016, Loughborough; E. Vittone
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Model for charge pulse formation
(IBIC theory)

 Formalism based on the Shockley-Ramo-Gunn
theorem

« Adjoint equation method: the CCE is the
solution of the Adjoint Equation

T.H.Prettyman, Nucl. Instr. and Meth. in Phys. Res. A 422 (1999) 232-237.
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Pulse shapes calculation

Currents to Conductors Induced by a Moving Point Charge .
e d ¢ Currents Induced by Electron Motion®
W. SHOCKLEY

Bell Telephone Laboratories, Inc., New York, N. ¥. SIMON R_AMOT’ ASSOCIATE MEMBER, LR.E.
(Received May 14, 1938)

Gunn theorem

Solid-State Electronics Pergamon Press 1964, Vol. 7, pp. 739-742, Printed in Great Britain

A GENERAL EXPRESSION FOR ELECTROSTATIC
INDUCTION AND ITS APPLICATION TO
SEMICONDUCTOR DEVICES ~

J. B, GUNN

IBM Watson Research Center, Yorktown Heights,
New York

{Received 2 March 196-1-;' m revised form 26 March 1964)

Abstract—A new formula is dcduced, under rather general conditions, for the charges induced
upon a system of conductors by the motion of 4 small churge nearby. The conditions are found under
which this result can be slmphﬁed to yield various previously derived formulas applicable to the
problem of collector transit time in semiconductor devices.
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¢ Insulator-Semiconductor Rectifying

contact

m[erface

Semiconductor
bulk

Boundary
conditions

— I
Ohmic contact

Initial conditions

For mapping charge pulses
Ghp =0(r —ry)-3(t)
= Generation point at

Evaluate

Q(t)_—qjdt jdr n(r,tsrg) - v, (1) +p(r,try) - v, (1)

COSIR

Loughborough 2
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Solve the continuity equations using
potential ¢, defined by

boundary conditions, space charge

an - - n

+V - Vo, -n+D, -Vn)+ G, ——

8t ( (I)O n ) n T

n

P

T

P _V-(u, - V0-p-D, - Ip)+

Evaluate the Gunn's weighting field
oE
v,
by solving the Poisson’s equation
V-
The potentials of all the other conductors
are held constant

the induced charge

GEG)

E. Vittone
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Model for charge pulse formation
(IBIC theory)

 Formalism based on the Shockley-Ramo-Gunn
theorem

« Adjoint equation method: the CCE is the
solution of the Adjoint Equation

T.H.Prettyman, Nucl. Instr. and Meth. in Phys. Res. A 422 (1999) 232-237.
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Ad|oint equation Method

Charge Induced from electrons

Qin (1) = —q_[dt'jdr{[n(r, tr)-v, (r)] oE(r) }

oV,

IS the Green's function for the electron continuity equation

The continuity equation The charge induced from
Involves linear operators electrons can be evaluated by

= > solving a single, time
dependent adjoint equation.

%=+§-(+un V,-n"+D, -§n+)+G*n -
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Model for charge pulse formation
(IBIC theory)

1D

1

Fully depleted device

!

No diffusion

Ramo Theorem

Drift lengths
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Model for CCE degradation -
Shockley-Read-Hall model :

trap-assisted
recombination

Basic assumption:
1) Inthe linear regime, the ion induced damage affects mainly the carrier lifetime =
2) Theion induced trap density is proportional to the

luence

Capture
coefficient

CLI. m. vmmri- 3

20 June 2016, Loughborough; E. Vittone




The experimental protocol

Z. Pastuovic et al., IEEE Trans on Nucl. Sc. 56 (2009) 2457; APL (98) 092101 (2011)
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Samples under study

n- and p- type Fz p-i-n Si diodes
Fabricated by the Institute of Physics, University of Helsinki

16 floating guard rings
The frontal electrode and the guard rings

are coated with Al (0.5 umy).

Different dimensions: 5 or 2.5 mm

L T m 34

16 uard rings
b|asV N g g

scale (mm)

R. ‘
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The Al electrode has a hole in the center, 1 mm diameter.
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Experimental protocol

C-V characteristics

. . Experimental
Depletion width-voltage P

protocol
Electrical

n-type Fz Si diode #26 characterization
A=(0.6x0.6) cm’

=

Doping concentration [N -N_| (cm™)

100 150 200 250
Depth (um)
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Experimental protocol

z Experimental
T 601’
protocol
E?a:nnn’ T ey =Y
LI ~_ Electrical
BBV S characterization
100 150 200 250 i
ot EIect_rostatlc
modeling

hole drift velocity

profiles
Gunn’s weighting
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400107
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velocity profiles

3,0m10°

2,010°

Gunn's Field {1/um}
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IBIC map on a pristine diode
probed with a scanning
1.4 MeV He microbeam;

Experimental
protocol

Electrical
characterization
Electrostatic

modeling
IBIC map on
pristine sample

Frontal IBIC

MeV Ions

Z. Pastuovic et al., IEEE Trans on Nucl. Sc. 56 (2009) 2457; APL (98) 092101 (2011)

o, 9
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lon microbeams
Different ion mass/energy
Spot size <3 um

DAMAGING SELECTED AREAS
100X100 pm?
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IBIC map on a pristine diode ZOOM in view of the selected area for focused
probed with a scanning ion beam |rrad|at|on at dlfferent fluences @
1.4 MeV He microbeam; BRI ey

' Experimental
protocol

Electrical
characterization
IBIC map on
= pristine sample
Irradiation of 9
regions at
different fluences

C.St al., IEEE Trans on Nucl. Sc. 56 (2009) 2457; APL (98) 092101 (2011)
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He ion microbeam
Energy 1.4 MeV
Spot size <3 um

1.4 MeV He in Si

0.24

0.1

Normalized lonizing Energy loss (1/um)

0 1 2 3 4 5 6 7
Depth (um)
Data from SRIM
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IBIC map on a pristine diode
probed with a scanning
1.4 MeV He microbeam;

Frontal IBIC

MeV Ions

a measured 2D distribution
of the IBIC signal amplitude
after irradiation

Ic et al., IEEE Trans on Nucl. Sc. 56 (2009) 2457; APL (98) 092101 (2011)
# 20 June 2016, Loughborough; E. Vittone

i Experimental

protocol

Electrical
characterization
IBIC map on
pristine sample
Irradiation of 9
regions at
different fluences
IBIC map of
irradiated regions
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IBIC map on a pristine diode
probed with a scanning
1.4 MeV He microbeam;

Fluence

IBIC spectra
(bias voltage =
10 V and 100 V)
from the central
regions of four
of the areas

: - 420 440 460 480
shown in Fig. c

Pulse Height (Channels)
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i Experimental
protocol

Electrical
characterization

.. IBIC map on
: : = pristine sample

Irradiation of 9

E. Vittone

regions at

different fluences
IBIC map of

irradiated regions

a measured 2D distribution
of the IBIC signal amplitude
after irradiation
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IBIC map on a pristine diode
probed with a scanning
1.4 MeV He microbeam;

B Experimental
protocol

Electrical
characterization
IBIC map on
pristine sample
Irradiation of 9
regions at
different fluences
IBIC map of
irradiated regions

Hamamatsu photodiode

He 1.4 MeV

a measured 2D distribution
100 1000 of the IBIC signal amplitude
Fluence (um?) after irradiation

Ic et al., IEEE Trans on Nucl. Sc. 56 (2009) 2457; APL (98) 092101 (2011)
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Probing ion beam
Damaging ion beam
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DIB=8 MeV He
V. =50V

bias

PIB
8 MeV He
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Fixed DIB
Fixed Vi ¢
Variable PIBs

DIB
12 MeV He

K}
8 MeV He
PIB=2 MeV H

V. =50V
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Variable DIB
Fixed PIB
FIXED V,..




100 -

80

60

40

Vacancy/ion/uym

20+

L

0 10 20 30 40 50
Depth (um)

COSIR R 20 June 2016, Loughborough; E. Vittone

Loughborough 2



100 -

80

60

40

Vacancy/ion/uym

20+

L

0 10 20 30 40 50
Depth (um)

PIB

o
+
>

T
Short range PIB
: ] Generation
profile
0 10 20 30 40 50
Depth (um)
COSIRES = 20 June 2016, Loughborough; E. Vittone

Loughborough 201

NEx

40



PIB=1 MeV H
DIB=8 MeV He

2 4 6 8
Fluence (x10" cm'2)

Hole motion
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Electron motion

N

Electric field

<
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Fz silicon diode
Capture coefficient

-type
(2500£300) pum?3/s
( 210%£160) pm?3/s

n
a
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—— .
0 500 1000 1500 2000 2500
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Vacancy/lon/um
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DLTS signal (pF)

150 200 250 300
temperature (K)

—— Vacancy Marlowe
—— di-Vacancy Marlowe
Vacancy SRIM
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Depth (um)
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N-type silicon
DLTS measurements
singly V2(-/0) negatively charged divacancy

0,=5-101°> cm?

From MARLOWE
simulation

Divacancy

~ 26
Vacancy

C. R. Crowell,
Appl. Phys. 9, 79-81, 1976
Vth=1.8 -10" m/s

0,=(3.6%£0.4)-10*> cm?
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Solution of the adjoint equations

jdy-%FVM-exp{—_y[dzvl-(l+ap -Vac(x) -

d

Qs :q-IdX-F(X d

s n \To

0 s o \To

For very low level of radiation

-t
Linearization vs. @

: !
Effective fluence ®*

CCE(®) =~ 1 —

~(

: .JJII:. /” dz -

A

20 June 2016, Loughborough; E. Vittone
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Very low level of damage

n-type diode

DIB=40 He; V =10 V
DIB=40 He; V=50V
DIB=80 He; V =10V
DIB=80 He; V =50V

T

*

kg

e diode

510'2""'i'2"5'4'53
Fluence (10 'cm™) Effective fluence (10’ s/cm®)

E. Vittone et al. / Nuclear Instruments and Methods in Physics Research B 372 (2016) 128-142
COSIR wwew 20 June 2016, Loughborough; E. Vittone 52
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Derivation of the Non lonizing Energy Loss
(NIEL) displacement damage formula

Constant vacancy profile
Low displacement damage

CCE=1-K_, -D,

-jdx-y(x)+kp o (z)-!dy-%(y)-

K.g = €quivalent damage factor depends on
v Electrostatics of the device

v’ Carrier transport and recombination
v"lon probe ionization profile

20 June 2016, Loughborough; E. Vittone
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Limits of applicability
Basic Hypotheses

DIB : low level of damage

“linear model”
Toen Independent traps, no clusters

+a,,-Vac(x) @ = 1 +(ce,h-vth)-Vac(x)-<D

Unperturbed electrostatics (i.e. doping profile) of the device

PIB : ion probe
CCE is the sum of the individual e/h contributions

No plasma effects induced by probing ions

20 June 2016, Loughborough; E. Vittone
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CONCLUSIONS

An experimental protocol has been proposed to study the radiation hardness
of semiconductor devices

Under the assumption of :

the of a semiconductor device induced by ions of different
mass and energy can be interpreted by means of a model based on

*The Shockley-Ramo-Gunn theorem for the charge pulse formation

*The Shockley-Read-Hall model for the trapping phenomena

If the generation occurs in the depletion region, an analytical solution of the
adjoint equation can be calculated.

scaling can be derived from the general theory in the case of
constant vacancy profile.

The model leads to the evaluation of

The capture coefficient is directly related to the

radiation hardness of the material

20 June 2016, Loughborough; E. Vittone
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Characterization of radiation induced damage:

Device characteristic after irradiation

Device characteristics Particle Equivalent Displacement
before irradiation Fluence damage factor dose

First order: proportionality, independent of the particle, between the damage factor
and the particle NIEL

NIEL approach:

measurement of K_4 only for one . > K4 Can be estimated for all
particle (at one specific energy) the particles and energies

20 June 2016, Loughborough; E. Vittone 57




Characterization of radiation induced damage:
Induced Charge after irradiation

Induced Charge
before irradiation Particle Equivalent Displacement

Fluence damage factor dose

Fluenza (cm?)

1E8 1E9 1IE10 IEL1

CCE (%) fluenza (ions/cm’

20 June 2016, Loughborough; E. Vittone S8
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on’

E=+§-(+un Vd,-n"+D, -§n+)+G*n ——

Excess carrier lifetime

Trap density

Capture cross section

‘ Trap density induced by
k . CI) radiation
/|

Trap density in pristine
material

20 June 2016, Loughborough; E. Vittone 59




Bias Voltage = 50 V,?
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20 June 2016, Loughborough;
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E. Vittone

n-type Fz silicon diode

Damaging ions: 8 MeV He
Probing ions: 1,2,4.5 MeV H, 12 MeV He
Bias Voltages: 10,20 50 V

CAPTURE COEFFICIENTS

o = (2500£300) pm3/s
o, = (210%160) pum?3/s
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