
120 June 2016, Loughborough;    E. Vittone

Modeling of charge collection efficiency 
degradation in semiconductor devices induced by 

MeV ion beam irradiation

Ettore Vittone
Physics Department

University of Torino - Italy



220 June 2016, Loughborough;    E. Vittone

COOPERATION AND MUTUAL  

UNDERSTANDING LEAD TO  GROWTH 

AND GLOBAL ENRICHMENT

IAEA Coordinate Research Programme (CRP) F11016 (2011-2015)

“Utilization of ion accelerators for studying and modeling of radiation 

induced defects in semiconductors and insulators”

NUS

Ruđer Bošković Inst.

Delhi Univ.

ANSTOHelsinki Univ.

CAN

JAEA-Kyoto Univ.

Malesian Nuclear Agency 

Torino Univ.

Surrey Univ. 

SANDIA

Leipzig Univ.



320 June 2016, Loughborough;    E. Vittone

Object of the research

Study of the radiation hardness of semiconductors

Tool
Focused MeV Ion beams 

to induce the damage 

and 

to probe the damage
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Radiation damage is the general alteration of the 

operational properties of semiconductor devices induced

by ionizing radiation

Three main types of effects:

- Transient ionization. This effect produces electron-hole pairs; particle

detection with semiconductors is based on this effect.

-Long term ionization. In insulators (oxides), the material does not return to 

its initial state, if the electrons and holes produced are fixed, and charged

regions are induced.

- Displacements. Dislocations of atoms from their normal

sites in the lattice, producing less ordered structures, with 

long term effects on semiconductor properties.
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Frank Hartmann, Silicon tracking detectors in high-energy physics

Nuclear Instruments and Methods in Physics Research A 666 (2012) 25–46

M. Bruzzi, M. Moll, RD50, 2010
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Modeling radiation degradation in solar cells extends satellite lifetime
Robert J. Walters, Scott Messenger, Cory Cress, Maria Gonzalez and Serguei Maximenko

A physics-based model of the effect of radiation on the performance of solar cells in 

space may enhance the on-orbit lifetime of Earth-orbiting spacecraft. SPIE 2011

http://spie.org/x43655.xml

Space environment →

→ wide spectrum of ions

(protons) and electrons.

To understand the 

performance of a solar cell in 

the space radiation

environment, it is necessary to 

know how cell degradation

depends on the energy of the 

irradiating particle.

http://spie.org/x43655.xml
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Characterization of radiation induced damage:
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Device characteristic after irradiation

First order: proportionality, independent of the particle, between the damage factor 

and the particle NIEL

NIEL approach: 

measurement of Ked only for one 

particle (at one specific energy)

Ked can be estimated for all  

the particles and energies
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IBIC: Ion Beam Induced Charge
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ded
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Induced Charge

before irradiation

Induced Charge after irradiation

Characterization of radiation induced damage:

Equivalent 

damage factor

Particle

Fluence

Displacement 

dose

MeV Ion beams 

to induce the damage → DIB=DAMAGING IONS

And

to probe the damage→ PIB=PROBING IONS
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CCE degradation
induced by ion irradiation
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Summary

CCE degradation

DIBs(12 MeV and 8 MeV He)

PIBs (1, 2, 4.5 H; 8, 12 MeV He) 

Different bias voltages (10,20,50 V)
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Model for charge pulse 

formation

(IBIC theory)

Model for CCE 

degradation

(SRH model)

Experimental protocol

• To correlate the effect of different kinds of radiation on the 

properties of materials and devices

• To extract parameters directly correlated with the radiation 

hardness of the material

Goals
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Model for charge pulse formation

(IBIC theory)

• Formalism based on the Shockley-Ramo-Gunn 

theorem

• Adjoint equation method: the CCE is the 

solution of the Adjoint Equation

T.H.Prettyman, Nucl. Instr. and Meth. in Phys. Res.  A 422 (1999) 232-237. 
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Gunn’s theorem 
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Model for charge pulse formation

(IBIC theory)

• Formalism based on the Shockley-Ramo-Gunn 

theorem

• Adjoint equation method: the CCE is the 

solution of the Adjoint Equation

T.H.Prettyman, Nucl. Instr. and Meth. in Phys. Res.  A 422 (1999) 232-237. 
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The experimental protocol

Z. Pastuovic et al., IEEE Trans on Nucl. Sc. 56 (2009) 2457; APL (98) 092101 (2011) 
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Samples under study
n- and p- type Fz p-i-n Si diodes

Fabricated by the Institute of Physics, University of Helsinki

16 floating guard rings

The frontal electrode and the guard rings 

are coated with Al (0.5 µm]). 

The Al electrode has a hole in the center, 1 mm diameter. 

Different dimensions: 5 or 2.5 mm

MeV ions
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Electrical 

characterization

C-V characteristics

Depletion width-voltage
Experimental 

protocol

Experimental protocol
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Electrical 

characterization

Electrostatic 

modeling

Experimental 

protocol

Experimental protocol

Electron drift 

velocity profiles

hole drift velocity 

profiles

Gunn’s weighting 

potential

Gunn’s weighting 

field
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MeV  scanning

ion microbeam

Spot size < 3 m

PROBING THE PRISTINE SAMPLE
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IBIC map on a pristine diode 

probed with a scanning 

1.4 MeV He microbeam;

Uniform CCE map

Electrical 

characterization

Electrostatic 

modeling

IBIC map on 

pristine sample

Experimental 

protocol

Z. Pastuovic et al., IEEE Trans on Nucl. Sc. 56 (2009) 2457; APL (98) 092101 (2011) 
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Ion microbeams

Different ion mass/energy

Spot size < 3 m

DAMAGING SELECTED AREAS

100X100 m2
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Experimental 

protocol

Z. Pastuovic et al., IEEE Trans on Nucl. Sc. 56 (2009) 2457; APL (98) 092101 (2011) 

IBIC map on a pristine diode 

probed with a scanning 

1.4 MeV He microbeam;

ZOOM in view of the selected area for focused 

ion beam irradiation at different fluences 
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He ion microbeam
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a measured 2D distribution 

of the IBIC signal amplitude 

after irradiation

Electrical

characterization

IBIC map on 

pristine sample

Irradiation of 9 

regions at

different fluences

IBIC map of 

irradiated regions

Experimental 

protocol

Z. Pastuovic et al., IEEE Trans on Nucl. Sc. 56 (2009) 2457; APL (98) 092101 (2011) 
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a measured 2D distribution 

of the IBIC signal amplitude 

after irradiation

Electrical

characterization

IBIC map on 

pristine sample

Irradiation of 9 

regions at

different fluences

IBIC map of 

irradiated regions

Experimental 

protocol

Z. Pastuovic et al., IEEE Trans on Nucl. Sc. 56 (2009) 2457; APL (98) 092101 (2011) 
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a measured 2D distribution 

of the IBIC signal amplitude 

after irradiation

Electrical

characterization

IBIC map on 

pristine sample

Irradiation of 9 

regions at

different fluences

IBIC map of 

irradiated regions

Experimental 

protocol

Z. Pastuovic et al., IEEE Trans on Nucl. Sc. 56 (2009) 2457; APL (98) 092101 (2011) 
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PIB = Probing ion beam

DIB = Damaging ion beam

DIB: Vacancy profiles

PIB: Ionization profiles

Different bias voltages
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Short range PIB Long range PIB

n=1700 m3/s

p=130 m3/s

Bias Voltage = 50 V
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Damaging ions: 8 MeV He

Probing ions: 1,2,4.5 MeV H, 12 MeV He

Bias Voltages: 10,20 50 V

n-type Fz silicon diode

N-typeP-type
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Fz silicon diode

Capture coefficient

n-type

n = (2500±300) m3/s

p = (  210±160)  m3/s

p-type

n = (1310± 90) m3/s

p = (2200±300) m3/s
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N-type silicon

DLTS measurements

singly V2(−/0) negatively charged divacancy

σn≈5·10-15 cm2
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From MARLOWE 

simulation

n=vthσn

σn≈(3.6±0.4)·10-15 cm2

C. R. Crowell, 

Appl. Phys. 9, 79-81, 1976

Vth= 1.8 ·107 m/s 
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Solution of the adjoint equations

For very low level of radiation

Linearization vs. 

Effective fluence *
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Very low level of damage

E. Vittone et al. / Nuclear Instruments and Methods in Physics Research B 372 (2016) 128–142
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Derivation of the Non Ionizing Energy Loss 

(NIEL) displacement damage formula

Constant vacancy profile

Low displacement damage
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Ked = equivalent damage factor depends on

Electrostatics of the device

Carrier transport and recombination

 Ion probe ionization profile
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Limits of applicability

  
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Basic Hypotheses

DIB : low level of damage

“linear model”

Independent traps, no clusters

Unperturbed electrostatics (i.e. doping profile) of the device

PIB : ion probe

CCE is the sum of the individual e/h contributions

No plasma effects induced by probing ions
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An experimental protocol has been proposed to study the radiation hardness 

of semiconductor devices

Under the assumption of low damage level, 

the CCE degradation of a semiconductor device induced by ions of different 

mass and energy can be interpreted by means of a model based on 

•The Shockley-Ramo-Gunn theorem for the charge pulse formation

•The Shockley-Read-Hall model for the trapping phenomena

If the generation occurs in the depletion region, an analytical solution of the 

adjoint equation can be calculated. 

Adjusted NIEL scaling can be derived from the general theory in the case of 

constant vacancy profile. 

The model leads to the evaluation of the capture coefficient.

CONCLUSIONS

The capture coefficient is directly related to the

radiation hardness of the material
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Characterization of radiation induced damage:

ded

0

DK1K1
Y

Y


Device characteristics

before irradiation

Equivalent 

damage factor

Particle 

Fluence

Displacement 

dose

Device characteristic after irradiation

First order: proportionality, independent of the particle, between the damage factor 

and the particle NIEL

NIEL approach: 

measurement of Ked only for one 

particle (at one specific energy)

Ked can be estimated for all  

the particles and energies
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ded

0

DK1K1
Q

Q
CCE 

Induced Charge

before irradiation

Induced Charge after irradiation

Characterization of radiation induced damage:

Equivalent 

damage factor

Particle

Fluence

Displacement 

dose
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Damaging ions: 8 MeV He

Probing ions: 1,2,4.5 MeV H, 12 MeV He

Bias Voltages: 10,20 50 V

n-type Fz silicon diode
Bias Voltage = 50 V

Bias Voltage = 20 V

Bias Voltage = 10 V

n = (2500±300) m3/s

p = (210±160)  m3/s

CAPTURE COEFFICIENTS


