

Session 4: Detectors – O20

Determination of Radiation Hardness of Silicon Diodes.

Ettore Vittone

Physics Department - University of Torino (I) Italian National Institute for Nuclear Physics

Object of the research

Study of the radiation hardness of a commercially available silicon photo-diode commonly used as a nuclear detector

Tool

Focused MeV Ion beams

to induce the damage

to probe the damage

Radiation damage is the general alteration of the operational properties of a semiconductor devices induced by ionizing radiation

- Displacements. Dislocations of atoms from their normal sites in the lattice, producing less ordered structures, with long term effects on semiconductor properties

Nuclear Instruments and Methods in Physics Research A 426 (1999) 1-15

NFN

Radiation hardness of silicon detectors - a challenge from high-energy physics

G. Lindström*, M. Moll, E. Fretwurst

Instrumentation

Cells

Method and Apparatus for

In Situ Monitoring of Solar

NASA's Glenn Research Center has developed a method and

apparatus for in situ health monitoring of solar cells. The innovation a novel approach to solar cell monitoring, as it is radiation-hard,

consumes few system resources, and uses commercially available components. The system operates at temperatures from -55°C to

A novel approach to solar cell monitoring

FZ Silicon Strip Sensors

 n-in-p (FZ), 300µm, 500V, 23GeV p □ n-in-p (FZ), 300µm, 500V, neutrons n-in-p (FZ), 300µm, 500V, 26MeV p n-in-p (FZ), 300µm, 800V, 23GeV p n-in-p (FZ), 300µm, 800V, neutrons n-in-p (FZ), 300um, 800V, 26MeV p o n-in-p (FZ), 300µm, 1700V, neutrons p-in-n (FZ), 300µm, 500V, 23GeV p △ p-in-n (FZ), 300µm, 500V, neutrons

RD50 - Radiation hard semiconductor devices for very high luminosity colliders

National Aeronautics and Space Administration

APPLICATIONS

The technology has several potential applications:

- Solar cell monitoring for manned and 0 unmanned spacecraft
- Diagnostics for terrestrial solar power 0 generation systems

PUBLICATIONS

Patent No: 8,159,238; 9,419,558

Patent Pending

10 contributions mentioning STIM Facilities & Techniques 6 contributions mentioning IBIC

Biomedical Applications Detectors **Quantum Devices**

8 contributions mentioning STIM

13 contributions mentioning STIM

15 contributions mentioning STIM

Credit: Milko Jaksic

(mul)

300

200

300

Channel

First order: proportionality, independent of the particle, between the damage factor and the particle NIEL

NIEL approach:

measurement of K_{ed} only for one particle (at one specific energy)

K_{ed} can be estimated for all the particles and energies

US Naval Research Laboratory (NRL)

Displacement Damage Dose Method

Characteristic Curve

Characteristic curve is independent of particle

•Calculated NIEL gives energy dependence of damage coefficients

S. Messenger, SPENVIS Workshop 2005

CNMIA 2018 11 July 2018, Guilford; E. Vittone

to induce the damage

to probe the damage

DIB damaging ion beam

E. Vittone

PIB probing ion beam

ICNMTA 2018 11 July 2018, Guilford; E. Vittone

10

Physical Observable Charge Collection Efficiency Focused MeV Ion beams

to induce the damage

to probe the damage

S1223 @ 50V (d120423r1029)

DIB damaging ion beam

PIB probing ion beam

to induce the damage

to probe the damage

DIB = 2.15 MeV Lidamaging ion beam

PIB = 1.4 MeV Heprobing ion beam

N F N

Damaging Ion Mass/Energy Fluence

CCE DEGRADATION

13

Damaging Ion Mass/Energy Fluence

Electrostatics

NFN

E. Vittone

Damaging Ion Mass/Energy Fluence

Probing lon Mass/Energy

CCE DEGRADATION

Electrostatics

16

IAEA Coordinate Research Programme (CRP) F11016 (2011-2015)

"Utilization of ion accelerators for studying and modeling of

radiation induced defects in semiconductors and insulators"

CRP Outcome

A methodology to establish material parameters which reflect semiconductor radiation hardness by their ability to predict CCE degradation as a function of accumulated structural radiation damage.

Commercially available p-i-n photodiode

Electrical characterization

Doping profile: Spreding Resistance

ICNMTA 2018 11 July 2018, Guilford; E. Vittone

. Vittone, A. Simor

Commercially available p-i-n photodiode

Device Modeling Electrostatics

Commercially available p-i-n photodiode

Device Modeling Transport

Commercially available p-i-n photodiode

E. Vittor

Device Modeling Validation

Commercially available p-i-n photodiode

Device Modeling Depletion Layer width

CNMTA 2018 11 July 2018, Guilford; E. Vittor

Commercially available p-i-n photodiode

Dead layer ARIBIC

ICNMTA 2018 11 July 2018, Guilford; E. Vittone

E. Vittone, A. Simon

Commercially available p-i-n photodiode

Effective thickness in Si $t^*=180 \text{ nm}$ RBS = 110 nm of SiO₂

Commercially available p-i-n photodiode

Inducing the damage Ion microbeams **Different ion mass/energy** Spot size < 3 µm QUADRUPOLE DOUBLE FOCUSING LENS 8 X Y CHARGE

ICNMTA 2018 11 July 2018, Guilford; E. Vittone

. Vittone, A. Simon

DIB=11.25 MeV He

500 µm

Commercially available p-i-n photodiode

Inducing the damage

Commercially available p-i-n photodiode

Probing the damage

ICNMTA 2018 11 July 2018, Guilford; E. Vittone

Commercially available p-i-n photodiode

Probing the damage

Commercially available p-i-n photodiode

E. Vittor

Probing the damage CCE at different bias from different PIBs

Model for charge pulse formation (IBIC theory)

based on the Shockley-Ramo-Gunn theorem

Model for CCE degradation Based on theShockley-Read-Hall model

Basic assumption:

- 1) In the linear regime, the ion induced damage affects mainly the carrier lifetime τ
- 2) The ion induced trap density is proportional to the VACANCY DENSITY

ICNMTA 2018 11 July 2018, Guilford; E. Vittone

E. Vittone, A. Simon

E. Vittone

Residual map

α_n Recombination Coefficient Free parameter

$$Q_{s} = q \cdot \int_{0}^{d} dx \cdot \Gamma(x) \left\{ \int_{x}^{d} dy \cdot \frac{\partial F(y)}{\partial V_{s}} \cdot \exp\left[-\int_{x}^{y} dz \frac{1}{V_{n}} \cdot \left(\frac{1}{\tau_{0}} + \alpha_{n} \cdot Vac(x) \cdot \Phi \right) \right] \right\}$$

NFN

Residual map

α_n, α_p Recombination Coefficients Free parameters

$$Q_{s} = q \cdot \int_{0}^{d} dx \cdot \Gamma(x) \begin{cases} \int_{0}^{x} dy \cdot \frac{\partial F(y)}{\partial V_{s}} \cdot exp \left[-\int_{y}^{x} dz \frac{1}{v_{p}} \cdot \left(\frac{1}{\tau_{0}} + \alpha_{p} \cdot Vac(x) \cdot \Phi \right) \right] + \left[\int_{0}^{d} dy \cdot \frac{\partial F(y)}{\partial V_{s}} \cdot exp \left[-\int_{x}^{y} dz \frac{1}{v_{n}} \cdot \left(\frac{1}{\tau_{0}} + \alpha_{n} \cdot Vac(x) \cdot \Phi \right) \right] + \left[\int_{0}^{d} dy \cdot \frac{\partial F(y)}{\partial V_{s}} \cdot exp \left[-\int_{x}^{y} dz \frac{1}{v_{n}} \cdot \left(\frac{1}{\tau_{0}} + \alpha_{n} \cdot Vac(x) \cdot \Phi \right) \right] \right] \end{cases}$$

INFN

Long range PIB

PIB=11.25 MeV He

ICNMTA 2018 11 July 2018, Guilford; E. Vittone

The solid lines are the **best fits** obtained by means of our model considering

- Different PIBs
- Different biases (50 V, 100 V)

NFN

N-type silicon DLTS measurements singly V2(-/0) negatively charged divacancy

 $σ_n ≈ 5 \cdot 10^{-15} cm^2$ $α_n ≈ 1520 \cdot 10^{-12} cm^3/s$ $v_{th} ≈ 2.05 \cdot 10^7 cm/s$

about 60 radiation induced vacancies are required to form one stable electron recombination centre.

ICNMTA 2018 11 July 2018, Guilford; E. Vittone

E. Vittone, A. Simor

Basic Hypotheses

DIB : low level of damage

$$\frac{1}{\tau_{e,h}} = \frac{1}{\tau_{0,e,h}} + \alpha_{n,p} \cdot \operatorname{Vac}(x) \cdot \Phi = \frac{1}{\tau_{0,e,h}} + \left(\sigma_{e,h} \cdot v_{th}\right) \cdot \operatorname{Vac}(x) \cdot \Phi$$

"linear model" Independent traps, no clusters

Unperturbed electrostatics (i.e. doping profile) of the device

PIB : ion probe CCE is the sum of the individual e/h contributions

No plasma effects induced by probing ions

Recombination coefficient: $\alpha = k \cdot \sigma \cdot v_{th}$

Ref.	Diode	PIBs	DIBs	Max Fluence (μm ⁻²)	α _e (μm³/s)	α _h (μm³/s)
[2]	Hamamatsu S5821	1.4 MeV He	1.4 MeV He 2.15 MeV Li 4.0 MeV O 11.0 MeV CI	5000 2000 500 200	8800±1200	
[3]	Hamamatsu S5821*	1.036 MeV He	1.036 MeV He 2 MeV He	4000	10270±260	23500±2800
[1]	n.type Si PIN diode from Helsinki University	2 MeV He 2 MeV H 8 MeV He 12 MeV He 4.5 MeV H	4 MeV He 8 MeV He	20000	2500±300	210±160
[1]	p.type Si PIN diode from Helsinki University	2 MeV He 2 MeV H 8 MeV He 12 MeV He 4.5 MeV H	4 MeV He 8 MeV He	20000	2200±300	1310±90
[4]	Hamamatsu S1223	1.4 MeV He 2.3 MeV H 11.25 MeV He	11.25 MeV He	30000	1520±130	8300±800

[1] E. Vittone et al. Nuclear Instr. and Methods in Physics Research B 372 (2016) 128-142

[2] Ž. Pastuović et al. Applied Physics Letters 98, 092101 (2011)

[3] J. Garcia et al. Unpublished [4] This work

ICNMTA 2018 11 July 2018, Guilford; E. Vittone

CONCLUSIONS

The IAEA methodology has been used to study the radiation hardness of a commercially available silicon p-i-n diode This methodology contribute towards a standardized quantification of radiation hardness of semiconductor materials.

The capture coefficient is directly related to the radiation hardness of the material

E. Vittone, Z. Pastuovic, M.B.H. Breese, J. Garcia Lopez, M. Jaksic, J. Raisanen, R. Siegele, A. Simon, G. Vizkelethy, "Charge collection efficiency degradation induced by MeV ions in semiconductor devices: Model and experiment ",

Nuclear Instr. and Meth. in Phys. Res. B 372 (2016) 128–142

IAEA SCIENTIFIC/TECHNICAL DOCUMENT

PROTOCOL FOR DETERMINATION OF

STANDARDIZED SEMICONDUCTOR RADIATION HARDNESS PARAMETERS

Submitted in 2018

IAEA Coordinate Research Programme (CRP) F11016 (2011-2015)

"Utilization of ion accelerators for studying and modeling of radiation induced defects in semiconductors and insulators"

M. JAKSIC, N. SKUKAN

J. GARCIA LOPEZ , C. JIMENEZ RAMOS

E. VITTONE

GINSTO Z. PASTUOVIC, R. SIEGELE

E. Vittone, Z. Pastuovic, M.B.H. Breese, J. Garcia Lopez, M. Jaksic, J. Raisanen, R. Siegele, A. Simon, G. Vizkelethy,

"Charge collection efficiency degradation induced by MeV ions in semiconductor devices: Model and experiment ",

Nuclear Instr. and Meth. in Phys. Res. B 372 (2016) 128–142

PROTOCOL FOR DETERMINATION OF

STANDARDIZED SEMICONDUCTOR RADIATION HARDNESS PARAMETERS Submitted in 2018