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Theory of the Ion Beam Induced Charge 
Technique (IBIC).

 From nuclear spectroscopy to material analysis
 Principles of IBIC
 From spectroscopy to microspectroscopy
 Basic equations
 Validation of the theory
 Charge sharing
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IBIC for the
functional characterization of 

semiconductor materials and devices

Measurement of the their electronic properties and performances

Main physical observable: current
Current = F(carrier density; carrier transport)

Free carriers (electron/hole) transport
Two mechanisms:  
Drift  electric field v=μ·E
Diffusion  concentration gradient

Carrier generation by MeV ions
Generation profile
Recombination/trapping
Carrier lifetime 
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Principles of radiation detection techniques
Deposited Energy
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IBIC principles
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IBIC principles

Transport)Carrier  Free Energy,  Deposited(FVout 
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Electrode energy loss very small  ( 1%)
SRIM (Stopping and Range of Ion in Matter)

Using MeV ions to probe 

the electronic features of semiconductors

analysis through 
thick surface layers
charge pulses 
height spectra 
almost independent 
on topography .
profiling

long range 

low lateral 
scattering

a wide choice of ion 
ranges and electronic 
energy losses
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IBIC principles

Transport)Carrier  Free Energy,  Deposited(FVout 
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Electron/Hole pair 
generation eh

ion
eh

EN




A. Lo Giudice et al. Applied Physics Letters 87, 22210 (2005) 

1 MeV ion in 
diamond generates 
about 77000 e/h 
pairs
Each high energy ion 
creates large numbers of 
charge carriers to be 
measured above the 
noise level.

εeh=average 
energy expended 
by the primary ion 
to produce one 
electron/hole pair
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IBIC principles
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J.R. Haynes, W. Shockley, 

“The mobility and life of injecting holes and electrons in germanium,

Phys. Rev. 81, (1951), 835-843.
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C. Canali et al., Nucl. Instr. 
Meth. 160 (1979) 73-77

400 m thick natural diamond, 
biased at 40 V @ RT

P-doped Ge;
resistivity about 15 Ω·cm; 
dielectric constant =1.4pF/cm; 
Dielectric relaxation time = 21 ps.
Charge neutrality maintained

IIa diamond; 
resistivity about 1015 Ω·cm; 
dielectric constant =0.5 pF/cm; 
Dielectric relaxation time = 500 s.
Charge neutrality not maintained

J.R. Haynes, W. Shockley, 
Phys. Rev. 81, (1951), 835-843.
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IBIC principles
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Physical Observable:
Induced current/charge

Vbias

Vout

Q0

d
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Physical Observable:
Induced current/charge

Vbias

Vout

q

d
xqQ 

Q0+Q

d
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Vbias

Vout

Physical Observable:
Induced current/charge

W. Shockley, J. Appl. Phys. 9 (1938) 635.

S. Ramo, Proc. I.R.E. 27 (1939)  584.

d
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d
vq)t(I 


T

0

dt)t(I)t(Q

Constant 
velocity v
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C. Canali et al., Nucl. Instr. Meth. 160 
(1979) 73-77

400 m thick natural diamond, 

biased at 40 V @ RT

IIa diamond; resistivity about 1015 Ω·cm; dielectric constant 
=0.5 pF/cm; Dielectric relaxation time = 500 s.

Charge neutrality not maintained
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C. Canali, E. Gatti, S.F. Koslov, P.F. 
Manfredi, C. Manfredotti, F. Nava, A. 

Quirini
Nucl. Instr. Meth. 160 (1979) 73-77

400 m thick natural diamond, 

biased at 40 V @ RT

Electrons: 

Drift velocity;   v dTR

Mobility;   d2/(TR *VBias)

Characterization of the transport 
properties in diamond
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d
vq)t(I 

Shockley-Ramo Theorem

Induced current

Ev 
The current is induced by 
the motion of charges in 

presence of an electric field
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Si-face

Starting Material: 360 m n-type 4H-SiC by CREE (USA)
Epitaxial layer from Institute of Crystal Growth (IKZ), Berlin, Germany
Devices from Alenia Marconi System

4H-SiC Schottky diode

1.5 MeV H+

C
C

E

2 MeV H+

0 20 40 60 80 100120140
0,0
0,2
0,4
0,6
0,8
1,0

Applied Bias Voltage (V)

1.5 or 2.0

MeV H+

CCE=Charge Collection Efficiency
=

(Charge collected)/(Charge generated)
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50 m thick N-type epitaxial 4H-SiC layerSchottky electrode
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Generation of electrons and holes in the

Depletion Region Neutral Region
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Frontal ion 
Irradiation
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Frontal ion 
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Frontal ion 
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Frontal ion 
Irradiation
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Lp=(9.0±0.3) m

Dp = 3 cm2/s

p = 270 ns

minority carrier 

diffusion length

1.5 MeV
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width
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The fitting procedure provides a trapping level of about 

0.163 eV which is close to the value found in similar 

4H SiC Schottky diodes by DLTS technique (S1 level).

E. Vittone et al., NIM-B 231 (2005) 491.

Temperature dependent IBIC (TIBIC)
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Time resolved IBIC (TRIBIC)
Silicon Power diode Mesa Rectifier
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Time resolved IBIC (TRIBIC)
Silicon Power diode Mesa Rectifier

lifetime 

0 = (5  1) s
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From Spectroscopy to micro-spectroscopy

Use of focused ion beams
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20 m

20 m

Electrons
10 keV
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40 keV

2 MeV H+ in Si 3 MeV H+ in Si

4 MeV H+ in Si

2 m

4 m

6 m

47 m 90 m 147 m
Trajectories

One advantage of IBIC over other forms of charge collection microscopy is that 
it provides high spatial resolution analysis in thick layers since the focused 
MeV ion beam tends to stay ‘focused’ through many micrometers of material.
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M.B.H.Breese et al. NIM-B 181 (2001), 219-224; P.Sellin et al. NIM-B 260 (2007), 293-294
Intra-crystallite charge transport

Single grain IBIC line scan
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GaAs Schottky diode
Frontal IBIC
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E. Vittone et al., Nuclear instruments and Methods in Physics 
Research B 158 (1999) 470-47 
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ANGLE RESOLVED IBIC (ARIBIC)
2 MeV proton beam

L=(9.9±0.8) m

Dead layer energy loss of 
235 keV at =0°. 

A. Lo Giudice et al. Nuclear Instruments and Methods in Physics
Research B 249 (2006) 213–216
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Ion Microbeam Facility of Ruder 
Boskovich Institute, Zagreb (HR)
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C. Manfredotti et al., Nuclear instruments and Methods in Physics
Research B 158 (1999) 476-480
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Gunn’s theorem 

Pulse shapes calculation

V
-qI
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
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Ev

Shockley-Ramo theorem 

d
1-qI  v

Weighting field

Gunn theorem 
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dt
drv Equation of motion:

Weighting potential:
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The induced charge Q 
into the sensing electrode
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V

-qI EvEv 

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is given by the difference in the weighting potentials between any 
two positions (rA and rB) of the moving charge

Weighting field

Induced current into the sensing electrode
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To evaluate the total induced charge

Magnetic effects are negligible; 

Electric field propagates instantaneously

Free carrier velocities much smaller than 
the light speed

Excess charge does not significantly 
perturb the electric field

 equation   sPoisson’      thesolvingby   
    potential    actual      theEvaluate 

equations y)(continuit
rt    transpo   theSolve

electrode sensitive at the potential bias  theis V
V

potential weightingsGunn'      theEvaluate
















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

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
AB rr VV

qQ
The induced charge Q into the sensing electrode is 
given by the difference in the weighting potentials 
between any two positions (rA and rB) of the moving 
charge
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Basic assumptions
Magnetic effects are negligible; 

Electric field propagates instantaneously
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speed

Excess charge does not
significantly perturb the
field within the detector

    )n,p(

   UGJ
t
p

      UGJ
t
n

ppp

nnn


























  )n,p( 

pGJ
t
p 

     nGJ
t
n

p
pp

n
nn





















Linearization of U

Quasi-steady-state mode

ELECTROSTATICS



Trieste 
14.08.2012

Joint ICTP-IAEA Workshop on Physics of Radiation Effect and its 
Simulation for Non-Metallic Condensed Matter

57

Basic formalism
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Formalism based on the Gunn’s theorem
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The continuity equation 
involves linear operators

The charge induced from 
electrons can be evaluated by 
solving a single, time 
dependent adjoint equation.
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T.H.Prettyman, Nucl. Instr. and Meth. in Phys. Res.  A 422 (1999) 232-237.

Short-cutAdjoint equation Method
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Monte Carlo Method
Shockley-Ramo-Gunn Theory
A charge moving in a non-zero electric field induces a current to 
the sensitive electrode.
∂ψ/∂V is the Gunn’s weighting potential, where ψ is the electric 
potential and V the bias voltage

Short-cut

Follow the carrier trajectories by a Monte Carlo approach
Taking into account
physical parameters (geometry, electric field, transport properties)
experimental set-up (noise, threshold, beam spot size)

P. Olivero et al., Nucl. Instr. Meth. B 269 (2011) 2350
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 Diamond Schottky diode structure:
 homoepitaxial growth on HPHT

substrates
 (type Ib, 440.4 mm3) slightly B

doped (Acceptor concentration 
1013-1014 cm-3)

 heavily B-doped buffer layer as
back contact (Acceptor
concentration  1018-1019 cm-3)

 25 μm thick intrinsic layer as
active volume

 Schottky contact: frontal Al circular
contact ( = 2 mm, 200 nm thick) on
intrinsic layer

 back contact on B-doped layer  ohmic
contact

 sample cleaved in order to expose its
cross section for IBIC characterization

S. Almaviva et al. “Synthetic single crystal diamond dosimeters for conformal radiation therapy
application”, Diamond & Related Materials 19 (2010) 217–220

ideality factor: n = (1.51 0.04)
series resistance: Rs = (5.1  1.6) kΩ

 back B-doped contact
shunt resistance: Rsh = (900  6) GΩ
@ 50 V -> I<50 pA

Lateral IBIC of a diamond Schottky diode
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 ion species and energy: H+ @ 2 MeV
 ion current:  103 ions s-1  no pile up

or charging effects
 ion beam spot on the sample:

FWHM = 3 μm
 raster-scanned area: S = 6262 μm2

charge sensitive electronic chain 
and synchronous signal 

acquistition with microbeam 
scanning

Lateral IBIC measurements performed at the ion 
microbeam line of the AN2000 accelerator of the 

National Laboratories of Legnaro (LNL-INFN)
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Plateaux:
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A. Lo Giudice et al, Physica Status Solidi Rapid Research Letters 5 (2011) 80-82
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CHARGE SHARING IN MULTIELECTRODE DEVICES
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The induced charge Q at the sensing electrode is given by the 
difference in the weighting potentials between any two positions 
(rA and rB) of the moving charge

Actual potential Weighting potential
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Actual potential Weighting potential

Sensitive electrode
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Sensitive electrode
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Sensitive electrode
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IBIC map
1.5 MeV H+

Electrostatic
Potential map

Vbias=100V

E.Vittone et al. Nuclear Instruments and Methods in Physics
Research B 266 (2008) 1312–1318.
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Weighting potential maps
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Calculated CCE maps
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CCE profile details
hole diffusion length = 8.7 m. 
hole lifetime = p = 250 ns
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2 MeV He+

CCE AS FUNCTION OF 
ION STRIKE POSITION
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2 MeV He+

ION STRIKE POSITION
AS FUNCTION OF CCE

POSITION SENSITIVE 
DETECTOR
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A SUB-MICROMETER POSITION 
SENSITIVE DETECTOR

J. Forneris et al. 
Modeling of ion beam induced charge sharing 
experiments for the design of high resolution 
position sensitive detectors, Submitted to NIMB

2 MeV He beam @ NEC 5U 
Pelletron, Melbourne
1 m spot size

400 nm resolution
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IBIC
(Ion Beam Induced Charge Collection)

 Control of in-depth generation profile 

 Suitable for finished devices (bulk analysis).

 Micrometer resolution

 CCE profiles: Active layer extension; Diffusion length

 Robust theory; FEM and MC approaches

 Analysis of multi-electrode devices

 In-situ analysis of radiation damage

Analytical technique suitable for the measurement of transport properties in 
semiconductor materials and devices
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