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Radiation damage is the general alteration of the operational properties of
a semiconductor devices induced by ionizing radiation

Three main types of effects:

- Transient ionization. This effect produces electron-hole pairs; particle
detection with semiconductors is based on this effect.

-Long term ionization. In insulators, the material does not return to its initial
state, If the electrons and holes produced are fixed, and charged regions
are induced.

- Displacements. These are dislocations of atoms from their normal sites in
the lattice, producing less ordered structures, with long term effects on
semiconductor properties.

Ll{ V.A.J. van Lint, The physics of radiation damage i |n particle detectors, Nucl. Instrum. Meth. A253 (1987) 453.




Transient ionization.
This effect produces electron-hole pairs;
particle detection with semiconductors is based on

this effect. (IBIC)
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-Long term ionization. In insulators, the material does not
return to its initial state, if the electrons and holes produced are

fixed, and charged regions are induced.
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» Parametric shifts in transistors parameters due
to the build-up of trapped positive charge and
interface states caused by several low-LET
particles striking a chip

» Total lonizing Dose affects dielectric layers (e.g.,
gate oxide, isolation oxides)
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Fig. 1. Threshold voltage (V) characteristics of a MOSFET (200 V)
under a dose rate of 9.55 rad/s.
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- Displacements. These are dislocations of atoms from their normal
sites In the lattice, producing less ordered structures, with long term
effects on semiconductor properties
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M. Bruzzi, M. Moll, RD50, 2010
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Trap density in
pristine material

Trap density induced
by radiation
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Modeling radiation degradation in solar cells extends satellite lifetime
Robert J. Walters, Scott Messenger, Cory Cress, Maria Gonzalez and Serguei Maximenko
A physics-based model of the effect of radiation on the performance of solar cells in

space may enhance the on-orbit lifetime of Earth-orbiting spacecratft.
3 January 2011, SPIE Newsroom. DOI: 10.1117/2.1201012.003417

-- Space environment-> wide
Ancpaugh 1990 spectrum of ions (protons)
- and electrons.
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Figure 2.Measured degradation pf a single junction gaHh{m arsenide (GaAs)
solar cell under proton, electron 2and neutron irradiation.2 These data can be
used to empirically determine the energy dependence of the solar-cell

degradation thereby enabling on-orbit performance prediction. Py, zy-
Maximum power.
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the radiation damage is linear proportional to the non-ionizing
energy loss of the penetrating particles (radiation) and this energy
loss is again linear proportional to the energy used to dislocate
lattice atoms (displacement energy).
Final concentration of defects depends only on NIEL and not on the
type an initial energy of the particle.
Number of displacements (I-V pairs) is proportional to PKA energy
(Kinchin-Pease: N=T/2TD; T: PKA energy; TD: threshold energy to
create a Frenkel pair).

Displacement damage dose :

dd
D, :INIEL(E)-d—EdE

UNITS:

NIEL:(Energy per unit length)/(material density):keV-cm2/g

(in high energy physics the displacement damage cross section (D)
In MeV-mb is usually used)

Dd : Energy per unit mass:keV/g

NI Mo Ml VN WU 6]y (G.P. Summers et al., IEEE Trans. Nucl. Sci., Vol. 40, pp. 1372, 1993
Simulation for €



How to calculate NIEL from SRIM 10 MeV H+in
Si 100 um thick

. Run SRIM and evalutate the total number of
vacancy/ion W
. Evaluate the energy required to create a vacancy Ed=20 eV
M using the modified Kinchin-Pease relationship: M=52 eV/vac
the term 2 is due to the binding energy loss that
‘-

W=4.7 Vac/ion/um

SRIM assign to each vacancy
Ed is the displacement energy
3. Lis the device length and p is the mass density

5+2jeV
0.8

p =2.3 g/lcm?
L=100 pm

S. R. Messenger et al., Using SRIM to Calculate the Relative Damage
Coefficients for Solar Cells, Prog. Photovolt: Res. Appl. 2005; 13:115—
123
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If Y Is the physical observable (e.g. conductivity, maximum output
power for solar cells, Charge Collection Efficiency (CCE) In
radiation detectors), which characterizes a tested device
subjected to radiation damage, its degradation can be modelled
by the following phenomenological relationship:

Device characteristic after irradiation

Equivalent
damage
factor

Displacement
dose

Particle
Device characteristic Fluence

before irradiation
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Samples

Starting Material: 360 um n-type 4H-SiC by CREE (USA)
Epitaxial layer from Institute of Crystal Growth (IKZ), Berlin, Germany
Devices from Alenia Marconi System

Circular Schottky contact
(100 nm Ni, 100 nm Au)
B=5mmord=3mm Air-bridge

Guard I’iQA o (electroplated Au, 3 um)

— Si—face

Ohmic contact, Ti/Pt/Au
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EXPERIMENTAL PROCEDURE:

Nuclear microprobe facility @ Ruder Boskovic¢ Institute (Zagreb)

Irradiation of an area of 5400 um? by 2 MeV and 1.5 MeV
protons.

Final Fluence:

1.2x106 protons/ (68x79)um?~ 2x10'? protons/cm?
Applied bias voltage =20V, 40 V,60 V,...120 V

Event by event data acquisition mode.

Trieste Joint ICTP-IAEA Workshop on Physics of Radiation Effect and its
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2 MeV protons, Applied Bias Voltage =20 V
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For each scan (about 102 ions/cm?),

pulse height spectra are recorded
—

The median pulse height is evaluated
as a function of ion fluence

CELIC
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(68x79) um? ,, IBIC map

15.08.2012

2 MeV/ protons, Applied Bias Voltage =60 V
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2 MeV protons
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1.5 MeV protons
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Lateral IBIC

Protons, 4MeV on SiC

Depletion Region
W (V)

H*, 4 MeV dE =
Scanning Area -
dz —

Range = 100 pm




Numerical Simulations
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Radiation Damage; Frontal IBIC
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Frontal IBIC
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The CCE depends on the ion fluence and on the applied bias voltage



Lateral IBIC
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Frontal IBIC
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The performance degradation depends on
lon mass and energy

*Polarization state

*Free carrier generation profile (ion probe)

Shockley-Read-Hall Model

1
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Displacement dose

Joint ICTP-IAEA Workshop on Physics of Radiation Effect and its
Simulation for Non-Metallic Condensed Matter



TAEA Coordinate Research Programme (CRP) F11016 (2011-2015)
“Utilization of ion accelerators for studying and modeling of
radiation induced defects in semiconductors and insulators”
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radiation induced defects in semiconductors and insulators”

Overall Objective:

Use of ion accelerators for improved understanding of how radiation
Induced defects influence the electronic properties of
semiconductor/insulator materials, leading to better understanding of how
they degrade or improve the performances of devices in extreme and harsh
radiation environments.

Specific Research Objective:

Deeper theoretical knowledge and experimental data on defects created by
light and heavy ions; in terms of their type, density and effect on
fundamental electronic properties of semiconductors and insulators.
Expected Research Outputs:

Definition of an experimental protocol to determine the key parameters for
the characterization of the effects of radiation damage on semiconductor
materials and devices.

Refined theoretical models for defect generation and for modelling their
effect on electronic properties.

Trieste Joint ICTP-IAEA Workshop on Physics of Radiation Effect and its
15.08.2012 Simulation for Non-Metallic Condensed Matter




IAEA Coordinate Research Programme (CRP) F11016 (2011-2015)
Utilization of ion accelerators for studying and modeling of
radiation induced defects in semiconductors and insulators”

Expected Research Outputs:

Definition of an experimental protocol to determine the key
parameters for the characterization of the effects of radiation
damage on semiconductor materials and devices.

Refined theoretical models for defect generation and for modelling

their effect on electronic properties.

Trieste Joint ICTP-IAEA Workshop on Physics of Radiation Effect and its
15.08.2012 Simulation for Non-Metallic Condensed Matter




Definition of an experimental protocol

Hamamatsu
$5821 p-i-n diode

I
& Experimental
protocol

v'Commercial p-i-
n diodes

Z. Pastuovic et al., IEEE Trans on Nucl. Sc. 56 (2009) 2457; AP 01 (2011)
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Hamamatsu
S$5821 p-i-n diode
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IBIC map on a pristine diode
probed with a scanning
1.4 MeV He microbeam:;

Hamamatsu
S$5821 p-i-n diode

Experimental
protocol

Commercial p-i-
n diodes

Electrical
characterization

IBIC map on
pristine sample

Frontal IBIC
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ZOOM in view of the selected area for focused
ion beam irradiation at different fluences ®@
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IBIC map on a pristine diode
probed with a scanning
1.4 MeV He microbeam;

Hamamatsu
S$5821 p-i-n diode
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| | protocol

Commercial p-i-
n diodes
Electrical
i characterization
IBIC map on
pristine sample
Irradiation of 9
regions at
different fluences

Z. Pastuovic et al., IEEE Trans on Nucl. Sc. 56 (2009) 2457; AP 01 (2011)
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ZOOM in view of the selected area for focused
ion beam irradiation at different fluences ®
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IBIC map on a pristine diode
probed with a scanning
1.4 MeV He microbeam;

Hamamatsu
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11 MeV Cl |

2.15 MeV Li
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1.4 MeV He in Si

Normalized lonizing Energy loss (1/um)

Depth (um)
Data from SRIM
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IAEA Coordinate Research Programme (CRP) F11016 (2011-2015)
Utilization of ion accelerators for studying and modeling of
radiation induced defects in semiconductors and insulators”

Expected Research Outputs:

Definition of an experimental protocol to determine the key
parameters for the characterization of the effects of radiation
damage on semiconductor materials and devices.

Refined theoretical models for defect generation and for
modelling their effect on electronic properties.

Trieste Joint ICTP-IAEA Workshop on Physics of Radiation Effect and its
15.08.2012 Simulation for Non-Metallic Condensed Matter
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Fully depleted - Ramo Theorem

(no diffusion)
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Effects of localized recombination centres
Electric field
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Effects of localized recombination centres
Electric field
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Effects of localized recombination centres
Electric field
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Effects of localized recombination centres
Electric field
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Effects of localized recombination centres
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Effects of localized recombination centres
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Shockley-Read-Hall model

lon induced capture cross section
Trap density Of ion induced traps
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trap trap

Thermal velocity
Actual (=107 cm/s)
Carrier Lifetime

Trap density Carrier Lifetime
in pristine material in pristine material

effective capture cross section
In pristine material
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Average number of active trap per vacancy

A

lon induced Vacancy profile
Trap density (from SRIM)
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Shockley-Read-Hall model

Average number of active trap per vacancy
'y

Actual Carrier Lifetime
Carrier Lifetime in pristine material

Vacancy profile Thermal velocity lon fluence
(from SRIM) (107 cm/s)

effective capture cross section
(from DLTS)
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Ramo Theorem
(no diffusion)

Induced charge
from the motion of electrons from the motion of holes

Low damage level
Linearization
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At high bias voltage
Hole contribution negligible
Saturation drift velocity
Semi-analytical expression

CCE(®)=1-k, -G, -t -{Vjvdz {Em (z)-Vac(z)-(l—Vzvﬂ}-cD =1-K. . @,

(Ve)

lon probe energy loss vacancy profile

Weighting potential

®* = Effective Fluence = de -|:~ lon (Z) : VaC(Z) | (1 : j:|
E w
0

K’ = effective damage factor =k, - o, -

Average number of active
trap per vacancy

Average drift
velocity

capture cross section
of ion induced traps
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I.e. 5 vacancy to generate an electrically stable trap in low
doped n-type silicon
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— In the low damage regime

Thedegradatlon of the CCE of a semiconductor detector due to the damage
Induced by ions of different mass and energy can be interpreted on the basis
of a simplified theory of the IBIC technique.

CCE(®)=1-K. - @,

Effective fluence can be numerically calculated from the

X

de. [¢ vacancy and ionization profiles extracted
dxp : IdZ[V(Z) -(d-2)]|{ } from the SRIM code.

Effective damage factor the effective damage factor K* is the
K5 -V slope of the CCE degradation as function
K = ™ =(1.09£0.02)-10™ cm”®. of ®* is proportional to the fraction of the

Ve electrically active trap per vacancy
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K* can be considered an
index that would reliably
g rank the relative radiation
Hanevhe hardness of
semiconductors in order to
1 optimize the selection
Y11 Mev Cl procedure for devices
0 1x10° 2x10° 3x10° 4x10° 5x10’ working in high radiation
Fluence (um?) environment.

| 6 2.15MeV Li

Effective damage factor ~ 1400 keV He
. 2150 keV Li

4000 keV O
x ke ‘O, -Vth 11000 keV ClI

\'

e

K =(1.09+0.02)-10™ cm?.

o : measured from DLTS

vth: thermal velocity

ve=: electron average velocity

ke: average number of trap/vacancy

T T T
5,0x10" 1,0x10™

Effective Fluence ®* (cm™)

Approach more efficient to condense the CCE degradation data into a single curve than
the phenomenological displacement damage dose analysis;
NIEL is valid only in the case of constant vacancy profile.
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radiation induced defects in semiconductors and insulators”

Overall Objective:

Use of ion accelerators for improved understanding of how radiation
Induced defects influence the electronic properties of
semiconductor/insulator materials, leading to better understanding of how
they degrade or improve the performances of devices in extreme and harsh
radiation environments.

Specific Research Objective:

Deeper theoretical knowledge and experimental data on defects created by
light and heavy ions; in terms of their type, density and effect on
fundamental electronic properties of semiconductors and insulators.
Expected Research Outputs:

Definition of an experimental protocol to determine the key parameters for
the characterization of the effects of radiation damage on semiconductor
materials and devices.

Refined theoretical models for defect generation and for modelling their
effect on electronic properties.
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Electrostatics of the
device (TCAD)

Vacancy profille
(from SRIM, MARLOWE; PAS)
Trap cross section
Shockley-Read-Hall
Recombination/trapping
model

Shockley-Ramo-Gunn Theorem

Adjoint equation formalism
Finite element method
Monte Carlo method
Semi-analytical approach in simple cases
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