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Radiation damage is the general alteration of the operational properties of 
a semiconductor devices induced by ionizing radiation
Three main types of effects:
- Transient ionization. This effect produces electron-hole pairs; particle 
detection with semiconductors is based on this effect.
-Long term ionization. In insulators, the material does not return to its initial 
state, if the electrons and holes produced are fixed, and charged regions 
are induced.
- Displacements. These are dislocations of atoms from their normal sites in 
the lattice, producing less ordered structures, with long term effects on 
semiconductor properties.

V.A.J. van Lint, The physics of radiation damage in particle detectors, Nucl. Instrum. Meth. A253 (1987) 453. 
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Transient ionization.
This effect produces electron-hole pairs; 
particle detection with semiconductors is based on 
this effect. (IBIC)
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-Long term ionization. In insulators, the material does not 
return to its initial state, if the electrons and holes produced are 
fixed, and charged regions are induced.

G. Vizkelethy, “radiation effects in microelectronic devices”, Thursday 9-10.30
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http://etrij.etri.re.kr/Cyber/Download/PublishedPaper/2704/S27-04-14.pdf
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- Displacements. These are dislocations of atoms from their normal 
sites in the lattice, producing less ordered structures, with long term 
effects on semiconductor properties

http://holbert.faculty.asu.edu/eee560/RadiationEffectsDamage.pdf
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Nuclear Instruments and Methods in Physics Research A 666 (2012) 25–46

M. Bruzzi, M. Moll, RD50, 2010
http://indico.cern.ch/getFile.py/access?contribId=9&sessionId=2&resI
d=1&materialId=slides&confId=81149
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Figure 3.12.
Indirect generation-recombination processes
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Modeling radiation degradation in solar cells extends satellite lifetime
Robert J. Walters, Scott Messenger, Cory Cress, Maria Gonzalez and Serguei Maximenko

A physics-based model of the effect of radiation on the performance of solar cells in 
space may enhance the on-orbit lifetime of Earth-orbiting spacecraft.

3 January 2011, SPIE Newsroom. DOI: 10.1117/2.1201012.003417

http://spie.org/x43655.xml

Space environment-> wide 
spectrum of ions (protons) 
and electrons.

To understand the 
performance of a solar cell in 
the space radiation 
environment, it is necessary 
to know how cell degradation 
depends on the energy of the 
irradiating particle.
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NIEL hypothesis:
the radiation damage is linear proportional to the non-ionizing 
energy loss of the penetrating  particles (radiation) and this energy 
loss is again linear proportional to the energy used to dislocate 
lattice atoms (displacement energy). 
Final concentration of defects depends only on NIEL and not on the
type an initial energy of the particle.
Number of displacements (I-V pairs) is proportional to PKA energy
(Kinchin-Pease: N=T/2TD; T: PKA energy; TD: threshold energy to
create a Frenkel pair).




 dE
dE
d)E(NIELD

:dose damagent Displaceme

d

UNITS: 
NIEL:(Energy per unit length)/(material density):keV·cm2/g
(in high energy physics the displacement damage cross section (D) 
in MeV·mb is usually used)
Dd : Energy per unit mass:keV/g
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How to calculate NIEL from SRIM

1. Run SRIM and evalutate the total number of 
vacancy/ion W

2. Evaluate the energy required to create a vacancy 
M using the modified Kinchin-Pease relationship:
the term 2 is due to the binding energy loss that 
SRIM assign to each vacancy
Ed is the displacement energy

3. L is the device length and  is the mass density

10 MeV H+ in 
Si 100 m thick

W=4.7 Vac/ion/m

eV
.

EM d 





  2

80

Ed=20 eV
M=52 eV/vac

 =2.3 g/cm3

L=100 m

S. R. Messenger et al., Using SRIM to Calculate the Relative Damage 
Coefficients for Solar Cells, Prog. Photovolt: Res. Appl. 2005; 13:115–
123

R
VacMNIEL Tot



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If Y is the physical observable (e.g. conductivity, maximum output 
power for solar cells, Charge Collection Efficiency (CCE) in 
radiation detectors), which characterizes a tested device 
subjected to radiation damage, its degradation can be modelled 
by the following phenomenological relationship:

ded
0

DK1K1
Y
Y



Device characteristic 
before irradiation

Equivalent 
damage 
factor

Particle 
Fluence

Displacement 
dose

Device characteristic after irradiation
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Si-face

Starting Material: 360 m n-type 4H-SiC by CREE (USA)
Epitaxial layer from Institute of Crystal Growth (IKZ), Berlin, Germany

Devices from Alenia Marconi System

Samples
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EXPERIMENTAL PROCEDURE:
Nuclear microprobe facility @ Ruđer Bošković Institute (Zagreb)

Irradiation of an area of 5400 m2 by  2 MeV and 1.5 MeV 
protons.

Final Fluence: 

1.2x106 protons/ (68x79)m2  2x1010 protons/cm2

Applied bias voltage = 20 V, 40 V,60 V,...120 V

Event by event data acquisition mode.
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CONTROL

(68x79) m2 20 V

(650x650) m2 

IBIC map

OFF LINE ANALYSIS

For each scan (about 108 ions/cm2), 
pulse height spectra are recorded 

The median pulse height is evaluated 
as a function of ion fluence
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CONTROL

(68x79) m2 60 V
(650x650) m2 

IBIC map

OFF LINE ANALYSIS

For each scan (about 108 ions/cm2), 
pulse height spectra are recorded 

The median pulse height is evaluated 
as a function of ion fluence
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Lateral IBIC

Depletion Region
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Numerical Simulations
nsp  80

30 V                          50 V                     70 V 

Vb

m,  ,(Lp )3094 
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Radiation Damage; Frontal IBIC

Vb = 10 V

20 MeV 4+C Vout

x

z

y
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Frontal IBIC

C, 20 MeV
Vb = 10 V

C, 20 MeV
Vb = 50 V

The CCE depends on the ion fluence and on the applied bias voltage

2·108 cm-2

6·108 cm-2

2·109 cm-2

6·109 cm-2

2·1010 cm-2
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Shockley-Read-Hall Model
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Displacement dose

Definition of
“radiation hardness”?

The performance degradation depends on
•Ion mass and energy
•Polarization state
•Free carrier generation profile (ion probe)



Trieste 
15.08.2012

Joint ICTP-IAEA Workshop on Physics of Radiation Effect and its 
Simulation for Non-Metallic Condensed Matter

25

COOPERATION AND MUTUAL  UNDERSTANDING LEAD TO  GROWTH AND GLOBAL ENRICHMEN

IAEA

NUS � S��������

Ruđer Bošković –
C������

DU � I����

IAEA Coordinate Research Programme (CRP) F11016 (2011-2015)

“Utilization of  ion accelerators for studying and modeling of  
radiation induced defects in semiconductors and insulators”

ANSTO � A��������

H������� � F������

CNA � S����

JAPAN

MALAYSIA

T���� � I����

S�����

UK
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Overall Objective:
Use of ion accelerators for improved understanding of how radiation 
induced defects influence the electronic properties of 
semiconductor/insulator materials, leading to better understanding of how 
they degrade or improve the performances of devices in extreme and harsh 
radiation environments.
Specific Research Objective:
Deeper theoretical knowledge and experimental data on defects created by 
light and heavy ions; in terms of their type, density and effect on 
fundamental electronic properties of semiconductors and insulators.
Expected Research Outputs:
Definition of an experimental protocol to determine the key parameters for 
the characterization of the effects of radiation damage on semiconductor 
materials and devices.
Refined theoretical models for defect generation and for modelling their 
effect on electronic properties.

IAEA Coordinate Research Programme (CRP) F11016 (2011-2015)

“Utilization of  ion accelerators for studying and modeling of  
radiation induced defects in semiconductors and insulators”
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IAEA Coordinate Research Programme (CRP) F11016 (2011-2015)

“Utilization of  ion accelerators for studying and modeling of  
radiation induced defects in semiconductors and insulators”

Expected Research Outputs:
Definition of an experimental protocol to determine the key 
parameters for the characterization of the effects of radiation 
damage on semiconductor materials and devices.
Refined theoretical models for defect generation and for modelling 
their effect on electronic properties.
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Hamamatsu 
S5821 p-i-n diode

Experimental 
protocol

Commercial p-i-
n diodes

Z. Pastuovic et al., IEEE Trans on Nucl. Sc.  56 (2009) 2457; APL (98) 092101 (2011) 

Definition of an experimental protocol
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Commercial p-i-
n diodes
Electrical 
characterization

Hamamatsu 
S5821 p-i-n diode
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Experimental 
protocol

Z. Pastuovic et al., IEEE Trans on Nucl. Sc.  56 (2009) 2457; APL (98) 092101 (2011) 
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IBIC map on a pristine diode 
probed with a scanning 
1.4 MeV He microbeam;

Hamamatsu 
S5821 p-i-n diode

Uniform CCE map

Commercial p-i-
n diodes
Electrical 
characterization
IBIC map on 
pristine sample

Experimental 
protocol

Z. Pastuovic et al., IEEE Trans on Nucl. Sc.  56 (2009) 2457; APL (98) 092101 (2011) 
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IBIC map on a pristine diode 
probed with a scanning 
1.4 MeV He microbeam;

Hamamatsu 
S5821 p-i-n diode

500 m

100 m

ZOOM in view of the selected area for focused 
ion beam irradiation at different fluences 

1 2

4 5

7 8

3

6

9

Commercial p-i-
n diodes
Electrical 
characterization
IBIC map on 
pristine sample
Irradiation of 9 
regions at 
different fluences

Experimental 
protocol

Z. Pastuovic et al., IEEE Trans on Nucl. Sc.  56 (2009) 2457; APL (98) 092101 (2011) 
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IBIC map on a pristine diode 
probed with a scanning 
1.4 MeV He microbeam;

Hamamatsu 
S5821 p-i-n diode

500 m

100 m

ZOOM in view of the selected area for focused 
ion beam irradiation at different fluences 

1 2

4 5

7 8

3

6

9

a measured 2D distribution 
of the IBIC signal amplitude 
after irradiation

Commercial p-i-
n diodes
Electrical 
characterization
IBIC map on 
pristine sample
Irradiatoin of 9 
regions at 
different fluences
IBIC map of 
irradiated regions

Experimental 
protocol

Z. Pastuovic et al., IEEE Trans on Nucl. Sc.  56 (2009) 2457; APL (98) 092101 (2011) 
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IBIC map on a pristine diode 
probed with a scanning 
1.4 MeV He microbeam;

Hamamatsu 
S5821 p-i-n diode
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Experimental 
protocol

Z. Pastuovic et al., IEEE Trans on Nucl. Sc.  56 (2009) 2457; APL (98) 092101 (2011) 
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IAEA Coordinate Research Programme (CRP) F11016 (2011-2015)

“Utilization of  ion accelerators for studying and modeling of  
radiation induced defects in semiconductors and insulators”

Expected Research Outputs:
Definition of an experimental protocol to determine the key 
parameters for the characterization of the effects of radiation 
damage on semiconductor materials and devices.
Refined theoretical models for defect generation and for 
modelling their effect on electronic properties.
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Shockley-Read-Hall model
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Shockley-Read-Hall model

Average number of active trap per vacancy

)x(Vack)x('N 

Ion induced 
Trap density

Vacancy profile
(from SRIM)

th
''

trap
0

vN11









Trieste 
15.08.2012

Joint ICTP-IAEA Workshop on Physics of Radiation Effect and its 
Simulation for Non-Metallic Condensed Matter

48

 
 xv)x(Vack1

x),x(
0th

0






Shockley-Read-Hall model

Actual
Carrier Lifetime

Carrier Lifetime 
in pristine material

Vacancy profile
(from SRIM)

effective capture cross section
(from DLTS)

Thermal velocity
(107 cm/s)

Ion fluence

Average number of active trap per vacancy



Trieste 
15.08.2012

Joint ICTP-IAEA Workshop on Physics of Radiation Effect and its 
Simulation for Non-Metallic Condensed Matter

49

0 1 2 3 4 5 6 7
0.0

0.1

0.2

0.3

 Depth (m)

N
or

m
al

iz
ed

 Io
ni

zi
ng

 E
ne

rg
y 

lo
ss

 (1
/

m
)

Data from SRIM

1.4 MeV He in Si

0 1 2 3 4 5 6 7
100

101

102

103

104

1.4 MeV He

2.15 MeV Li

11 MeV Cl

Depth (m)

 V
ac

an
cy

/Io
n/
m

4 MeV O

W
ei

gh
tin

g
W

ei
gh

tin
g

po
te

nt
ia

l
po

te
nt

ia
l

Vw 


11

00 DepthDepthxx00

Traps

ElectricElectric fieldfield

h+ e-



Trieste 
15.08.2012

Joint ICTP-IAEA Workshop on Physics of Radiation Effect and its 
Simulation for Non-Metallic Condensed Matter

50
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DLTS measurements
singly V2(−/0) negatively charged divacanc

σe≈5·10-15 cm2

.cm 0.02)·10 (1.09 215-* 
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
e

thee

v
vkK 

ke ≈0.2
i.e. 5 vacancy to generate an electrically stable trap in low 

doped n-type silicon 

The K* value is independent from the type and energy of the 
damaging and probing ions and is attributable only to the 

intrinsic radiation hardness of the material
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In the low damage regime
The degradation of the CCE of a semiconductor detector due to the damage 
induced by ions of different mass and energy can be interpreted on the basis 
of a simplified theory of the IBIC technique.
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can be numerically calculated from the 
vacancy and ionization profiles extracted 
from the SRIM code.
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the effective damage factor K* is the 
slope of the CCE degradation as function 
of * is proportional to the fraction of the 
electrically active trap per vacancy
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σ : measured from DLTS
vth: thermal velocity
ve=: electron average velocity
ke: average number of trap/vacancy

K* can be considered an 
index that would reliably 
rank the relative radiation 
hardness of 
semiconductors in order to 
optimize the selection 
procedure for devices 
working in high radiation 
environment.

Approach more efficient to condense the CCE degradation data into a single curve than 
the phenomenological displacement damage dose analysis; 
NIEL is valid only in the case of constant vacancy profile. 
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Overall Objective:
Use of ion accelerators for improved understanding of how radiation 
induced defects influence the electronic properties of 
semiconductor/insulator materials, leading to better understanding of how 
they degrade or improve the performances of devices in extreme and harsh 
radiation environments.
Specific Research Objective:
Deeper theoretical knowledge and experimental data on defects created by 
light and heavy ions; in terms of their type, density and effect on 
fundamental electronic properties of semiconductors and insulators.
Expected Research Outputs:
Definition of an experimental protocol to determine the key parameters for 
the characterization of the effects of radiation damage on semiconductor 
materials and devices.
Refined theoretical models for defect generation and for modelling their 
effect on electronic properties.

IAEA Coordinate Research Programme (CRP) F11016 (2011-2015)

“Utilization of  ion accelerators for studying and modeling of  
radiation induced defects in semiconductors and insulators”
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Low Level of damage

Shockley-Read-Hall 
Recombination/trapping 
model

Vacancy profille 
(from SRIM, MARLOWE; PAS)

Electrostatics of the 
device (TCAD)

Trap cross section

Trap/vacancy ratio
Radiation hardness

Shockley-Ramo-Gunn Theorem
Adjoint equation formalism

Finite element method
Monte Carlo method

Semi-analytical approach in simple cases


