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Functional characterization of
semiconductor materials and devices

Measurement of the their electronic properties and performances

Main physical observable: current
Current = F(carrier density; carrier transport)

Carrier (electron-hole) generation Free carriers (electron/hole) transport

Recombination/trapping Two mechanisms:

Carrier lifetime T Drift = electric field V=" E
Diffusion = concentration gradient
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J.R. Haynes, W. Shockley,

“The mobility and life of injecting holes and electrons in germanium,

Phys. Rev. 81, (1951), 835-843.
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Fig. 1. Block diagram of the Haynes Shockley experiment: Dy and D are
the emitter and collector point probes.
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Fig. 12. Waveform observed in an N-doped Ge sample (p=1 {1 cm) with

PRI Fig. 11. Waveform observed in a P-doped Ge sample (p=15 {1 ¢m) with
optical injection. N

electrical injection.
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lon Beam Induced Charge (IBIC)

Probe: MeV ion beams

Single ion detection M.B.H. Breese, G.W. Grime and F. Watt, Oxford Nuclear
Induced Charge mapping Physics rep. OUNP-91-33 (1991).

Finished device . L. : :
Principles of radiation detection techniques

Incoming
radiation /’
\

\\,
RN

N

Free charge generation
and transport

Output Electrical
Signal V,,

: " . =
F(Deposited Energy, Eree Carrier Transpm

Nuclear spectroscopy

Lisbon 19.10.2015 Technical Meeting on Formulating strategies for keeping accelerator 6
based technologies at the forefront of scientific endeavours



Probe: MeV ion beams
Single ion detection M.B.H. Breese, G.W. Grime and F. Watt, Oxford Nuclear

; Physics rep. OUNP-91-33 (1991).
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IBIC principles

Electron/hole pair
generation

] Charge carrier
Inc?m_lng transport
radiation

Induced Charge at

the sensing electrode

Output Signal V,,

Lisbon 19.10.2015 Technical Meeting on Formulating strategies for keeping accelerator 8
based technologies at the forefront of scientific endeavours



Elettrons Protons
(Casino 1.0) (SRIM 2008)
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15 pm 110 pm

With respect to OBIC, XBIC, EBIC

 larger analytical depth Higher spatial resolution
« lower scattering through the surface layers in buried layers
« flexibility due to the possibility of using Depth profiling

different ions
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Electron/Hole pair generation

—-Klein's relation
® Experimental data
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A. Lo Giudice et al. Applied Physics Letters 87, 22210 (2005)
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J.R. Haynes, W. Shockley,

“The mobility and life of injecting holes and electrons in germanium,

Phys. Rev. 81, (1951), 835-843.
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Fig. 1. Block diagram of the Haynes Shockley experiment: Dy and D are
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PRI Fig. 11. Waveform observed in a P-doped Ge sample (p=15 {1 ¢m) with
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lla diamond; resistivity about 10> Q-cm; dielectric constant
=0.5 pF/cm; Dielectric relaxation time = 500 s.

Charge neutrality not maintained

400 um thick natural diamond, biased at 40 V @ RT

CURRENT —

Ta
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3 n s ec / d i v ILllL-g.L“IILIII‘\I‘\nlulLlllululll':ul cbserved in a P-doped Ge sample (p=15 {1 em) with

) J.R. Haynes, W. Shockley,
C. Canali et al. Nucl. Instr. Meth. 160 (1979) 73-77
Phys. Rev. 81, (1951), 835-843.
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C. Canali et al. Nucl. Instr. Meth. 160 (1979) 73-77
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Pulse shapes calculation
Shockley-Ramo theorem

Currents to Conductors Induced by a Moving Point Charge A o
\ Currents Induced by Electron Motion
SsockLeY

Bell Telephore Loby s, Fuc,, New Yark, N. ¥ SIMON RAMOT, ASSOCIATE MEMEER, LR.X.
«d May 14, 1933)

Gunn theorem

Salid-State Electrondcs Pergamon Press 1964, Vol. 7, pp. 739-742, Printed in Grest Dainain

A GENERAL EXPRESSION FOR ELECTROSTATIC
INDUCTION AND ITS APPLICATION TO
SEMICONDUCTOR DEVICES
J. B, GUNN

TBM Watson Resta: nter, Yorkeown Heights,

(Received 2 k 1964 in reeszed form 20 March 1964)

AbsteacteeA v srenula iy deduced, under rather gener ditiana, for the charges induced
s » 4
et &i.d'."
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Induced current into the sensing electrode

tess 1064, Vol. 7, pp. T39-742, Printed in Great Dainain

A GENERAL EXPRESSION FOR ELECTROSTATIC

) INDUCTION AND ITS APPLICATION TO
u n n S SEMICONDUCTOR DEVICES ~

theorem

Equation of motion:

The induced charge O into the sensing electrode iIs given by
the difference in the welghting potentials between any two
positions (rA and rg) of the moving charge
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4H-SIC Schottky diode

Starting Material: 360 um n-type 4H-SiC by CREE (USA)
Epitaxial layer from Institute of Crystal Growth (IKZ), Berlin, Germany
Devices from Alenia Marconi System

CCE=Charge Collection Efficiency
1.50r 2.0 =

MeV H+ (Charge collected)/(Charge generated)

1.5MeV H+ 2 MeV H*

1,0
Circular Schottky contact
(100 nm Ni, 100 nm Au) O 8
F=5mmor@ =3 mm Air-bridge !

Guard rin
e (electroplated Au, 3 pm)
N ‘ EJ)O’G

about 50 pum thick
00,4

0,2

R 0,0
Ohmic contact, Ti/Pt/Au O 20 40 60 80 100120]_40

Applied Bias Voltage (V)

Lisbon 19.10.2015 Technical Meeting on Formulating strategies for keeping accelerator 20
based technologies at the forefront of scientific endeavours



Schottky electrode 50 um thick N-type epitaxial 4H-SiC layer

—

Frontal ion
Irradiation

Energy Loss (keV/um'1)

15
Depth (um)

0 5 10
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Generation of electrons and holes Iin the

Depletion Region Neutral Region

Depletion

Depletion

Only holes injected in the
depletion region by diffusion
Induce a charge

Complete charge collection
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Energy Loss (keV/um™)

4H-SIC Schottky diode
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Energy Loss (keV/um™)

0,0
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Energy Loss (keV/um™)
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Energy Loss (keV/um™)
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Lisbon 19.10.2015

Applied Bias Voltage (V)

Depth (um)

Technical Meeting on Formulating strategies for keeping accelerator
based technologies at the forefront of scientific endeavours

26



+1.5MeV-— 2 MeV minority carrier

1,01 . :
' diffusion length
0,8:
= & .o §0’6I L,=(9.0£0.3) um
LI : 0.4] D, = 3 cm?/s
% i F ; 0,2 1,=270ns
= 0,0

0 20 40 60 80 100120140
Applied Bias Voltage (V)

Bias Voltage (V)

4H-SIC Schottky diode
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proton beam proton beam
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Two trapping levels

SRH recombination model

0,050

0,045
0,040 The fitting procedure provides a trapping level of about

< 0,035
€ 0,030
/= 0,025 4H SiC Schottky diodes by DLTS technique (S1 level).
0,020
0,015

0,010
100 150 200 250 300 350 400

T (K)

0.163 eV which is close to the value found in similar

E. Vittone et al., NIM-B 231 (2005) 491.
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Time resolved IBIC (TRIBIC)
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From Spectroscopy to micro-spectroscopy

MeV Ions

Frontal IBIC

MeV Ions

X_Y CHARGE,

¥
IBIC IMAGE

Use of focused ion beams
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Trajectories

One advantage of IBIC over other forms of charge collection microscopy is that it
provides high spatial resolution analysis in thick layers since the focused MeV ion beam
tends to stay ‘focused’ through many micrometers of material.

, A ‘ Loyer | 4 | | vLoyer 1 t | Loyer 1
N 4 MeV H+ in Si
N
g (o)
Electrons N 3 =
S T
o 3 R
1= - =
3 2 um g=
! 3
4 um
oy 2 MeV H+ in Si 3 MeV H+ in Si
Electrons .
40 keV_ oum
< >
20 um
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Tempera!ure-dependem emptying of grain-boundary charge traps
in chemical vapor deposited diamond

Frontal IBIC

Polycrystalline

CVD diamond

Diamond Detectors
CERN-RD42

Increasing Efficiency

collaboration

165°C

an

Me proton beam FIG. 1. lon beam mduced charge (1BIC) maps using a scanned 2 Me\

uon efficiency 15 always highest near 1o the

Channel number

Intra- crystallite charge transport
M.B.H.Breese et al. NIM-B 181 (2001), 219-224; P.Sellin et al. NIM-B 260 (2007), 293-294
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(frontal irradiation)
2 MeV proton
microbeam

pre-amplifier
Schottky contact

active region

FRB L12, frontale
30V

Poor spectral
resolution

1!

5 20 25 30

Efficiency (%)

E. Vittone et al., NIMB 158 (1999) 470-47
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GaAs Schottky diode
Frontal IBIC

Effects of inhomogeneous
cabon doping
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50 um thick N-type epitaxial 4H-SiC layer

Schottky electrode

Frontal ion
Irradiation

—~ 1404 i
£ 120 ]
< 100 i
ool | |Bulk
Surface 20 ] == i defects
defects 20 i
0 - , I L N : : : ]
(@) 5 10 15 20 25 30 35 40 45 50
1 mm Depth (um)

M. Jaksic et al.NIMB188(1-4) (2002) 130-134 es for keeping accelerator 36
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Lateral IBIC

MeV lons

Y axis (um)

Ve = 15V CCE

100%
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Depletion
Region

Lateral IBIC

Bias voltage = 20.3 V

Si p-n diode

Lateral IBIC

Collection efficiency

Depth (um)

MeV Ions

3 MeV proton

minority carrier diffusion length

C. Manfredotti et al., NIMB 158 (1999) 476-480
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Pristine diode Au doped diode
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SEM im 4H-SiC Schottky diode

Inter-digitated frontal
electrodes

¥ - Finger width: 50 pm

% - Finger length: 700 um

® - Finger-finger gap = 20 um;
- Finger-guard ring = 70 um.

Experiments to
validate the
theoretical model

|

IBIC map
1.5 MeV H*

Electrostatic
Potential map
V=100V

E.Vittone et al. NIMB 266 (2008) 1312—-1318. ing on Formulating strategies for keeping accelerator 40
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CCE profile detalils

hole diffusion length = 8.7 um.
hole lifetime = tp = 250 ns

Tovs
’ 900 keV
1C

onfiguration A

900 keV
Configuration B

03 Re . 1500 keV
] Configuration A
, ..
. T . T .
30 40
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Electrode edges:
vertical black line.
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LEFT ELECTRODE
1,0 &3

CCE AS FUNCTION OF
ION STRIKE POSITION

Position (um)
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LEFT ELECTRODE
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Position sensitivity - proof of concept: three-electrodes test device
L.M. Jong et al., Nuclear Instr. Meth. B 269 (2011) 2336

2 MeV He beam @ NEC 5U

Pelletron, Melbourne
1 um spot size

Top view

lon beam

A 4 i
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400 nm resolution
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Cross sectional scheme
J. Forneris et al.

0,6

Modeling of ion beam induced charge sharing A SUB-MICROMETER POSITION

experiments for the design of high resolution position

sensitive detectors, NIMB 2013 SENSITIVE DETECTOR
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IBIC
(lon Beam Induced Charge)

Analytical technique suitable for the measurement of transport properties in
semiconductor materials and devices

» Control of in-depth generation profile

Suitable for finished devices (bulk analysis).
Micrometer resolution

CCE profiles: Active layer extension; Diffusion length
Robust theory; FEM and MC approaches

Analysis of multi-electrode devices

VYV VYV V VYV

>
>
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Radiation damage is the general alteration of the operational

properties of a semiconductor devices induced by ionizing radiation

Three main types of effects:

- Transient ionization. This effect produces electron-hole pairs;
particle detection with semiconductors is based on this effect (IBIC).
-Long term ionization. In insulators, the material does not return to its
Initial state, if the electrons and holes produced are fixed, and
charged regions are induced.

- Displacements. These are dislocations of atoms from their normal
sites in the lattice, producing less ordered structures, with long term

effects on semiconductor properties.

V.A.J. van Lint, The physics of radiation damage in particle detectors, Nucl. Instrum. Meth. A253 (1987) 453.
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-Long term 1onization. in insulators, the material does not

return to its initial state, if the electrons and holes produced are fixed,
charged regions are induced.

lonizing particle
Gate'

Drain ® O Source
terminal terminal

Trapped
Positive

» Parametric shifts in transistors parameters due
to the build-up of trapped positive charge and

interface states caused by several low-LET 8 : Young Hwan Lho, Ki Yup
particles striking a chip < i

Radiation Effects on the

» Total lonizing Dose affects dielectric layers (e.g., ; ST

gate oxide, isolation oxides) T s Power MOSFET for space
v M applications
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http://etrij.etri.re.kr/Cyber/Download/PublishedPaper/2704/S27-04-14.pdf

- Displacements. These are dislocations of atoms from their normal
sites In the lattice, producing less ordered structures, with long term effects

on semiconductor properties

Displacement Damage

Interstitials (1) and vacancies (V) migrate to form stable defects

FPHYNICAL REVIEW { UMD NUMBMER 2A 1Y APNIEL 19a)

Defects in Irradiated Silicon : Electron Paramagnetic Resonance of the Divacancy

G, D, Warkiss axn ). W, Coxsxry

Single vacancy

highly mobile at RT Missing atoms
+ @asy to recombine (“repair”)  om

crystal lattice

Double vacancy J Q
or divacancy Q &

-"double trouble” -hard to repair /
» Stable point defect at RT
- trap free charge in SC, etc...

Fi. 14, Electrical
levels associated with
the divacancy. The level
positions (in eV) are
given to the nearest
band edge. The charge
states giving rise to the
GO6 and G7 spectra are
indicated.
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http://holbert.faculty.asu.edu/eee560/RadiationEffectsDamage.pdf

Low level of damage
Shockley-Read-Hall Model

Excess carrier lifetime

Trap density

Capture cross

S - Thermal velocity
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MeV ions to induce radiation damage
MeV ions to measure radiation hardness
PHYSICAL OBSERVABLE: CARRIER LIFETIME

Trap density in pristine
material

Trap density induced by
radiation

Lifetime reduction

|

Efficiency degradation
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IAEA Coordinate Research Programme (CRP) F11016 (2011-2015)

«Utilization of ion accelerators for studying and modeling ofl
radiation induced defects in semiconductors and insulators”

COOPERATION AND MUTUAL

UNDERSTANDING LEAD TO GROWTH AND

GLOBAL ENRICHMENT

Univ. Delhi
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Smgapore Sor

Univ. Turin CAN
ltaly Spain
Univ. Surrey N IZ Nuclear Agency
Z| I§ Malaysa
SANDIA — ﬁ Ruder Boskovic
USA Croatia

Nz
ZIs« * ANSTO

Univ. Helsinki -
Finland o T > 4 + Australia

JAEA-Kyoto Univ.
JAPAN

Lisbon 19.10.2015 Technical Meeting on Formulating strategies for keeping accelerator
based technologies at the forefront of scientific endeavours

52



IAEA Coordinate Research Programme (CRP) F11016 (2011-2015)
«Utilization of ion accelerators for studying and modeling of |

radiation induced defects in semiconductors and insulators”

Expected Research Outputs:

» Definition of an experimental protocol to determine the
key parameters for the characterization of the effects
of radiation damage on semiconductor materials and
devices.

» Refined theoretical models for defect generation and
for modelling their effect on electronic properties.



The experimental protocol



Experimental protocol
Z. Pastuovic et al., IEEE TNS 56 (2009) 2457; APL (98) 092101 (20118

Hamamatsu
S5821 p-i-n diode

v'Commercial p-i-
n diodes




Experimental protocol
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Hamamatsu
S5821 p-i-n diode

Experimental

protocol
C-V characteristics Commercial p-i-
Depletion width-voltage Pl
Electrical

characterization

1
=
=

A~
L
N
@
o
c
< 10
=
o
(4v]
o
(4o}
3

=
N

|_\
O:
(wr) yipim amAe| uons|dap




Laboratory for lon Beam Interaction RS
4

Ruder Boskovic Institute i‘Q{
Zagreb (HR) S
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He scannimg
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Energy 1.4 MeV
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IBIC map on a pristine diode
probed with a scanning
1.4 MeV He microbeam;

Hamamatsu
S5821 p-i-n diode

al

Frontal IBIC

MeV Ions

Z. Pastuovic et al., IEEE Trans on Nucl. Sc. 56 (2009) 2457; APL (98) 092101 (2011)

Experimental
protocol

Commercial p-i-
n diodes

Electrical
characterization

IBIC map on
pristine sample




Laboratory for lon Beam Interaction
Ruder Boskovic Institute
Zagreb (HR)

lon microbeams
He 1.4 MeV

Li 2.15 MeV

O 4.0 MeV

Cl 11.0 MeV
Spot size <3 um

11 MeV CI

£
L
g
&
c 2
DAMAGING SELECTED AREAS §" 2.15 MeV Li
100)(100 umz 10’
1.4 MeV He
1"0w+r———¥+—+-4
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IBIC map on a pristine diode ZOOM in view of the selected area for focu
probed with a scanning ion beam irradiation

[ ——

at different fluences ¢

1.4 MeV He microbeam;

Hamamatsu
S5821 p-i-n diode

al

! Experimental
protocol

Commercial p-i-
n diodes
Electrical
3l characterization
IBIC map on
pristine sample
Irradiation of 9
regions at
different fluences

Z. Pastuovic et al., IEEE Trans on Nucl. Sc. 56 (2009) 2457; APL (98) 092101 (2011)




Laboratory for lon Beam Interaction [
Ruder Boskovic Institute }F—* /
Zagreb (HR)

He ion microbeam
Energy 1.4 MeV
Spot size <3 um

1.4 MeV He in Si

0.24

0.1

PROBING DAMAGED AREAS

Normalized lonizing Energy loss (1/um)

0 1 2 3 4 5 6 7
Depth (um)
Data from SRIM
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IBIC map on a pristine diode
probed with a scanning
1.4 MeV He microbeam;

Hamamatsu
S5821 p-i-n diode

al
protocol

Commercial p-i-
n diodes
Electrical
sl characterization
IBIC map on
pristine sample
Irradiatoin of 9
regions at
different fluences
IBIC map of
irradiated regions

Frontal IBIC

MeV Ions

a measured 2D distribution
of the IBIC signal amplitude
after irradiation

Z. Pastuovic et al., IEEE Trans on Nucl. Sc. 56 (2009) 2457 APL (98) 092101 (2011)
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IBIC map on a pristine diode ZOOM in view of the selected area for focu
probed with a scanning ion beam |rrad|at|on at different fluences @

1.4 MeV He microbeam,; H R

Hamamatsu
S5821 p-i-n diode

ol | & B | Rl Experimental
R T protocol

Commercial p-i-
n diodes
| : oSN Electrical
Fluence -V =l Characterization
IBIC map on
pristine sample
Irradiatin of 9
regions at
different fluences
IBIC map of
irradiated regions
Average pulse
height as function
of the damage

IBIC spectra
(bias voltage =
10 V and 100 V)
from the central
regions of four
of the areas
shown in Fig. c

a measured 2D distribution
| of the IBIC signal amplitude
420 440 460 480 after irradiation

Pulse Height (Channels)

Z. Pastuovic et al., IEEE Trans on Nucl. Sc. 56 (2009) 2457 APL (98) 092101 (2011)
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JOURNAL OF APPLIED PHYSICS 106, 104914 (2009)

Breakdown of silicon particle detectors under proton irradiation

FI-02015

4

The front elec-

ounded. Posi-

aluminum

(Si0,)

with the exception of the
e shown distance is mea-

n-type and p-type Fz silicon diodes
From University of Helsinki

16 floating guard rings

The frontal electrode and the guard
rings are coated with Al (0.5 um).
The Al electrode has a hole in the
center, 1 mm diameter.
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Lisbon 19.10.2015 Technical Meeting on Formulating strategies for keeping accelerator
based technologies at the forefront of scientific endeavours

300

64



4 MeV He DIB: Vacancy profiles
8 MeV He

V(x) (Vac/um)

V(x) 8 MeV He

PIB = Probing ion beam
DIB = Damaging ion beam

2 MeV He

H 2 MeV

.ﬁ He 8 MeV

v(x) (1/pm)

Al PIB: lonization profiles

H 4.5 MeV '

50 100 150 200
Depth (um)
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PIB= 4.5 MeV H

PIB=4.5 MeV H

50x10"  1,0x10” _ 1,5x10”  2,0x10" V 50x10"  1,0x10” _15x10"  2,0x10"
Fluence (cm™) Fluence (cm”

CCE degradation depends from

» Damaging ion energy and mass
» Probing ion energy and mass
» Polarization
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DIB = Damaging ion beam
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T e profile
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PIB=1 MeV H
DIB=8 MeV He

2 4 6 8
Fluence (x10" cm'z)

Hole motion
PIB

-
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\ N+
H
s "
g 1001 Electric field
Generation <
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DIB = Damaging ion beam
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PIB=4.5 MeV H

DIB=8 MeV He
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PiB= 2 MeV H

DIB: 8 MeV He
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CCE degradation depends from

» Damaging ion energy and mass
» Probing ion energy and mass
» Polarization
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The solid lines are the best fits obtained by
means of our model considering

Different PIBs

Different DIBs (8 MeV, 4 MeV)

Different polarizations (10,20,50 V)
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Recombination coefficient
a« — k.G.Vth

0 500 1000 1500 2000 2500 3000

o, (Lm?/s)

Final measurement of the recombination coefficients;

n-type diode: o,,=(210*=160)um3/s; o,,=(2500=300) um3/s;

p-type diode: o,,=(2200x=300)um3/s; a,=(1310=90)um?3/s;

Open marks: dispersion of the combination of the fitting parameters.
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Final measurement of the recombination coefficients;
n-type diode: a,,=(210+=160)um?/s;
o,=(2500x=300)pum3/s;

p-type diode: a,=(2200300)pum?3/s;
a,=(131090)um3/s;

6,=5-10">cm~, 5,=5-10"* cm (divancies in n-type diode)

4

kn=2.4-102, kp=2.4-10*

U

40 and 4000 radiation induced defects are required to
form 1 stable electron and hole recombination centre

>MARLOWE
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Low Level of dam age Electrostatics of th“e»

device

Vacancy profille
(from SRIM; PAS)

DLTS
Shockley-Read-Hall ( )

Recombination/trapping
model

Shockley-Ramo-Gunn Theorem
Adjoint equation formalism
Finite element method
Monte Carlo method
Semi-analytical approach in simple cases

Trap/vacancy ratio
A fingerprint of the semiconductor radiation hardness.
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CONCLUSIONS

Under the assumption of , IpE—
the of a semiconductor device induced by ions of different mass
and energy can be interpreted by means of a model based on

*The Shockley-Ramo-Gunn theorem for the charge pulse formation

*The Shockley-Read-Hall model for the trapping phenomena

If the generation occurs in the depletion region, an analytical solution of the adjoint
equation can be calculated.

scaling can be derived from the general theory in the case of
constant vacancy profile.

The model leads to the evaluation of which is
independent

On the ion type and energy

On the applied bias voltage

The k factor is the fingerprint of the radiation hardness of the device
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CONCLUSIONS

IBIC technique is a real-time lon Beam Analysis technique for the functional
characterization of electronic materials and devices

Strengths

Robust theoretical model to interpret charge or current pulse formation
« Fast signal generation (ps)
» Single ion sensitive (no invasive technique)
 Well known experimental technique (from nuclear physics)
 Use of focused ion beams = nano/micro-spectroscopy
« CCE mapping = failure analysis in microelectronics

 Mainly used to characterize detectors
» Decreasing interest of the scientific community in the last years
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CONCLUSIONS

IBIC technique is a real-time lon Beam Analysis technique for the functional™ |
characterization of electronic materials and devices

Potentlallty
Can be applied to any electronic device based on semiconductor or
insulating materials.

 Can be coupled with other techniques requiring low current beams [e.g. IBIL
or STIM (thin samples)].

 The analytical capability can be enriched if performed in different
conditions [e.g. at different temperatures (see Ohshima), under illumination
(priming effect)]

* lons can be used both as damaging agents and as probes =

 Unprecedented sensitivity (much better than DLTS)

» Availability of a comprehensive model to evaluate the radiation hardness of
a material at low damage level if coupled with other techniques for defect
spectroscopy (e.g. Q-DLTS) and with refined computational models to
evaluate vacancy production (MD simulations).
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CONCLUSIONS

0 To improve key aspects of performances of IBIC
0 To ensure transmission of competencies across generations

O To promote internationally the adoption of best practices
« Dissemination to inform the scientific community and industries about the potential of IBIC

» An exhaustive methodology to evaluate vacancy profiles or, in general, ion
interaction with matter is still not available — THEORY AND MODELS

* An user friendly software to simulate signals and maps from IBIC experiments and
radiation damage

O Impact on social problems

Space applications (solar cells or SEU in IC)

Radiation hardness / Dosimetry

Modification/study of electronic properties to improve the performances of
semiconductor devices
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CONCLUSIONS

U To keep accelerator based IBT at the forefront of Scientific Endeavour

U To significantly increase human knowledge
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INTEL Xeon 1* circuito
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1 transistor
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Rt

Nano beams?
Functional analysis of
Nanostructured
semiconductors?

Micro/nano machining

Why MeV ion beams?
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