

Graphene from pencil to Nobel prize, passing through QED

Stefano Borini Istituto Nazionale di Ricerca Metrologica (INRIM)

Seminario Fisica-Università di Torino - 21/10/10

Andre Geim

Konstantin Novoselov

The Nobel Prize in Physics 2010 was awarded jointly to Andre Geim and Konstantin Novoselov "for groundbreaking experiments regarding the two-dimensional material graphene"

graphene

The Nobel Prize in Chemistry 1996 was awarded jointly to Robert F. Curl Jr., Sir Harold W. Kroto and Richard E. Smalley "*for their discovery of fullerenes*".

Graphene: a well known material, since many years...

PHYSICAL REVIEW

VOLUME 71, NUMBER 9

MAY 1, 1947

The Band Theory of Graphite

P. R. WALLACE*

Since the spacing of the lattice planes of graphite is large (3.37A) compared with the hexagonal spacing in the layer (1.42A), a first approximation in the treatment of graphite may be obtained by neglecting the interactions between planes, and supposing that conduction takes place only in layers.

Unique dispersion relations: linear near the Dirac point

Graphene: a well known material, since many years...

LEED AND AUGER ELECTRON OBSERVATIONS OF THE SiC (0001) SURFACE

A.J. VAN BOMMEL, J.E. CROMBEEN and A. VAN TOOREN Philips Research Laboratories, Eindhoven, The Netherlands

Received 12 August 1974; revised manuscript received 21 October 1974

LEED and AES experiments of the SiC {0001} crystal surfaces show that on heattreatment these surfaces are easily "covered" with a layer of graphite by evaporation of silicon. The graphite layer, which has a distinct crystallographic relation to the SiC crystal, is monocrystalline on the Si-face and mostly polycrystalline on the C-face. A speculation about the mechanism of the initial graphitization of the basal faces of SiC is given.

Electronic structure of the $(2 \times 2)C p 4g$ carbidic phase on Ni{100}

C. F. McConville and D. P. Woodruff Physics Department, University of Warwick, Coventry CV4 7AL, England, United Kingdom

> S. D. Kevan^{*} AT&T Bell Laboratories, Murray Hill, New Jersey 07974-2070

M. Weinert and J. W. Davenport Physics Department, Brookhaven National Laboratory, Upton, New York, 11973-5000 (Received 24 February 1986)

They found the key for the direct access to the physics of this 2D system

QED in a pencil trace... [© Geim & Novoselov]

FET devices: Electronic properties

Electric Field Effect in Atomically Thin Carbon Films K. S. Novoselov, et al. Science **306**, 666 (2004);

Anomalous half-integer QHE: Dirac equation holds

Landau levels:

QHE graphene devices at INRIM

Optical properties

monolayers are there, somewhere...

P. Blake et al., "Making graphene visible", APL 91, 063124 (2007)

Quantized opacity

absorption $P = W_a/W_i = \pi e^2/\hbar c = \pi \alpha_i$ Interaction of light with relativistic particles described by a coupling constant: fine structure constant

Optical constants from contrast analysis and quantized opacity

APPLIED PHYSICS LETTERS 94, 031901 (2009)

Optical constants of graphene layers in the visible range

M. Bruna and S. Borini^{a)} Electromagnetic Division, INRIM, Strada delle Cacce 91, Torino I-10135, Italy

$$k = -\frac{\lambda}{4\pi n d_1} \ln(1 - \pi \alpha) \equiv C_1 \frac{\lambda}{n}$$

$$n = 3.0; \quad k = \frac{C_1}{3}\lambda$$

Optical contrast: easy high-throughput analysis of graphene layers

Evolution of electronic bands with stacking graphene layers

M. Koshino, T. Ando / Solid State Communications 149 (2009) 1123-1127

Vibrational spectroscopy can monitor such evolution

Raman spectrum of graphene

L.M. Malard et al. / Physics Reports 473 (2009) 51-87

Raman of graphene stacks: symmetry is important

M. Bruna and S. Borini, PRB 81, 125421 (2010)

IR spectroscopy

Graphene: an "all-surface" material:

- sensing
- strain engineering / "origami"

- surface functionalization dramatically changes the material (graphane, fluorographene, graphene oxide)

Detection of individual gas molecules adsorbed on graphene

F. SCHEDIN¹, A. K. GEIM¹, S. V. MOROZOV², E. W. HILL¹, P. BLAKE¹, M. I. KATSNELSON³ AND K. S. NOVOSELOV1*

Graphene "origami" : Strain engineering

V.M. Pereira and A.H. Castro Neto, PRL 103, 046801 (2009)

A.H. Castro Neto et al., Rev. Mod. Phys. 81, 109 (2009) Stretching graphene along (100) axes:

Strain engineering: pseudo magnetic field experimentally observed

Science 329, 544 (2010)

Strain-Induced Pseudo–Magnetic Fields Greater Than 300 Tesla in Graphene Nanobubbles

N. Levy,^{1,2}*† S. A. Burke,¹*‡ K. L. Meaker,¹ M. Panlasigui,¹ A. Zettl,^{1,2} F. Guinea,³ A. H. Castro Neto,⁴ M. F. Crommie^{1,2}§

Our work: effect of the substrate

APPLIED PHYSICS LETTERS 97, 021911 (2010)

Graphene strain tuning by control of the substrate surface chemistry

M. Bruna,¹ A. Vaira,² A. Battiato,² E. Vittone,² and S. Borini^{1,3,a)} ¹Electromagnetics Division, INRIM, Strada delle Cacce 91, I-10135 Torino, Italy ²Department of Experimental Physics, Centre of Excellence "NIS," University of Torino, via. P. Giuria 1, 1-10125 Torino, Italy ³Thermodynamics Division, INRIM, Strada delle Cacce 91, I-10135 Torino, Italy

Chemical modification: graphane

Hydrogenation: sp2 to sp3 transition

D.C. Elias et al., Science 323, 610 (2009)

Chemical modification: fluorographene

Our work: fluorinated graphene by exfoliation of electrochemically intercalated graphite

Graphene-inspired materials: exfoliated 2D-crystals

Hunting for BN monolayers

R.V. Gorbachev et al., arxiv: 1008.2868

Graphene-inspired materials: exfoliated 2D-crystals

Appl. Phys. Lett. 96, 053107 (2010)

Atomically-thin crystalline films and ribbons of bismuth telluride

Desalegne Teweldebrhan, Vivek Goyal, Muhammad Rahman, and Alexander A. Balandin

Te¹-Te¹ Van der Waal Bonds

Te1-Te1 Van der Waal Bonds

Graphene Applications: Electronics (IBM work)

Science 327, 662 (2010) 100-GHz Transistors from Wafer-Scale Epitaxial Graphene

Y.-M. Lin,* C. Dimitrakopoulos, K. A. Jenkins, D. B. Farmer, H.-Y. Chiu, A. Grill, Ph. Avouris*

The key attractions of graphene are its outstanding carrier mobility, the good transconductance of graphene devices, and the ultimate thinness and stability of the material. [Avouris, Nano Lett. (2010)]

Thermal properties

RT thermal conductivity \sim (4.84 \pm 0.44) imes 10³ to (5.30 \pm 0.48) imes 10³ W/mK

A.A. Balandin et al., Nano Lett. 8, 902 (2008)

Mechanical properties

Measured Young modulus: I TPa

Lee et al, Science 321, 385 (2008)

Acknowledgements

Matteo Bruna: PhD student

- C. Cassiago, L. Callegaro, E. Gasparotto: QHE measurements
- R. Rocci: technical help
- "ULQHE" project: money Nanofacility Piemonte: EBL process

Graphene opacity

electric field $\vec{\Theta}$ frequency ω

incident energy flux
$$W_i$$
 is given by $W_i = \frac{c}{4\pi} |\Theta|^2$

absorbed energy $W_{\rm a} = \eta \hbar \omega$

number η of such absorption events per unit time

using Fermi's golden rule $\eta = (2\pi/\hbar)|M|^2D$

M is the matrix element for the interaction between light and Dirac fermions

For 2D Dirac fermions $D(\hbar\omega/2) = \hbar\omega/\pi\hbar^2 v_F^2$ density of states at $\varepsilon = E/2 = \hbar\omega/2$

$$\hat{H}_{int} = -v_F \vec{\sigma} \cdot \frac{e}{c} \vec{A} = v_F \vec{\sigma} \cdot \frac{e}{i\omega} \vec{\Theta} \qquad |M|^2 = |\langle f| v_F \vec{\sigma} \cdot \frac{e}{i\omega} \vec{\Theta} |i\rangle|^2 = \frac{1}{8} e^2 v_F^2 \frac{|\Theta|^2}{\omega^2}$$

