
Chapter 2

STRUCTURE OF LIE ALGEBRAS

2.1 Introduction

In the present and in the following chapter we address the fundamental problem of casting a
general Lie algebra into a canonical form. This is a basic instrument to classify all possible
algebras. Actually the classification of all Lie algebras turns out to be a too ambitious problem,
yet if we restrict our attention to those Lie algebras that are semisimple, then the classification is
possible and exhaustive. What semisimple means is precisely what is established in the present
chapter by developing some basic lore about linear algebra. Furthermore the basic result of
the chapter is the Levi decomposition theorem: it states that the most general Lie algebra is
the semidirect product of a semisimple algebra with a solvable ideal. In a nutshell solvable Lie
algebras, for which an exhaustive classification does not exist, are the trivial part, in the sense
that all their linear representations are given by triangular matrices. On the contrary, for the
semisimple algebras an exhaustive classification is provided by the formalism of roots and Dynkin
diagrams discussed in the next chapter. Solvable Lie algebras are anyhow important also in the
context of differential geometry. In later chapters, discussing non–compact homogeneous spaces,
we show how solvable Lie algebras provide an efficient and privileged way of encoding their local
geometry.

2.2 Linear Algebra preliminaries

Let us consider a vector space V constructed on the field of complex numbers C, whose dimension
we denote by dimV = n. We name Hom(V, V ) the ring of all linear endomorphisms of V . In
other words an element A ∈ Hom(V, V ) is a linear map:

A : quadV → V

∀α, β ∈ C , ∀−→v ,−→w ∈ V : A (α−→v + β−→w ) = αA (−→v ) + β A (−→w ) (2.2.1)

As we know, if (−→e 1, . . . ,−→e n) is a basis of V , in such a basis the endomorphism A is represented
by the matrix Aij determined by the condition:

A (−→e j) = −→e iAij (2.2.2)

Indeed if
{
vi
}
are the components of the vector −→v in the basis {−→e i}, we have:

A
(
vj −→e j

)
= −→e iAij v

j (2.2.3)
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and hence the components of the vector −→v ′ ≡ A (−→v ) are given by:

vj′ = Aij v
j (2.2.4)

The association:
A 7→ Aij (2.2.5)

is an isomorphism of Hom(V, V ) onto the ringMn (C) of n×n matrices with complex coefficients.

Definition 2.2.1. << A matrix Aij such that Aij = 0 if i > j is named upper triangular.
A matrix such that Aij = 0 if i < j is named lower triangular. Finally a matrix that is
simultaneously upper and lower triangular is named diagonal >>

we recall the concept of eigenvalue:

Definition 2.2.2. << Let A ∈ Hom(V, V ). A complex number λ ∈ C is named an eigenvalue of
A if ∃−→v ∈ V such that:

A−→v = λ−→v (2.2.6)

>>

Definition 2.2.3. << Let λ be an eigenvalue of the endomorphism A ∈ Hom(V, V ), the set of
vectors −→v ∈ V such that A−→v = λ−→v is named the eigenspace Vλ ⊂ V pertaining to the
eigenvalue λ. It is obvious that it is a vector subspace. >>

As it is known from elementary courses in Geometry and Algebra the possible eigenvalues of A
are the roots of the secular equation:

det (λ1 − A) = 0 (2.2.7)

where 1 is the unit matrix and A is the matrix representing the endomorphism A in an arbitrary
basis.

Definition 2.2.4. << An endomorphism N ∈ Hom(V, V ) is named nilpotent if there exists an
integer: ∃ k ∈ N such that:

Nk = 0 (2.2.8)

>>

Lemma 2.2.1. << A nilpotent endomorphism has always the unique eigenvalue 0 ∈ C >>

Proof 2.2.1.1. Let λ be an eigenvalue and let −→v ∈ Vλ be an eigenvector. We have:

Nr −→v = λr −→v (2.2.9)

Choosing r = k we obtain λk = 0 which necessarily implies λ = 0. ¥

Lemma 2.2.2. << Let N ∈ Hom(V, V ) be a nilpotent endomorphism. In this case one can choose
a basis {−→e i} of V such that in this basis the matrix Nij satisfies the condition Nij = 0 for i ≥ j.
>>

Proof 2.2.2.1. Let −→e 1 be a null eigenvector of N , namely N −→e 1 = 0 and let E1 be the subspace
of V generated by −→e 1. ¿From N we induce an endomorphism N1 acting on the space V/E1,
namely the vector space of equivalence classes of vectors in V modulo the relation:

−→v ∼ −→w ⇔ −→v − −→w = m−→e 1 , m ∈ C (2.2.10)
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Also the new endomorphism N1 : V/E1 → V/E1 is nilpotent. If dimV/E1 6= 0, then we
can find another vector e2 ∈ V such that (e2 + E1) ∈ V/E1 is an eigenvector of N1. Continuing
iteratively this process we obtain a basis −→e 1, . . . ,−→e n of V such that:

N e1 = 0 ; N ep = 0mod (e1, . . . , ep−1) ; 2 ≤ p ≤ n (2.2.11)

where (e1, . . . , ep−1) denotes the subspace of V generated by the vectors e1, . . . , ep−1. In this
basis the matrix representing N is triangular. Similarly if Nij is triangular with Nij = 0 for
i ≥ j, then the corresponding endomorphism is nilpotent ¥

Definition 2.2.5. << Let S ⊂ Hom(V, V ) be a subset of the ring of endomorphisms and W ⊂ V
a vector subspace. The subspace W is named invariant with respect to S if ∀S ∈ S we have
SW ⊂W . The space V is named irreducible if does not contain invariant subspaces. >>

Definition 2.2.6. << A subset S ⊂ Hom(V, V ) is named semisimple if every invariant subspace
W ⊂ V admits an orthogonal complement which is also invariant. In that case we can write:

V =

p⊕

i=1

Wi (2.2.12)

where each subspace Wi is invariant >>

A fundamental and central result in Linear Algebra, essential for the further development of Lie
algebra theory is the Jordan’s decomposition theorem that we quote without proof.

Theorem 2.2.1. << Let L ∈ Hom (V, V ) be an endomorphism of a finite dimensional vector space
V . Then there exists and it is unique the following Jordan decomposition:

L = SL +NL (2.2.13)

where SL is semisimple and NL is nilpotent. Furthermore, both SL and NL can be expressed as
polynomials in L >>

2.3 Types of Lie Algebras and Levi’s decomposition

In the previous section we have discussed the notion of semi–simplicity and of nilpotency for
endomorphisms of vector spaces, namely for matrices. Such notions can now be extended to
entire Lie algebras. This is not surprising since Lie algebras admit linear representations where
each of their elements is replaced by a matrix. In the present section we discuss solvable, nilpotent
and semisimple Lie algebras. Solvable and nilpotent Lie algebras are those for which all linear
representations are provided by triangular matrices. Semisimple Lie algebras are those which do
not admit any invariant subalgebra (or ideal) which is solvable. The main result in this section
will be Levi’s theorem which is the counterpart for algebras of Jordan’s decomposition theorem
2.2.1 holding true for matrices.

Consider a Lie algebra G and define:

DG = [G , G] (2.3.14)

the set of all elements g ∈ G that can be written as the Lie bracket of two other elements
g = [g1 , g2]. Clearly DG is an ideal in G.

Definition 2.3.1. << The sequence Dn G =
[
Dn−1G , Dn−1G

]
of ideals:

G ⊃ DG ⊃ D2G ⊃ . . . ⊃ DnG (2.3.15)

is named the derivative series of the Lie algebra G >>
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2.3.1 Solvable Lie Algebras

Definition 2.3.2. << A Lie algebra G is named solvable if there exists an integer n ∈ N such
that

DnG = {0} (2.3.16)

is named the derivative series of the Lie algebra G >>

Lemma 2.3.1. << A subalgebra K ⊂ G of a sovable Lie algebra is also solvable. >>

Proof 2.3.1.1. Indeed let G be solvable and K ⊂ G be a subalgebra. Clearly DK ⊂ DG and hence
at every level n we have DnK ⊂ DnG, so that the lemma follows. ¥

Definition 2.3.3. << A Lie algebra G has the chain property if and only if, for each ideal
H ⊂ G there exists an ideal H1 ⊂ H of the considered ideal which has codimension one in H. >>

The above definition can be illustrated in the following way. Let H be the considered ideal in G.
If G has the chain property, then H can be written in the following way:

H = H1 ⊕ λ
−→
X (2.3.17)

where H1 is a subspace of dimension:

dimH1 = dimH− 1 (2.3.18)

and
−→
X ∈ H,

(
−→
X 3 H1

)
is an element that belongs to H but not to H1. Furthermore we have:

∀
−→
Z ∈ H1 ,

[
−→
Z ,

−→
X
]
∈ H1 (2.3.19)

¿From this definition we obtain the following:

Lemma 2.3.2. << A Lie algebra G is solvable if and only if it admits the chain property >>

Proof 2.3.2.1. Let G be solvable and let us put dimG = n and dimDG = m. By hypothesis of
solvability we have that DG 6= G, so that n−m = p > 0. Let us choose p− 1 linear independent
elements {X1, . . . , Xp−1} ∈ G, such that Xi 3 DG and define the subspace:

H1 = DG + λ1
−→
X 1 + . . .+ λp−1

−→
X p−1 , (λi ∈ C) (2.3.20)

By construction H1 has codimension one and it is an ideal. This construction can be repeated
for each ideal H ⊂ Gsince it is solvable. Hence G admits the chain property.

Conversely let G be a Lie algebra admitting the chain property. Then we find a sequence of
ideals:

G = G0 ⊃ G1 ⊃ G2 ⊃ . . . ⊃ Gn = {0} (2.3.21)

such that Gr is an ideal in Gr−1 of codimension one so that Dr−1G ⊂ Gr. Hence G is solvable.
¥

We can now state the most relevant property of solvable Lie algebras. This is encoded in the
following Levi’s theorem and in its corollary.
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Theorem 2.3.1. << Let G be a solvable Lie algebra and let V be a finite dimensional vector space
on the field F = C, or R, algebraically closed. Furthermore let:

π : G → Hom (V, V ) (2.3.22)

be a homomorphism of G on the algebra of linear endomorphisms of V . Then there exists a
vector −→v ∈ V such that it is a simultaneous eigenvector for all elements π(g), (∀g ∈ G). >>

Proof 2.3.1.1. The proof is constructed by induction. If dimG = 1, then there is just one endo-
morphism π(g) and it necessarily admits an eigenvector. Suppose next that the theorem is true
for each solvable algebra K of dimension

dimK < dimG (2.3.23)

Consider an ideal H ⊂ G of codimension one:

dimG = dimH + 1 (2.3.24)

Such an ideal exists because the Lie algebra is solvable and, therefore, admits the chain property.
Write:

G = H + λ
−→
X (λ ∈ F) (2.3.25)

where
−→
X is an element of G not contained in H. By the induction hypothesis there exists a vector

−→e 0 ∈ V such that:

∀H ∈ H : π(H)−→e 0 = λ(H)−→e 0 (2.3.26)

where λ(H) ∈ F is an eigenvalue depending on the considered element H. Define next the
following vectors:

−→e p = [π (X)]
p −→e 0 p = 1, 2, . . . (2.3.27)

The subspace W ⊂ V spanned by the vectors −→e p (p ≥ 0) is clearly invariant with respect to
π(X). We can also show what follows:

π (H) −→e p = λ (H) −→e p mod (−→e 0, . . . ,−→e p−1) ; (∀H ∈ H) (2.3.28)

Indeed, eq.(2.3.28) is true for p = 0 and assuming true for p we get:

π (H) −→e p+1 = π (H) π (X) −→e p = π ([H , X]) −→e p + π (X) π (H) −→e p

= λ ([H , X]) −→e p + λ (H) −→e p+1 +mod (−→e 0, . . . ,−→e p−1) (2.3.29)

(Note that [H , X] ∈ H). Hence we find:

π (H) −→e p+1 = λ(H)−→e p+1 +mod (−→e 0, . . . ,−→e p) (2.3.30)

It follows that the subspace W is invariant with respect to π (G) and that:

TrW π (H) = λ (H) dimW (2.3.31)

On the other hand we have:

TrW (π ([H , X])) = 0 ⇒ λ ([H , X]) = 0 (2.3.32)
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Repeating the argument by induction, from the relation:

π (H) −→e p+1 = π ([H , X])−→e p + π (X) π (H) −→e p (2.3.33)

and the original definition of the eigenvalue λ(H) in eq. (2.3.26) we conclude that:

π (H)−→e p = λ (H)−→e p (p ≥ 0) (2.3.34)

This shows that ∀H ∈ H we have π (H) = λ (H) 1 on the vector subspace W . Choosing a vector
−→e ′p ∈ W that is eigenvector of π (X) we find that is a simultaneous eigenvector for all elements
π (g), (∀g ∈ G).¥

Corollary 2.3.1. << Let G be a solvable Lie algebra and π a linear representation of G on a
finite dimensional vector space V . Then there exists a basis {−→e 1, . . . ,−→e n} where every π (X),
(∀X ∈ G) is a triangular matrix. >>

Proof 2.3.1.1. Let e1 be the simultaneous eigenvector of all π (X). The representation π induces
a new linear representation on the quotient vector space V/E1 where E1 ≡ λ−→e 1. Hence applying
theorem 2.3.1 to this new representation we conclude that there is a common eigenvector −→e 2 +
λ−→e 1 for all π (X). Continuing in this way we obtain a basis such that:

π (X) −→e i ≡ 0 mod (−→e 1,−→e2, . . . ,−→e i) (2.3.35)

so that π (X) is indeed upper triangular. ¥

We are now ready to introduce the concept of semisimple Lie algebras and discuss their general
properties.

2.3.2 Semisimple Lie Algebras

We introduce some more definitions.

Definition 2.3.4. << Let G be a Lie algebra. An ideal H ⊂ G is named maximal if there is no
other ideal H′ ⊂ G such that H′ ⊃ H except H itself. >>

Definition 2.3.5. << The maximal solvable ideal of a Lie algebra G is named the radical of G
and it is denoted RadG.>>

Definition 2.3.6. << A Lie algebra G is named semisimple if and only if RadG = 0.>>

As an immediate consequence of the definition we have the

Theorem 2.3.2. << A Lie algebra G is semisimple if and only if it does not have any non–trivial
abelian ideal. >>

Proof 2.3.2.1. We have to show the equivalence of the following two propositions:

a : G has a solvable ideal
b : G has an abelian ideal

i) Let us show that b⇒ a. Let I ⊂ G be the abelian ideal. By definition we have [I , I] = DI = 0
Hence I itself is a solvable ideal and this proves a.

ii) Let us now show that a ⇒ b. To this effect let I ⊂ G be the solvable ideal. By definition,
since I is non trivial ∃k ∈ N such that Dk−1I 6= 0 and DkI = 0. Then the Dk−1I is abelian
and being the derivative of an ideal is an ideal. Hence b is true and this concludes the proof
of the theorem.

¥
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2.3.3 Levi’s decomposition of Lie algebras

We want to proof that any Lie algebra can be seen as the semidirect product of its radical with a
semisimple Lie algebra. Such a decomposition is named the Levi decomposition and is what we
want to illustrate in the present section. To this effect we need to introduce some preliminary
notions. The first is the notion of Lie algebra cohomology. It is a further very relevant
example of an algebraic construction that realizes the paradigm introduced in section 1.6.3. The
second is the equally important notion of semidirect product.

2.3.3.1 Lie algebra Cohomology

Let G be a Lie algebra and let ρ : G → End(F ) be a representation of G on a complex, finite
dimensional vector space F . Let V s (G, ρ) be the vector space of all antisymmetric linear maps

θ : G×G× . . .×G︸ ︷︷ ︸
s times

→ F (2.3.36)

The spaces V s (G, ρ) are the spaces of s–cochains. We can next define a coboundary operator
d in the following way. Let θ ∈ V s (G, ρ) be an s–cochain, the value of the s + 1–cochain dθ on
any set of s+ 1 elements X1, . . . , Xs+1 of the Lie algebra G is given by the following expression:

d (X1, X2, . . . Xs+1) =

s+1∑

i=1

(−)i+1 ρ (Xi) θ (X1, . . . , Xi−1, Xi+1, . . . , Xs+1)

−
s+1∑

r=1

∑

q<r

(−1)r+q θ
(
X1, . . . , X̂q, . . . , X̂r, . . . , Xs+1, [Zq , Xr]

)

(2.3.37)

where the hat on top of an X–element means that it is omitted. It is straightforward to verify
that by applying a second time the coboundary operator d we obtain identically zero namely
that:

d2 = 0 (2.3.38)

In particular if we consider the case of 1–cochains θ[1] that are maps G → F from the Lie algebra
to the vector space F , by applying the general definition (2.3.37) we obtain:

∀X,Y ∈ G : dθ[1](X,Y ) = ρ(X)θ(Y )− ρ(Y )θ(X)− θ ([X , Y ]) (2.3.39)

Given the coboundary operator d we have the usual definitions of an elliptic complex :

(i) The space C(n) (G, ρ) of n–cocycles is the vector space of all n–chains θ[n] that are closed
dθ[n] = 0

(ii) The space B(n) (G, ρ) of n–coboundaries is the vector space of all n–chains θ[n] that are
exact, namely that can be written as θ[n] = dφ[n−1] for some n− 1–chain φ[n−1]

(iii) The n–th cohomology group H [n] (G, ρ) of the Lie algebra G relative to the linear represen-
tation ρ is the quotient:

H [n] (G, ρ) =
C(n) (G, ρ)
B(n) (G, ρ)

(2.3.40)

namely it is the vector space whose equivalence classes are the n–cocycles modulo the n–
coboundaries.
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We have a useful general cohomological property of semisimple Lie algebras that follows from the
above definitions but whose proof we omit for brevity

Theorem 2.3.3. << Let G be a semisimple Lie algebra and ρ a linear representation of G on a
finite dimensional vector space F . Then the first two cohomology groups are trivial:

H [1] (G, ρ) = H [2] (G, ρ) = 0 (2.3.41)

>>

2.3.3.2 Semidirect product

We begin with two definitions:

Definition 2.3.7. << Let G be a Lie algebra and let σ : G → G be an endomorphism of vector
spaces. We say that σ is a derivation of the algebra if the following property holds true:

∀a, b ∈ G : σ ([a , b]) = [σ (a) , b] + [a , σ (b)] (2.3.42)

>>

Definition 2.3.8. Let q and m be two Lie algebras and let σ be a linear representation of m on
q such that ∀Y ∈ m the map σ(Y ) is a derivation of q. Next let X,X ′ be elements of q and
Y, Y ′ be elements of m. We define the Lie bracket of the ordered pair (X,Y ) with the ordered
pair (X ′, Y ′) in the following way:

[(X,Y ) , (X ′, Y ′)] = ([X , X ′] + σ(Y )X ′ − σ(Y ′)X , [Y , Y ′]) (2.3.43)

With this definition of the Lie bracket q×σm becomes a Lie algebra and it is named the smidirect
product of q with m relative to the representation σ. >>

It is a straightforward exercise to check that the definition of the Lie bracket (2.3.43) is consistent
and satisfies Jacobi identity.

Let us now consider a Lie algebra G and let Q ⊂ G be an ideal and M ⊂ G a subalgebra
such that, as vector spaces, we have the following orthogonal decomposition:

G = Q⊕M ⇒ Q
⋂

M = 0 (2.3.44)

Obviously G can be regarded as the semidirect product of Q with M. It suffices to use as
derivation σ the internal derivation provided by the Lie bracket of G:

∀Y ∈ M , ∀X ∈ Q : σ (Y ) X ≡ − [X , Y ] (2.3.45)

Definition 2.3.9. << Let G be a Lie algebra. We say that G is decomposed according to
Levi if there exists a subalgebra L ⊂ G such that:

G = L ×[,] RadG (2.3.46)

Obviously, since G/RadG is semisimple and since L ∼ G/RadG also L is semisimple. It is named
a Levi subalgebra. >>

Relying on this definition we can state the following fundamental theorem:
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Theorem 2.3.4. << Let G be a Lie algebra and denote Q ≡ RadG. Every G admits Levi
subalgebras. Furthermore if L ⊂ G is a Levi subalgebra of G, it is also a Levi subalgebra of DG
and

DG = [Q , G]⊕ L (2.3.47)

is a Levi decomposition of DG. >>

In order to prove theorem 2.3.4 we need the following lemma:

Lemma 2.3.3. << Let H be a Lie algebra and Q its radical. If A ⊂ H is an ideal such that H/A
is semisimple, then Q v A. Furthermore, if π is a homomorphism of H onto an algebra H ′, then
π (Q) is the radical of H ′ >>

Proof 2.3.3.1. Consider the natural map:

τ : H → H/A (2.3.48)

that to each element h ∈ H associates the equivalence class h+A. If Q " A we have that τ (Q)
is a non zero and solvable ideal of H/A. Indeed, under the homomorphism τ the ideal Q flows
into an ideal τ (Q). Furthermore under the homomorphism we have Dτ (Q) = τ (DG) so that if
Q is solvable, the same is true also for τ (Q). The existence of a solvable ideal is in contradiction
with the assumption that H/A is semisimple. Hence Q ⊆ A, necessarily.

Let us come to the second part of the lemma and let Q ′ = RadH ′. The homomorphism π
induces a homomorphism of H/Q in H ′/π (Q), hence since H/Q is semisimple, also H/π (Q) is
semisimple. Therefore, relying on the previous result Q ′ ⊂ π (Q). On the other hand π (Q) is a
solvable ideal of H. This implies π (Q) ⊂ Q ′. We conclude π (Q) = Q ′ and the lemma is proved.
¥

Let us now come to the proof of the main theorem 2.3.4.

Proof 2.3.4.1. The proof of theorem 2.3.4 is by induction on the dimension of the radical dimQ.
If dimQ = 0, then G is semisimple and it is by itself a Levi subalgebra. Let us then assume that
dimQ ≥ 1 and that Levi subalgebras do exist for any Lie algebra G ′ such that dimRadG ′ <
dimRadG. Consider two cases:

1st Case The radical Q is non abelian, namely (DQ 6= 0).

As we know DQ is by itself an ideal. Hence consider the Lie algebra G ′ ≡ G/DQ and let π
be the natural map:

π : G → G ′ ≡ G/DQ (2.3.49)

Relying on the lemma 2.3.3 we have: Q ′ = RadG ′ = π [Q]. Hence:

Q ′ = Q/DQ ⇒ dimQ ′ < dim Q (2.3.50)

By induction hypothesis G ′ admits a Levi subalgebra M ′ and we have, as vector spaces:

G ′ = Q ′ ⊕M ′ (2.3.51)

Define M0 = π−1 (M ′). We obtain:

G = π−1 (G ′) = Q⊕M0 (2.3.52)
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Furthermore it is true that DQ = Q
⋂
M0 (indeed the common elements of Q andM0 must

be contained in the kernel of π, namely π−1 (0)). Hence DQ is a solvable ideal of M0 and
sinceM0/DQ ∼M ′ = semisimple algebra, then DQ ⊂ RadM0. Yet in force of lemma 2.3.3
we also have RadM0 ⊂ DQ which implies RadM0 = DQ. Since Q is solvable by definition
we have: dimDQ < dimQ. Then by induction hypothesis we conclude that M0 admits a
Levi decomposition:

M0 = L⊕DQ ; L
⋂
DQ = 0 (2.3.53)

from which we conclude:
G = L⊕Q (2.3.54)

and the theorem is proved in this case.

2nd Case The radical Q is abelian, namely (DQ = 0).

To prove the theorem in this case we have to use theorem 2.3.3 stating that the second
cohomology group of a semisimple Lie algebra vanishes. Define G1 = G/Q (so that G1 is
semisimple) and let π be the natural map of G onto G1. Let µ be any linear map of G1

into G such that π ◦ µ = 1. For each X1 ∈ G1 define ρ (X1) the endomorphism ad (X) |Q
where X is such that π (X) = X1. Since Q is abelian this is a well posed definition. Indeed
X1 = X +Q and ∀q ∈ Q :

ρ (X1) q = [X +Q , q] = [X , q] (2.3.55)

The map X1 7→ ρ (X1) is a linear representation of the semisimple Lie algebra G1 on the
vector space Q. Obviously ρ (X1) = adµ (X1) |G. Next define:

∀X,Y ∈ G1 : θ (X , Y ) ≡ [µ (X) , µ (Y )]− µ ([X , Y ]) (2.3.56)

Since π is a homomorphism and π◦µ = id then we have that π (θ (X , Y )) = 0 ⇒ θ (X , Y ) ∈
Q. This guarantees that θ ∈ V 2 (G1 , ρ) is a 2-cochain of the Lie Algebra G1 relative to the
representation ρ. By direct calculation and use of Jacobi identity we can immediately verify
that θ is actually a 2–cycle, namely dθ = 0. Since the second cohomology group vanishes for
semisimple Lie algebra H2 (G1 , ρ) = 0, it follows that there exists a linear map

∃ν : G1 7→ Q (2.3.57)

such that dν = θ, namely:

[µ (X) , µ (Y )]−µ ([X , Y ]) = [µ (X) , µ (Y )]− [µ (X) , ν (Y )]− [µ (Y ) , ν (X)]− ν ([X , Y ])
(2.3.58)

Since ν (X) ∈ Q we have [ν (X) , ν (Y )] = 0. Hence defining:

λ (X) = µ (X)− ν (X) (2.3.59)

we see that λ : G1 7→ G1 is a homomorphism. It is also evident that π ◦λ = id. So we have
found a map λ : G1 7→ G which is a homomorphism of algebras. It follows that λ (G1) ⊂ G
is a subalgebra. Furthermore by construction:

G = Q⊕ λ (G1) ; Q
⋂
λ (G1) = 0 (2.3.60)

Hence λ (G1) is a Levi subalgebra and we have completed the induction argument also in
this case.

The theorem is proved. ¥
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2.3.4 An illustrative example: the Galilei group

The invariance group of classical non relativistic mechanics is the Galilei group which consists of
the following transformations on the space–time manifold whose points are labeled by the three
space coordinates xi and by the instant of time t:

(
xi

t

)
7→

(
xi′

t′

)
(2.3.61)

where {
xi′ = Ri

j x
j + vi t+ ci

t′ = t+ T
(2.3.62)

and
Ri

j = rotation matrix RRT = 1
xi 7→ xi + ci is a translation
xi 7→ xi + vi t corresponds to a special Galilei transformation
t 7→ t+ T corresponds to a time translation

(2.3.63)

The total number of parameters is 10 just as for the relativistic Poincaré group. Let us write the
corresponding Lie algebra. For the rotations we have the angular momentum generators:

Jij = xi ∂j − xj ∂i → Ji = εijk xj ∂k (2.3.64)

for the space translations we have the momentum generators

Pi = ∂i (2.3.65)

while the galileian boosts are generated by:

Ki = t ∂i (2.3.66)

Finally the hamiltonian generates time translations:

H = ∂t (2.3.67)

By explicit evaluation of the commutators we find that the Galilei Lie algebra has the following
structure:

[Ji , Jj ] = εijk Jk ; [Ji , Pj ] = − εijk Pk
[Ji , Kj ] = − εijkKk ; [Ji , H] = 0
[Pi , H] = 0 ; [Pi , Pj ] = 0
[Ki , H] = −Pi ; [Ki , Kj ] = 0
[Pi , Kj ] = 0

(2.3.68)

We can ask the question whether the Galilei algebra G is semisimple. The answer is no. Indeed
Pi (i = 1, 2, 3 ) generate an abelian ideal since we easily verify that [P , X] ⊂ P , ∀X ∈ G, so
that P is an ideal. Next we inquiry whether G is solvable. The derivative algebra DG is made
by Ji, Pi,Ki. We easily verify, however, that D2G = DG so that G is not solvable. On the other
hand if we consider the subalgebra S(0) generated by {P,K,H} we see that:

DS(0) = S(1) = {P} ; DS(1) = {0} (2.3.69)

so that S(0) is solvable. The algebra generated by Ji is instead semisimple. Hence the Galilei
algebra is, according to Levi’s theorem, the direct product of a semisimple algebra with a solvable
one.
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2.4 The Adjoint representation and Cartan’s Criteria

Let us now introduce the concept of adjoint representation of a Lie algebra G. Given such an
algebra, to each element X ∈ G we can associate a linear endomorphism:

adX : G → G (2.4.70)

defined by:
∀Y ∈ G : adX(Y ) ≡ [X , Y ] (2.4.71)

If we choose a basis {TA} we immediately get.

(adX)
B

A = XM f B
MA (2.4.72)

where f B
MA are the Lie algebra structure constants, defined by:

[TA , TB ] = f C
AB TC (2.4.73)

Then we can introduce the bilinear symmetric Killing form of the Lie algebra:

κ : G ⊗ G → K (2.4.74)

defined by:
∀X,Y ∈ G : κ (X,Y ) = Tr (adX adY ) (2.4.75)

where K is the field over which the Lie algebra is constructed, namely K = C for complex Lie
algebras and K = R for real Lie algebras.

In a basis we obtain:

κ (X,Y ) = (adX)
B

A (adY )
A

B = XM Y N f B
MA f A

NB

= XM Y N g
(Killing)
MN (2.4.76)

where the symmetric tensor g
(Killing)
MN = f B

MA f A
NB is named the Killing metric.

2.4.1 Cartan’s Criteria

Whether a Lie algebra is solvable or semisimple is fully encoded in the properties of the Killing
form which therefore provides a very useful global tool to test the structure of the Lie algebra.
That this is the case is established by two simple but very important theorems that go under the
name of Cartan’s criteria.

The first Cartan’s criterion establishes a test of solvability and is provided by the following
theorem.

Theorem 2.4.1. << A Lie algebra G is solvable if and only if

∀X,Y, Z ∈ G κ (X , [Y , Z]) = 0 (2.4.77)

>>

Proof 2.4.1.1. piripicchio nil radical ¥

The second Cartan’s criterion, which uses the first in its own proof is a test of semi–simplicity.
It is given by the following theorem.
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Theorem 2.4.2. << A Lie algebra G is semisimple if and only if the Killing form κ ( , ) on G is
non degenerate. >>

Proof 2.4.2.1. We recall that a bilinear form κ ( , ) on a vector space G is degenerate if ∃X ∈ G
such that ∀Y ∈ G we have κ (X , Y ) = 0. In a basis Xi this implies that the determinant of the
matrix κij = κ (Xi , Xj) vanishes detκij = 0.

To prove the theorem we have to show that the following statements are both true:

a) If G is semisimple then κ is non degenerate.
b) If κ is non degenerate then G is semisimple.

Let us begin with the case a and let us assume that κ is degenerate, namely the set:

B = {X : κ(X , Y ) = 0 , ∀Y ∈ G} (2.4.78)

is non empty. We can immediately verify that B is an ideal of G. Indeed ∀X ∈ B and ∀Z ∈ G
we have [X , Y ] ∈ B since κ ([X,Z] , Y ) = 0 ∀Y ∈ G. This follows from the properties of the
Killing form that imply κ ([X,Z] , Y ) = κ (X , [X,Y ]) = 0. Next we can show that:

∀X,X ′ ∈ B : κ (X , X ′) = κB (X , X ′) (2.4.79)

where κB (, ) denotes the restriction of the Killing form to ideal B. Indeed, given Z ∈ G we have:

adX adX′ Z = [X, [X ′ , Z]] ∈ B since [X ′ , Z] ∈ B (2.4.80)

This means that the image of the linear map adX adX′ is contained in the ideal B which implies
that the only contribution to the trace come from its restriction to the subspace B. By our
definition of the ideal B we have κ (X , X ′) = 0 for all X,X ′ ∈ B, which by the above argument
implies also κB (X , X ′) = 0. Hence the algebra G admits an ideal B whose Killing form is
identically vanishing. By the first Cartan criterion 2.4.1 it follows that the ideal B is solvable.
Yet this contradicts the assumption that the Lie algebra G was semisimple, so B is necessarily
the empty set and the Killing form is non degenerate.

Let us turn to case b). Assume that the Lie algebra G is not semisimple and let us show
that this implies that the Killing form is degenerate. If G is not semisimple there is a non–trivial
solvable ideal Q. By definition ∃k ∈ N such that:

A ≡ DkQ 6= 0 ; Dk+1Q = 0 (2.4.81)

The subalgebra A is a non–trivial abelian ideal. As a next step we show that:

∀X ∈ A , ∀Y ∈ G : κ (X , Y ) = κA (X , Y ) (2.4.82)

Indeed, given Z ∈ G we have adX ◦ adY (Z) = [X , [Y , Z]] ∈ A since A is an ideal. Hence
the image of adX ◦ adY as Z varies in G takes values only in A and therefore its trace takes
contributions only from A. This suffices to prove that eq.(2.4.82) is true. Next we observe that:

∀X ∈ A , ∀Y ∈ G we have κA (X,Y ) = 0 (2.4.83)

Indeed, given X ′ ∈ A we have adX ◦adY (X ′) = [X , [Y , X ′]] = 0 since bothX ∈ A , [Y , X ′] ∈ A
and A is abelian. Hence there is no contribution to the trace. On the other hand, in force of
eq. (2.4.82) we conclude that κ (X , Y ) = 0 for all Y ∈ G and all X ∈ A. This means that the
Killing form is degenerate unless A is empty. So there cannot be any non-trivial solvable ideal
and the algebra G has to be semisimple. This concludes the proof of the theorem. ¥


