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Chapter 1

BASIC CONCEPTS ABOUT MANIFOLDS

AND FIBRE BUNDLES

1.1 Introduction

In the chapter ?? we focused on algebraic structures and we reviewed the basic algebraic concepts
that apply both to discrete and to continuous groups. In the present chapter we turn to basic
concepts of differential geometry preparing the stage for the study of Lie groups. These latter,
which constitute the main goal of this course, arise from the consistent merging of two structures:

(i) an algebraic structure, since the elements of a Lie group G can be composed via an internal
binary operation, generically called product, that obeys the axioms of a group,

(ii) a differential geometric structure since G is an analytic differentiable manifold and the group
operation are infinitely differentiable in such a topology.

General Relativity is founded on the concept of differentiable manifolds. The mathematical model
of space–time that we adopt is given by a pair (M, g) where M is a differentiable manifold of
dimension D = 4 and g is a metric, that is a rule to calculate the length of curves connecting
points of M. In physical terms the points of M take the name of events while every physical
process is a continuous succession of events. In particular the motion of a point–like particle
is represented by a world–line, namely a curve in M while the motion of an extended object of
dimension p is given by a d = p+1 dimensional world–volume obtained as a continuous succession
of p–dimensional hypersurfaces Σp ⊂M.

Therefore, the discussion of such physical concepts is necessarily based on a collection of
geometrical concepts that constitute the backbone of differential geometry. On the other hand
differential geometry and Lie group theory

• are intimately and inextricably related and
• have amuch wider range of applications in all branches of physics and of other sciences.

since that of a manifold is the appropriate mathematical concept of a continuous space whose
points can have the most disparate interpretations and that of a group is the appropriate math-
ematical framework to deal with symmetry operations acting on that space.

For this reason we develop Lie group theory and differential geometry in an organic and
parallel way having in mind both the perspective of General Relativity and Gauge Theories for
which the present course constitutes an essential basis, but also a much more general perspective.
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1.2 Differentiable Manifolds

First and most fundamental in the list of geometrical concepts we need to introduce is that of a
manifold which corresponds, as we already explained, to our intuitive idea of a continuous space.
In mathematical terms this is, to begin with, a topological space, namely a set of elements where
one can define the notion of neighborhood and limit. This is the correct mathematical description
of our intuitive ideas of vicinity and close by points. Secondly the characterizing feature that
distinguishes a manifold from a simple topological space is the possibility of labeling its points
with a set of coordinates. Coordinates are a set of real numbers x1(p), . . . , xD(p) ∈ R associated
with each point p ∈M that tell us where we are. Actually in General Relativity each point is an
event so that coordinates specify not only its where but also its when. In other applications the
coordinates of a point can be the most disparate parameters specifying the state of some complex
system of the most general kind (dynamical, biological, economical or whatever)

In classical physics the laws of motion are formulated as a set of differential equations of
the second order where the unknown functions are the three cartesian coordinates x, y, z of a
particle and the variable is the time t. Solving the dynamical problem amounts to determine
the continuous functions x(t), y(t), z(t), that yield a parametric description of a curve in R3 or
better define a curve in R4, having included the time t in the list of coordinates of each event.
Coordinates, however, are not uniquely defined. Each observer has its own way of labeling
space points and the laws of motion take a different form if expressed in the coordinate frame
of different observers. There is however a privileged class of observers in whose frames the
laws of motion have always the same form: these are the inertial frames, that are in rectilinear
relative motion with constant velocity. The existence of a privileged class of inertial frames is
common to classical newtonian physics and to special relativity: the only difference is the form of
coordinate transformations connecting them, Galileo transformations in the first case and Lorentz
transformations in the second. This goes hand in hand with the fact that the space–time manifold
is the flat affine manifold R4 in both cases. By definition all points of RN can be covered by one
coordinate frame {xi} and all frames with such a property are related to each other by general
linear transformations, that is by the elements of the general linear group GL(N,R):

xi
′

= Ai
j x

j ; Ai
j ∈ GL(N,R) (1.2.1)

The restriction to the Galilei or Lorentz subgroups of GL(4,R) is a consequence of the different
scalar product on R4 vectors one wants to preserve in the two cases, but the relevant common
feature is the fact that the space–time manifold has a vector–space structure. The privileged
coordinate frames are those that use the corresponding vectors as labels of each point.

A different situation arises when the space–time manifold is not flat, like, for instance, the
surface of a hypersphere SN . As chartographers know very well there is no way of representing
all points of a curved surface in a single coordinate frame, namely in a single chart. However
we can succeed in representing all points of a curved surface by means of an atlas, namely by a
collection of charts each of which maps one open region of the surface and such that the union
of all these regions covers the entire surface. Knowing the transition rule, in the regions where
they overlap, from one chart to the next one, we obtain a complete coordinate description of the
curved surface by means of our atlas.

The intuitive idea of an atlas of open charts, suitably reformulated in mathematical terms,
provides the very definition of a differentiable manifold, the geometrical concept that generalizes
our notion of space–time from RN to more complicated non flat situations.

There are many possible atlases that describe the same manifold M, related to each other
by more or less complicated transformations. For a genericM no privileged choice of the atlas is
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available differently from the case of RN : here the inertial frames are singled out by the additional
vector space structure of the manifold, which allows to label each point with the corresponding
vector. Therefore if the laws of physics have to be universal and have to accommodate non–
flat space–times then they must be formulated in such a way that they have the same form in
whatsoever atlas. This is the principle of general covariance at the basis of General Relativity:
all observers see the same laws of physics.

Similarly in a wider perspective the choice of a particular set of parameters to describe the
state of a complex system should not be privileged with respect to any other choice. The laws
that govern the dynamics of a system should be intrinsic and should not depend on the set of
variables chosen to describe it.

1.2.1 Homeomorphisms and the definition of manifolds

A fundamental ingredient in formulating the notion of differential manifolds is that of homeo-
morphism.

Definition 1.2.1. << Let X and Y be two topological spaces and let h be a map:

h : X → Y (1.2.2)

If h is one–to–one and if both h and its inverse h−1 are continuous, then we say that h is a
homeomorphism >>

As a consequence of the theorems we proved in chapter ?? all topological properties are invariant
with respect to homeomorphisms. Indeed let h be a homeomorphism mapping X onto Y and
let A ⊂ X be an open subset. Its image through h, namely h(A) ⊂ Y is also an open subset in
the topology of Y . Similarly the image h(C) ⊂ Y of a closed subset C ⊂ X is a closed subset.
Furthermore for all A ⊂ X we have:

h(A) = h(A) (1.2.3)

namely the closure of the image of a set A coincides with the image of the closure.

Definition 1.2.2. << Let X and Y be two topological spaces. If there exists a homeomorphism
h : X → Y then we say that X and Y are homeomorphic. >>

It is easy to see that given a topological space X, the set of all homeomorphisms h : X → X
constitutes a group, usually denoted Hom(X). Indeed if h ∈ Hom(X) is a homeomorphism, then
also h−1 ∈ Hom(X) is a homeomorphism. Furthermore if h ∈ Hom(X) and h′ ∈ Hom(X) then
also h ◦ h′ ∈ Hom(X). Finally the identity map:

1 : X → X (1.2.4)

is certainly one–to–one and continuous and it coincides with its own inverse. Hence 1 ∈ Hom(X).
As we discuss later on for any manifold X the group Hom(X) is an example of an infinite and
continuous group.

Let now M be a topological Hausdorf space. An open chart of M is a pair (U , ϕ) where
U ⊂ M is an open subset ofM and ϕ is a homeomorphism of U on an open subset Rm ( m being
a positive integer). The concept of of open chart allows to introduce the notion of coordinates
for all points p ∈ U . Indeed the coordinates of p are the m real numbers that identify the point
ϕ(p) ∈ ϕ (U) ⊂ Rm.

Using the notion of open chart we can finally introduce the notion of differentiable structure.
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Definition 1.2.3. << Let M be a topological Hausdorf space. A differentiable structure of di-
mension m on M is an atlas A =

⋃
i∈A (Ui, ϕi) of open charts (Ui, ϕi) where ∀i ∈ A, Ui ⊂M is

an open subset and
ϕi : Ui → ϕi(Ui) ⊂ Rm (1.2.5)

is a homeomorphism of Ui in Rm namely a continuous, invertible map onto an open subset of
Rm such that the inverse map

ϕ−1
i : ϕi(Ui) → Ui ⊂ M (1.2.6)

is also continuous (see fig.1.1). The atlas must fulfill the following axioms:

M1 It covers M, namely ⋃

i

Ui =M (1.2.7)

so that each point ofM is contained at least in one chart and generically in more than one:
∀ p ∈M 7→ ∃ (Ui, ϕi) /p ∈ Ui.

M2 Chosen any two charts (Ui, ϕi), (Uj , ϕj) such that Ui
⋂
Uj 6= ∅ on the intersection

Uij
def
= Ui

⋂
Uj (1.2.8)

there exist two homeomorphisms:

ϕi : Uij
⋂

Uj → ϕi (Uij) ⊂ Rm

ϕj : Uij
⋂

Uj → ϕj (Uij) ⊂ Rm (1.2.9)

and the composite map:

ψij
def
= ϕj ◦ ϕ

−1
i

ψij : ϕi(Uij) ⊂ Rm → ϕj(Uij) ⊂ Rm (1.2.10)

named the transition function which is actually an m–tuplet of m real functions of m real
variables is requested to be differentiable (see fig.1.2)

M3 The collection (Ui, ϕi)i∈A is the maximal family of open charts for which both M1 and M2

hold true.

>>

Next we can finally introduce the definition of differentiable manifold.

Definition 1.2.4. << A differentiable manifold of dimension m is a topological space M that
admits at least one differentiable structure (Ui, ϕi)i∈A of dimension m. >>

The definition of a differentiable manifold is constructive in the sense that it provides a way to
construct it explicitly. What one has to do is to give an atlas of open charts (Ui, ϕi) and the
corresponding transition functions ψij which should satisfy the necessary consistency conditions:

∀ i, j ψij = ψ−1
ji (1.2.11)

∀ i, j, k ψij ◦ ψjk ◦ ψki = 11 (1.2.12)
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Figure 1.1. An open chart is a homeomorphism of an open subset Ui of the manifold M onto an open

subset of Rm

In other words a general recipe to construct a manifold is to specify the open charts and how
they are glued together. The properties assigned to a manifold are the properties fulfilled by its
transition functions. In particular we have:

Definition 1.2.5. << A differentiable manifoldM is said to be smooth if the transition functions
(1.2.10) are infinitely differentiable

M is smooth ⇔ ψij ∈ C∞ (Rm) (1.2.13)

>>

Similarly one has the definition of a complex manifold.

Definition 1.2.6. << A real manifold of even dimension m = 2ν is complex of dimension ν if
the 2ν real coordinates in each open chart Ui can be arranged into ν complex numbers so that
eq.(1.2.5) can be replaced by

ϕi : Ui → ϕi(Ui) ⊂ Cν (1.2.14)

and the transition functions ψij are holomorphic maps:

ψij : ϕi(Uij) ⊂ Cν → ϕj(Uij) ⊂ Cν (1.2.15)

>>

Although the constructive definition of a differentiable manifold is always in terms of an atlas, in
many occurrences we can have other intrinsic global definitions of whatM is and the construction
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Figure 1.2. A transition function between two open charts is a differentiable map from an open subset

of Rm to another open subset of the same.

of an atlas of coordinate patches is an a posteriori operation. Typically this happens when the
manifold admits a description as an algebraic locus. The prototype example is provided by the
SN sphere which can be defined as the locus in RN+1 of points with distance r from the origin:

{Xi} ∈ SN ⇔
N+1∑

i=1

X2
i = r2 (1.2.16)

In particular forN = 2 we have the familiar S2 which is diffeomorphic to the compactified complex
plane C

⋃
{∞}. Indeed we can easily verify that S2 is a one–dimensional complex manifold

considering the atlas of holomorphic open charts suggested by the geometrical construction named
the stereographic projection. To this effect consider the picture in fig.1.3 where we have drawn
the two–sphere S2 of radius r = 1 centered in the origin of R3. Given a generic point P ∈ S2 we
can construct its image on the equatorial plane R2 ∼ C drawing the straight line in R3 that goes
through P and through the North Pole of the sphere N . Such a line will intersect the equatorial
plane in the point PN whose value zN as a complex number we can identify with the complex
coordinate of P in the open chart under consideration:

ϕN (P ) = zN ∈ C (1.2.17)

Alternatively we can draw the straight line through P and the South Pole S. This intersects the
equatorial plane in another point PS whose value as a complex number z?S is just the reciprocal
of the complex conjugate of zN : z?S = 1/z?N . We can take zS as the complex coordinate of the
same point P . In other words we have another open chart:

ϕS(P ) = zS ∈ C (1.2.18)

What is the domain of these two charts, namely what are the open subsets UN and US? This is
rather easily established considering that the North Pole projection yields a finite result zN <∞
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Figure 1.3. Stereographic projection of the two sphere

for all points P except the North Pole itself. Hence UN ⊂ S2 is the open set obtained by
subtracting one point (the North Pole) to the sphere. Similarly the South Pole projection yields
a finite result for all points P except the South Pole itself and US is S2 minus the south pole.
More definitely we can choose for UN and US any two open neighborhoods of the South and
North Pole respectively with non vanishing intersection (see fig.1.4). In this case the intersection
UN

⋂
US is a band wrapped around the equator of the sphere and its image in the complex

equatorial plane is a circular corona that excludes both a circular neighborhood of the origin and
a circular neighborhood of infinity. On such an intersection we have the transition function:

ψNS : zN =
1

zS
(1.2.19)

which is clearly holomorphic and satisfies the consistency conditions in eq.s (1.2.11,1.2.12). So
we see that the S2 is a complex 1–manifold that can be constructed with an atlas composed of
two open charts related by the transition function (1.2.19). Obviously a complex 1–manifold
is a fortiori a smooth real 2–manifold. The reason why manifolds with infinitely differentiable
transition functions are named smooth is not without a reason. Indeed they correspond to our
intuitive notion of smooth hypersurfaces without conical points or edges. Indeed the presence of
such defects manifests itself through the lack of differentiability in some regions.

1.2.2 Functions on manifolds

Manifolds being the mathematical model of possible space–times are the geometrical support of
physics. They are the arenas where physical processes take place and where physical quantities
take values. Mathematically this implies that calculus, originally introduced on RN must be
extended to manifolds. The physical entities defined on manifolds we shall deal with are mathe-
matically characterized as scalar functions, vector fields, tensor fields, differential forms, sections
of more general fibre–bundles. We introduce these basic geometrical notions slowly beginning
with the simplest concept of a scalar function.
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Figure 1.4. The open charts of the North and South Pole
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Definition 1.2.7. << A real scalar function on a differentiable manifold M is a map:

f : M → R (1.2.20)

that assigns a real number f(p) to every point p ∈M of the manifold. >>

The properties of a scalar function, for instance its differentiability, are the properties character-
izing its local description in the various open charts of an atlas. For each open chart (Ui, ϕi) let
us define:

fi
def
= f ◦ ϕ−1

i (1.2.21)

By construction

fi : Rm ⊃ ϕi(Ui) → R (1.2.22)

is a map of an open subset of Rm into the real line R, namely a real function ofm real variables (see

fig. 1.5). The collection of the real functions fi(x
(i)
1 , . . . , x

(i)
m ) constitute the local description of

Figure 1.5. Local description of a scalar function on a manifold
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the scalar function f . The function is said to be continuous, differentiable, infinitely differentiable
if the real functions fi have such properties. ¿From the definition (1.2.21) of the local description
and from the definition (1.2.10) of the transition functions it follows that we must have:

∀Ui , Uj : fj = fi ◦ ψij (1.2.23)

Let x
(i)
µ be the coordinates in the patch Ui and x

(j)
µ be the coordinates in the patch Uj . For

points p that belong to the intersection Ui
⋂
Uj we have:

x(j)
µ (p) = ψ(ji)

µ

(
x

(j)
1 (p), . . . x(j)

m (p)
)

(1.2.24)

and the gluing rule (1.2.23) takes the form:

f(p) = fj

(
x(j)

)
= fj

(
ψji(x

(i))
)
= fi

(
x(i)
)

(1.2.25)

The practical way of assigning a function on a manifold is therefore that of writing its local
description in the open charts of an atlas taking care that the various fi glue together correctly,
namely through equation (1.2.23). Although the number of continuous and differentiable func-
tions one can write on any open region of Rm is infinite, the smooth functions globally defined
on a non trivial manifold can be very few. Indeed it is only occasionally that we can consistently
glue together various local functions fi ∈ C∞(Ui) into a global f . When this happens we say
that f ∈ C∞(M).

All what we said about real functions can be trivially repeated for complex functions. It
suffices to replace R by C in eq. (1.2.20).

1.2.3 Germs of smooth functions

The local geometry of a manifold is studied by considering operations not on the space of smooth
functions C∞(M) which, as just explained, can be very small, but on the space of germs of
functions defined at each point p ∈ M that is always an infinite dimensional space.

Definition 1.2.8. << Given a point p ∈ M the space of germs of smooth functions at p, denoted
C∞p is defined as follows. Consider all the open neighborhoods of p, namely all the open subsets
Up ⊂ M such that p ∈ Up. Consider the space of smooth functions C∞(Up) on each Up. Two
functions f ∈ C∞ (Up) and g ∈ C∞

(
(U ′p
)
are said to be equivalent if they coincide on the

intersection Up
⋃
U ′p (see fig.1.6):

f ∼ g ⇔ f |Up
⋂
U ′p

= g|Up
⋂
U ′p

(1.2.26)

The union of all the spaces C∞ (Up) modded by the equivalence relation (1.2.26) is the space of
germs of smooth functions at p:

C∞p ≡

⋃
Up

C∞ (Up)

∼
(1.2.27)

>>

What underlies the above definition of germs is the familiar principle of analytic contin-
uation. Of the same function we can have different definitions that have different domains of
validity: apparently we have different functions but if they coincide on some open region than we
consider them just as different representations of a single function. Given any germ in some open
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Figure 1.6. A germ of smooth function is the equivalence class of all locally defined function that

coincide in some neighborhood of a point p

neighborhood Up we try to extend it to a larger domain by suitably changing its representation.
In general there is a limit to such extension and only very special germs extend to globally defined
functions on the whole manifoldM. For instance the power series

∑
k∈N zk defines a holomorphic

function within its radius of convergence |z| < 1. As everybody knows within the convergence
radius the sum of this series coincides with 1/(1−z) which is a holomorphic function defined on a
much larger neighborhood of z = 0. According to our definition the two functions are equivalent
and correspond to two different representatives of the same germ. The germ, however, does not
extend to a holomorphic function on the whole Riemann sphere C

⋃
∞ since it has a singularity

in z = 1. Indeed, as stated by Liouville theorem, the space of global holomorphic functions on
the Riemann sphere contains only the constant function.

1.3 Tangent and Cotangent Spaces

In elementary geometry the notion of a tangent line is associated with the notion of a curve.
Hence to introduce tangent vectors we have to begin with the notion of curves in a manifold.

Definition 1.3.1. << A curve C in a manifold M is a continuous and differentiable map of an
interval of the real line (say [0, 1] ⊂ R) into M:

C : [0, 1] 7→ M (1.3.28)

In other words a curve is one–dimensional submanifold C ⊂ M (see fig.1.7). >>

There are curves with a boundary, namely C(0)
⋃
C(1) and open curves that do not contain

their boundary. This happens if in equation (1.3.28) we replace the closed interval [0, 1] with the
open interval ]0, 1[. Closed curves or loops correspond to the case where the initial and final point
coincide, that is when pi ≡ C(0) = C(1) ≡ pf . Differently said
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Figure 1.7. A curve in a manifold is a continuous map of an interval of the real line into the manifold

itself

Definition 1.3.2. << A closed curved is a continuous differentiable map of a circle into the man-
ifold:

C : S1 7→ M (1.3.29)

>>

Indeed, identifying the initial and final point means to consider the points of the curve as being
in one–to–one correspondence with the equivalence classes

R/Z ≡ S1 (1.3.30)

which constitute the mathematical definition of the circle. Explicitly eq.(1.3.30) means that two
real numbers r and r′ are declared to be equivalent if their difference r′ − r = n is an integer
number n ∈ Z. As representatives of these equivalence classes we have the real numbers contained
in the interval [0, 1] with the proviso that 0 ∼ 1.

We can also consider semiopen curves corresponding to maps of the semiopen interval [0, 1[
into M. In particular, in order to define tangent vectors we are interested in open branches of
curves defined in the neighborhood of a point.

1.3.1 Tangent vectors in a point p ∈M

For each point p ∈M let us fix an open neighborhood Up ⊂M and let us consider the semiopen
curves of the following type: {

Cp : [0, 1[ 7→ Up
Cp(0) = p

(1.3.31)

In other words for each point p let us consider all possible curves Cp(t) that go trough p (see
fig.1.8).
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Figure 1.8. In a neighborhood Up of each point p ∈ M we consider the curves that go through p

Intuitively the tangent in p to a curve that starts from p is the vector that specifies the
curve’s initial direction. The basic idea is that in an m–dimensional manifold there are as many
directions in which the curve can depart as there are vectors in Rm: furthermore for sufficiently
small neighborhoods of p we cannot tell the difference between the manifold M and the flat
vector space Rm. Hence to each point p ∈M of a manifold we can attach an m–dimensional real
vector space

∀ p ∈ M : p 7→ TpM dimTpM = m (1.3.32)

which parametrizes the possible directions in which a curve starting at p can depart. This vector
space is named the tangent space to M at the point p and is, by definition, isomorphic to Rm,
namely TpM ∼ Rm. For instance to each point of an S2 sphere we attach a tangent plane R2

(see fig.1.9)

Figure 1.9. The tangent space in a generic point of an S2 sphere

Let us now make this intuitive notion mathematically precise. Consider a point p ∈M and
a germ of smooth function fp ∈ C∞p (M). In any open chart (Uα, ϕα) that contains the point p,
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the germ fp is represented by an infinitely differentiable function of m–variables:

fp

(
x

(α)
1 , . . . , x(α)

m

)
(1.3.33)

Let us now choose an open curve Cp(t) that lies in Uα and starts at p:

Cp(t) :

{
Cp : [0, 1[ 7→ Uα
Cp(0) = p

(1.3.34)

and consider the composed map:

fp ◦ Cp : [0, 1[⊂ R 7→ R (1.3.35)

which is a real function
fp (Cp(t)) ≡ gp(t) (1.3.36)

of one real variable (see fig.1.10)

Figure 1.10. The composed map fp ◦ Cp where fp is a germ of smooth function in p and Cp is a curve

departing from p ∈ M

We can calculate its derivative with respect to t in t = 0 which in the open chart (Uα, ϕα)
reads as follows:

d

dt
gp(t) |t=0 =

∂fp
∂xµ

·
dxµ

dt
|t=0 (1.3.37)

We see from the above formula that the increment of any germ fp ∈ C∞p (M) along a curve Cp(t)
is defined through the m real coefficients:

cµ ≡
dxµ

dt
|t=0 ∈ R (1.3.38)

which can be calculated whenever the parametric form of the curve is given: xµ = xµ(t). Explic-
itly we have:

dfp
dt

= cµ
∂fp
∂xµ

(1.3.39)

Eq.(1.3.39) can be interpreted as the action of a differential operator on the space of germs of
smooth functions, namely:

~tp ≡ cµ
∂

∂xµ
⇒ ~tp : C∞p (M) 7→ C∞p (M) (1.3.40)

Indeed for any germ f and for any curve

~tpf =
dxµ

dt
|t=0

∂f

∂xµ
∈ C∞p (M) (1.3.41)
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is a new germ of a smooth function in the point p. This discussion justifies the mathematical
definition of tangent space:

Definition 1.3.3. << The tangent space TpM to the manifold M in the point p is the vector
space of first order differential operators on the germs of smooth functions C∞p (M) >>

Next let us observe that the space of germs C∞p (M) is an algebra with respect to linear com-
binations with real coefficients (αf + βg) (p) = αf(p) + βg(p) and pointwise multiplication
f · g(p) ≡ f(p) g(p):

∀α, β ∈ R ∀ f, g ∈ C∞p (M) α f + β g ∈ C∞p (M)
∀ f, g ∈ C∞p (M) f · g ∈ C∞p (M)

(α f + β g) · h = α f · h + β g · h
(1.3.42)

and a tangent vector ~tp is a derivation of this algebra.

Definition 1.3.4. << A derivation D of an algebra A is a map:

D : A 7→ A (1.3.43)

that

(i) is linear
∀α, β ∈ R ∀ f, g ∈ A : D (αf + βg) = αDf + βDg (1.3.44)

(ii) obeys Leibnitz rule

∀ f, g ∈ A : D f · g = Df · g + f · Dg (1.3.45)

>>

That tangent vectors fit into the definition 1.3.4 is clear from their explicit realization as differ-
ential operators eq.s (1.3.40,1.3.41). It is also clear that the set of derivations D[A] of an algebra
constitutes a real vector space. Indeed a linear combination of derivations is still a derivation,
having set:

∀α, β ∈ R, ∀D1,D2 ∈ D[A], ∀ f ∈ A : (αD1 + βD2) f = αD1f + βD2f (1.3.46)

Hence an equivalent and more abstract definition of tangent space is the following:

Definition 1.3.5. << The tangent space to a manifold M at the point p is the vector space of
derivations of the algebra of germs of smooth functions in p:

TpM ≡ D
[
C∞p (M)

]
(1.3.47)

>>

Indeed for any tangent vector (1.3.40) and for any pair of germs f, g ∈ C∞p (M) we have:

~tp (αf + βg) = α~tp (f) + β~tp (g)

~tp (f · g) = ~tp (f) · g + f · ~tp (g) (1.3.48)

In each coordinate patch a tangent vector is, as we have seen, a first order differential operator
singled out by its components, namely by the coefficients cµ. In the language of tensor calculus the
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tangent vector is identified with the m–tuplet of real numbers cµ. The relevant point, however,
is that such m–tuplet representing the same tangent vector is different in different coordinate
patches. Consider two coordinate patches (U,ϕ) and (V, ψ) with non vanishing intersection.
Name xµ the coordinate of a point p ∈ U

⋂
V in the patch (U,ϕ) and yα the coordinate of the

same point in the patch (V, ψ). The transition function and its inverse are expressed by setting:

xµ = xµ (y) ; yα = yα (x) (1.3.49)

Then the same first order differential operator can be alternatively written as:

~tp = cµ
~∂

∂xµ
or ~tp = cµ

(
∂yα

∂xµ

) ~∂

∂yα
= cα

~∂

∂yα
(1.3.50)

having defined:

cα ≡ cµ
(
∂yα

∂xµ

)
(1.3.51)

Eq.(1.3.51) expresses the transformation rule for the components of a tangent vector from one
coordinate patch to another one (see fig.1.11).

Figure 1.11. Two coordinate patches

Such a transformation is linear and the matrix that realizes it is the inverse of the Jacobian
matrix (∂y/∂x) = (∂x/∂y)

−1
. For this reason we say that the components of a tangent vector

constitute a controvariant world vector. By definition a covariant world vector transforms instead
with the Jacobian matrix. We will see that covariant world vectors are the components of a
differential form.

1.3.2 Differential forms in a point p ∈M

Let us now consider the total differential of a function (better of a germ of smooth function)
when we evaluate it along a curve. ∀f ∈ C∞p (M) and for each curve c(t) starting at p we have:

d

dt
f (c(t)) |t=0 = cµ

~∂

∂xµ
f ≡ ~tp f (1.3.52)
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where we have named ~tp = dcµ

dt
|t=0

~∂
∂xµ

the tangent vector to the curve in its initial point p.
So, fixing a tangent vector means that for any germ f we know its total differential along the
curve that admits such a vector as tangent in p. Let us now reverse our viewpoint. Rather than
keeping the tangent vector fixed and letting the germ f vary let us keep the germ f fixed and let
us consider all possible curves that depart from the point p. We would like to evaluate the total
derivative of the germ df

dt
along each curve. The solution of such a problem is easily obtained:

given the tangent vector ~tp to the curve in p we have df/dt = ~tpf . The moral of this tale is
the following: the concept of total differential of a germ is the dual of the concept of tangent
vector. Indeed we recall from linear algebra that the dual of a vector space is the space of linear
functionals on the vector space and our discussion shows that the total differential of a germ is
precisely a linear functional on the tangent space TpM.

Definition 1.3.6. << The total differential dfp of a smooth germ f ∈ C∞p (M) is a linear functional
on TpM such that

∀~tp ∈ TpM dfp
(
~tp
)

= ~tp f

∀~tp,~kp ∈ TpM, ∀α, β ∈ R dfp

(
α~tp + β~kp

)
= αdfp

(
~tp
)
+ βdfp

(
~kp

) (1.3.53)

>>

The linear functionals on a finite dimensional vector space V constitute a vector space V? (the
dual) with the same dimension. This justifies the following

Definition 1.3.7. <<We name cotangent space to the manifoldM in the point p the vector space
CTpM of linear functionals (or 1–forms in p) on the tangent space TpM:

CTpM ≡ Hom (TpM,R) = (TpM)
?

(1.3.54)

>>

So we name differential 1–forms in p the elements of the cotangent space and ∀ωp ∈ CTpM we
have:

1) ∀~tp ∈ TpM ωp
(
~tp
)
∈ R

2) ∀α, β ∈ R, ∀~tp,~kp ∈ TpM ωp

(
α~tp + β~kp

)
= αωp

(
~tp
)
+ βωp

(
~kp

) (1.3.55)

The reason why the above linear functionals are named differential 1–forms is that in every
coordinate patch {xµ} they can be expressed as linear combinations of the coordinate differentials:

ωp = ωµ dx
µ (1.3.56)

and their action on the the tangent vectors is expressed as follows:

~tp = cµ
~∂

∂xµ
⇒ ωp

(
~tp
)
= ωµ c

µ ∈ R (1.3.57)

Indeed in the particular case where the 1–form is exact (namely it is the differential of a germ)
ωp = dfp we can write ωp = ∂f/∂xµ dxµ and we have dfp

(
~tp
)
≡ ~tpf = cµ ∂f/∂xµ. Hence when

we extend our definition to differential forms that are not exact we continue to state the same
statement, namely that the value of the 1–form on a tangent vector is given by eq. (1.3.57).
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Summarizing, in each coordinate patch, a differential 1–form in a point p ∈M has the rep-
resentation (1.3.56) and its coefficients ωµ constitute a controvariant vector. Indeed, in complete
analogy to eq. (1.3.50), we have

ωp = ωµ dx
µ or ωp = ωµ

(
∂xµ

∂yα

)
dyα = ωα dy

α (1.3.58)

having defined:

ωα ≡ ωµ

(
∂xµ

∂yα

)
(1.3.59)

Finally the duality relation between 1–forms and tangent vectors can be summarized writing the
rule:

dxµ

(
~∂

∂xν

)
= δµν (1.3.60)

1.4 Fibre bundles

The next step we have to take is gluing together all the tangent TpM and cotangent spaces CTpM
we have discussed in the previous sections. The result of such a gluing procedure is not a vector
space, rather it is a vector bundle. Vector bundles are specific instances of the more general
notion of fibre bundles.

The concept of fibre bundle is absolutely central in contemporary physics and provides the
appropriate mathematical framework to formulate modern field theory since all the fields one can
consider are either sections of associated bundles or connections on principal bundles. There are
two kinds of fibre–bundles:

(i) principal bundles
(ii) associated bundles

The notion of a principal fibre–bundle is the appropriate mathematical concept underlying the
formulation of gauge theories that provide the general framework to describe the dynamics of all
non–gravitational interactions. The concept of a connection on such principal bundles codifies
the physical notion of the bosonic particles mediating the interaction, namely the gauge bosons,
like the photon, the gluon or the graviton. Indeed, gravity itself is a gauge theory although of a
very special type. On the other hand the notion of associated fibre–bundles is the appropriate
mathematical framework to describe matter fields that interact through the exchange of the gauge
bosons.

Also from a more general viewpoint and in relation with all sort of applications the notion of
fibre–bundles is absolutely fundamental. As we already emphasized, the points of a manifold can
be identified with the possible states of a complex system specified by an m–tuplet of parameters
x1, . . . xm. Real or complex functions of such parameters are the natural objects one expects
to deal with in any scientific theory that explains the phenomena observed in such a system.
Yet, as we already anticipated, calculus on manifolds that are not trivial as the flat Rm cannot
be confined to functions, which is a too restrictive notion. The appropriate generalization of
functions is provided by the sections of fibre–bundles. Locally, namely in each coordinate patch,
functions and sections are just the same thing. Globally, however, there are essential differences.
A section is obtained by gluing together many local functions by means of non trivial transition
functions that reflect the geometric structure of the fibre–bundle.
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To introduce the mathematical definition of a fibre–bundle we need to anticipate the defini-
tion of a Lie group which will be the topic of several later sections

Definition 1.4.1. << A Lie group G is:

• A group from the algebraic point of view, namely a set with an internal composition law,
the product

∀ g1 g2 ∈ G g1 · g2 ∈ G (1.4.61)

• A smooth manifold of finite dimension dimG = n < ∞ whose transition function are not
only infinitely differentiable but also real analytic, namely they admit an expansion in power
series.
• In the topology defined by the manifold structure the two algebraic operations of taking the
inverse of an element and performing the product of two elements are real analytic (admit a
power series expansion).

>>

The last point in the definition (1.4.1) deserves a more extended explanation. To each group
element the product operation associates two maps of the group into itself:

∀ g ∈ G : Lg : G → G : g′ → Lg (g
′) ≡ g′ · g

∀ g ∈ G : Rg : G → G : g′ → Rg (g
′) ≡ g · g′

(1.4.62)

respectively named the left translation and the right translation. Both maps are required to be
real analytic for each choice of g ∈ G. Similarly the group structure induces a map:

(·)−1 : G → G : g → g−1 (1.4.63)

which is also required to be real analytic.
Coming now to fibre–bundles let us begin by recalling that a pedagogical and pictorial

example of such spaces is provided by the celebrated picture by Escher of an ant crawling on a
Mobius strip (see fig.1.12)

The basic idea is that if we consider a piece of the bundle this cannot be distinguished from a
trivial direct product of two spaces, an open subset of the base manifold and the fibre. In fig.1.12
the base manifold is the strip and the fibre is the the space containing all possible positions of the
ant. However, the relevant point is that, globally, the bundle is not a direct product of spaces. If
the ant is placed in some orientation at a certain point on the strip, taking her around the strip
she will be necessarily reversed at the end of her trip.

Hence the notion of fibre–bundle corresponds to that of a differentiable manifold P with
dimension dimP = m+n that locally looks like the direct product U ×F of an open manifold U
of dimension dimU = m with another manifold F (the standard fibre) of dimension dimF = n.
Essential in the definition is the existence of a map:

π : P 7→ M (1.4.64)

named the projection from the total manifold P of dimension m+n to a manifoldM of dimension
m, named the base manifold. Such a map is required to be continuous. Due to the difference
in dimensions the projection cannot be invertible. Indeed to every point ∀ p ∈ M of the base
manifold the projection associates a submanifold π−1(p) ⊂ P of dimension dim π−1(p) = n
composed by those points of x ∈ P whose projection onM is the chosen point p: π(x) = p. The
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Figure 1.12. Escher’s ant crawling on a Mobius strip is a pedagogical example of a fibre–bundle

submanifold π−1(p) is named the fibre over p and the basic idea is that each fibre is homeomorphic
to the standard fibre F . More precisely for each open subset Uα ⊂ M of the base manifold we
must have that the submanifold

π−1(Uα)

is homeomorphic to the direct product
Uα × F

This is precise meaning of the statement that, locally, the bundle looks like a direct product (see
fig.1.13). Explicitly what we require is the following: there should be a family of pairs (Uα, φα)
where Uα are open charts covering the base manifold

⋃
α Uα = M and φα are maps:

φα : π−1 (Uα) ⊂ P 7→ Uα ⊗ F (1.4.65)

that are required to be one–to–one, bicontinuous (=continuous, together with its inverse) and to
satisfy the property that:

π ◦ φ−1
α (p, f) = p (1.4.66)
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Namely the projection of the image in P of a base manifold point p times some fibre point f is
p itself.

Figure 1.13. A fibre–bundle is locally trivial

Each pair (Uα, φα) is named a local trivialization. As for the case of manifolds, the in-
teresting question is what happens in the intersection of two different local trivializations. In-
deed if Uα

⋂
Uβ 6= ∅, then we also have π−1 (Uα)

⋂
π−1 (Uβ) 6= ∅. Hence each point x ∈

π−1 (Uα
⋂
Uβ) is mapped by φα and φβ in two different pairs (p, fα) ∈ Uα ⊗ F and (p, fβ) ∈

Uα ⊗ F with the property, however, that the first entry p is the same in both pairs. This follows
from property (1.4.66). It follows that there must exist a map:

tαβ ≡ φ−1
β ◦ φα :

(
Uα

⋂
Uβ

)
⊗ F 7→

(
Uα

⋂
Uβ

)
⊗ F (1.4.67)

named transition function which acts exclusively on the fibre points in the sense that:

∀ p ∈ Uα
⋂
Uβ , ∀ f ∈ F tαβ(p, f) = (p, tαβ(p).f)) (1.4.68)

where for each choice of the point p ∈ Uα
⋂
Uβ ,

tαβ(p) : F 7→ F (1.4.69)

is a continuous and invertible map of the standard fibre F into itself (see fig.1.14)
The last bit of information contained in the notion of fibre–bundle is related with the struc-

tural group. This has to do with answering the following question: where are the transition
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Figure 1.14. Transition function between two local trivializations of a fibre–bundle

functions chosen from? Indeed the set of all possible continuous invertible maps of the stan-
dard fibre F into itself constitute a group, so that it is no restriction to say that the transition
functions tαβ(p) are group elements. Yet the group of all homeomorphisms Hom(F, F ) is very
very large and it makes sense to include into the definition of fibre bundle the request that the
transition functions should be chosen within a smaller hunting ground, namely inside some finite
dimensional Lie group G that has a well defined action on the standard fibre F .

The above discussion can be summarized into the following technical definition of fibre
bundles.

Definition 1.4.2. << A fibre bundle (P, π,M,F,G) is a geometrical structure that consists of the
following list of elements:

(i) A differentiable manifold P named the total space.
(ii) A differentiable manifold M named the base space.
(iii) A differentiable manifold F named the standard fibre.
(iv) A Lie group G, named the structure group, which acts as a transformation group on
the standard fibre:

∀ g ∈ G ; g : F −→ F {i.e. ∀ f ∈ F g.f ∈ F } (1.4.70)

(v) A surjection map π : P −→ M , named the projection. If n = dimM , m = dimF ,
then we have dimP = n + m and ∀p ∈ M , Fp = π−1 (p) is an m-dimensional manifold
diffeomorphic to the standard fibre F . The manifold Fp is named the fibre at the point p.
(vi) A covering of the base space ∪(α∈A) Uα = M , realized by a collection {Uα} of open
subsets (∀α ∈ A Uα ⊂ M), equipped with a homeomorphism:

φ−1
α : Uα × F −→ π−1 (Uα) (1.4.71)
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such that
∀p ∈ Uα, ∀f ∈ F : π · φ−1

α (p, f) = p (1.4.72)

The map φ−1
α is named a local trivialization of the bundle, since its inverse φα maps the

open subset π−1 (Uα) ⊂ P of the total space into the direct product Uα × F .
(vii) If we write φ−1

α (p, f) = φ−1
α,p (f), the map φ−1

α,p : F −→ Fp is the homeomorphism
required by point v) of the present definition. For all points p ∈ Uα∩Uβ in the intersection of
two different local trivialization domains, the composite map tαβ (p) = φα,p · φ

−1
β,p F −→ F

is an element of the structure group tαβ ∈ G, named the transition function. Furthermore
the transition function realizes a smooth map tαβ : Uα ∩ Uβ −→ G. We have

φ−1
β (p, f) = φ−1

α (p, tαβ (p) .f) (1.4.73)

>>

Just as manifolds can be constructed by gluing together open charts, fibre–bundles can be ob-
tained by gluing together local trivializations. Explicitly one proceeds as follows.

(i) First choose a base manifoldM , a typical fibre F and a structural Lie Group G whose action
on F must be well–defined.

(ii) Then choose an atlas of open neighborhoods Uα ⊂ M covering the base manifold M
(iii) Next to each non–vanishing intersection Uα

⋂
Uβ 6= ∅ assign a transition function, namely

a smooth map:

ψαβ : Uα
⋂

Uβ 7→ G (1.4.74)

from the open subset Uα
⋂
Uβ ⊂ M of the base manifold to the structural Lie group. For

consistency the transition functions must satisfy the two conditions:

∀Uα
⋂
Uβ 6= ∅ : ψβα = ψ−1

αβ

∀Uα
⋂
Uβ
⋂
Uγ 6= ∅ : ψαβ · ψβγ · ψγα = 1G

(1.4.75)

Whenever a set of local trivializations with consistent transition functions satisfying eq.(1.4.75)
has been given a fibre–bundle is defined. A different and much more difficult question to answer
is to decide whether two sets of local trivializations define the same fibre–bundle or not. We
do not address such a problem whose proper treatment is beyond the scope of this course. We
just point out that the classification of inequivalent fibre–bundles one can construct on a given
base manifold M is a problem of global geometry which can be addressed with the techniques of
algebraic topology and algebraic geometry.

Typically inequivalent bundles are characterized by topological invariants that receive the
name of characteristic classes.

In physical language the transition functions (1.4.74) from one local trivialization to another
one are the gauge transformations, namely group transformations depending on the position in
space–time (i.e. the point on the base manifold).

Definition 1.4.3. << A principal bundle P (M,G) is a fibre–bundle where the standard fibre
coincides with the structural Lie group F = G and the action of G on the fibre is the left (or
right) multiplication (see eq.(1.4.62)):

∀ g ∈ G ⇒ Lg : G 7→ G (1.4.76)

>>
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The name principal is given to the fibre–bundle in definition 1.4.3 since it is a ”father” bundle
which, once given, generates an infinity of associated vector bundles, one for each linear represen-
tation of the Lie group G.

Let us recall the notion of linear representations of a Lie group.

Definition 1.4.4. << Let V be a vector space of finite dimension dimV = m and let Hom (V, V )
be the group of all linear homomorphisms of the vector space into itself:

f ∈ Hom (V, V ) / f : V → V
∀α, β ∈ R ∀ v1, v2 ∈ V : f(αv1 + βv2) = αf(v1) + βf(v2)

(1.4.77)

A linear representation of the Lie group G of dimension n is a group homomorphism:





∀ g ∈ G g 7→ D(g) ∈ Hom(V )
∀ g1 g2 ∈ G D(g1 · g2) = D(g1) · D(g2)

D(e) = 1
∀ g ∈ G D(g−1) = [D(g)]−1

(1.4.78)

>>

Whenever we choose a basis e1, e2, . . . , en of the vector space V every element f ∈ Hom(V, V )
is represented by a matrix f j

i defined by:

f (ei) = f j
i ej (1.4.79)

Therefore a linear representation of a Lie group associates to each abstract group element g an
n × n matrix D(g) ji . As it should be known to the student, linear representations are said to be
irreducible if the vector space V admits no non–trivial vector subspace W ⊂ V that is invariant
with respect to the action of the group: ∀ g ∈ G/D(g)W ⊂ W . For simple Lie groups reducible
representations can always be decomposed into a direct sum of irreducible representations, namely
V = V1⊕V2⊕ . . .⊕Vr (with Vi irreducible) and irreducible representations are completely defined
by the structure of the group. These notions that we have recalled from group theory motivate
the definition:

Definition 1.4.5. << An associated vector bundle is a fibre–bundle where the standard fibre
F = V is a vector space and the action of the structural group on the standard fibre is a linear
representation of G on V . >>

The reason why the bundles in definition 1.4.5 are named associated is almost obvious. Given a
principal bundle and a linear representation of G we can immediately construct a corresponding
vector bundle. It suffices to use as transition functions the linear representation of the transition
functions of the principal bundle:

ψ
(V )
αβ ≡ D

(
ψ

(G)
αβ

)
∈ Hom (V, V ) (1.4.80)

For any vector bundle the dimension of the standard fibre is named the rank of the bundle.
When the base–manifold of a fibre–bundle is complex and the transition functions are holo-

morphic maps we say that the bundle is holomorphic.
A very important and simple class of holomorphic bundles are the line bundles. By definition

these are principal bundles on a complex base manifold M with structural group C? ≡ C\0,
namely the multiplicative group of non–zero complex numbers.
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Figure 1.15. The intersection of two local trivializations of a line bundle

Let zα(p) ∈ C? be an element of the standard fibre above the point p ∈ Uα
⋂
Uβ ⊂

M in the local trivialization α and let zβ(p) ∈ C? the corresponding fibre point in the local
trivialization β. The transition function between the two trivialization is expressed by:

zα(p) = fαβ(p)︸ ︷︷ ︸
C?3←↩

·zβ(p)
⇒ fαβ(p) =

zα(p)

zβ(p)
, 6= 0 (1.4.81)

1.5 Tangent and Cotangent bundles

Let M be a differentiable manifold of dimension dimM = m: in section 1.3 we have seen how
to construct the tangent spaces TpM associated with each point p ∈ M of the manifold. We
have also seen that each TpM is a real vector space isomorphic to Rm. Considering the definition
of fibre–bundles discussed in the previous section we now realize that what we actually did in
section 1.3 was to construct a vector–bundle, the tangent bundle TM (see fig.1.16).

In the tangent bundle TM the base manifold is the differentiable manifoldM, the standard
fibre is F = Rm and the structural group is GL(m,R) namely the group of real m×m matrices.
The main point is that the transition functions are not newly introduced to construct the bundle
rather they are completely determined from the transition functions relating open charts of the
base manifold. In other words, whenever we define a manifold M, associated with it there is a
unique vector bundle TM→M which encodes many intrinsic properties of M. Let us see how.

Consider two intersecting local charts (Uα, φα) and (Uβ , φβ) of our manifold. A tangent
vector, in a point p ∈M was written as:

~tp = cµ(p)
~∂

∂xµ
|p (1.5.82)
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Figure 1.16. The tangent bundle is obtained by gluing together all the tangent spaces

Now we can consider choosing smoothly a tangent vector for each point p ∈ M, namely intro-
ducing a map:

p ∈ M 7→ ~tp ∈ TpM (1.5.83)

Figure 1.17. Two local charts of the base manifold M yield two local trivializations of the tangent

bundle TM

Mathematically what we have obtained is a section of the tangent bundle, namely a smooth
choice of a point in the fiber for each point of the base. Explicitly this just means that the com-
ponents cµ(p) of the tangent vector are smooth functions of the base point coordinates xµ. Since
we use coordinates, we need an extra label denoting in which local patch the vector components
are given: {

~t = cµ(α)(x)
~∂

∂xµ
|p ⇒ in chart α

~t = cν(β)(y)
~∂

∂yν
|p ⇒ in chart β

(1.5.84)

having denoted xµ and yν the local coordinates in patches α and β, respectively. Since the
tangent vector is the same, irrespectively of the coordinates used to describe it, we have:

cν(β)(y)
~∂

∂yν
= cµ(α)(x)

∂yν

∂xµ

~∂

∂yν
(1.5.85)
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namely:

cν(β)(p) = cµ(α)(p)

(
∂yν

∂xµ

)
(p) (1.5.86)

In formula (1.5.86) we see the explicit form of the transition function between two local trivializa-
tions of the tangent bundle, it is simply the inverse jacobian matrix associated with the transition
functions between two local charts of the base manifoldM. On the intersection Uα

⋂
Uβ we have:

∀p ∈ Uα
⋂
Uβ : p → ψβα(p) =

(
∂y

∂x

)
(p) ∈ GL(m,R) (1.5.87)

as it is pictorially described in fig.1.17.

1.5.1 Sections of a bundle

It is now the appropriate time to associate a precise definition to the notion of bundle section
that we have implicitly advocated in eq.(1.5.83)

Definition 1.5.1. << Consider a generic fibre–bundle E
π
−→ M with generic fibre F . We name

section of the bundle a rule s that to each point p ∈ M of the based manifold associates a
point s(p) ∈ Fp in the fibre above p, namely a map

s : M 7→ E (1.5.88)

such that:
∀p ∈M : s(p) ∈ π−1 (p) (1.5.89)

>>

The above definition is illustrated in fig.1.18 which also clarifies the intuitive idea standing behind
the chosen name for such a concept.

It is clear that sections of the bundle can be chosen to be continuous, differentiable, smooth
or, in the case of complex manifolds, even holomorphic, depending on the properties of the map s
in each local trivialization of the bundle. Indeed given a local trivialization and given open charts
for both the base manifold M and for the fibre F the local description of the section reduces to
a map:

Rm ⊃ U 7→ FU ⊂ Rn (1.5.90)

where m and n are the dimensions of the base manifold and of the fibre respectively.
We are specifically interested in smooth sections, namely in section that are infinitely differ-

entiable. Given a bundle E
π
−→M , the set of all such sections is denoted by:

Γ (E,M) (1.5.91)

Of particular relevance are the smooth sections of vector bundles. In this case to each point of
the base manifold p we associate a vector ~v(p) in the vector space above the point p. In particular
we can consider sections of the tangent bundle TM associated with a smooth manifold M . Such
sections correspond to the notion of vector fields.

Definition 1.5.2. << Given a smooth manifoldM , we name vector field onM a smooth section
~t ∈ Γ(TM,M) of the tangent bundle. The local expression of such vector field in any open chart
(U, φ) is
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Figure 1.18. A section of a fibre bundle

~t = tµ(x)
~∂

∂xµ
∀x ∈ U ⊂ M (1.5.92)

>>

♦♦♦

1.5.1.1 Example: holomorphic vector fields on S2

As we have seen above the 2–sphere S2 is a complex manifold of complex dimension one covered
by an atlas composed by two charts, that of the North Pole and that of the South Pole (see
fig.1.19)

Figure 1.19. A section of a fibre bundle
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and the transition function between the local complex coordinate in the two patches is the
following one:

zN =
1

zS
(1.5.93)

Correspondingly, in the two patches, the local description of a holomorphic vector field ~t is given
by:

~t = vN (zN )
d

dzN

~t = vS(zS)
d

dzS
(1.5.94)

where the two functions vN (zN ) and vS(zS) are supposed to be holomorphic functions of their
argument, namely to admit a Taylor power series expansion:

vN (zN ) =

∞∑

k=0

ck z
k
N

vS(zS) = vS(zS)

∞∑

k=0

dk z
k
S

(1.5.95)

However, from the transition function (1.5.93) we obtain the relations:

d

dzN
= −z2

S

d

dzS
;

d

dzS
= −z2

N

d

dzN
(1.5.96)

and hence:

~t = −
∞∑

k=0

ck z
2−k
S

d

dzS
=

∞∑

k=0

dkz
k
S

d

dzS
= −

∞∑

k=0

dk z
2−k
N

d

dzN
=

∞∑

k=0

ckz
k
N

d

dzN
(1.5.97)

The only way for eq.(1.5.97) to be self consistent is to have:

∀k > 2 ck = dk = 0, ; c0 = −d2, c1 = −d1, c2 = −d0 (1.5.98)

This shows that the space of holomorphic sections of the tangent bundle TS2 is a finite dimen-
sional vector space of dimension three spanned generated by the three differential operators:

~L0 = − z
d

dz

~L1 = −
d

dz

~L−1 = − z2 d

dz
(1.5.99)

We will have more to say about these operators in the sequel.
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♦♦♦

What we have so far discussed can be summarized by stating the transformation rule of vector
field components when we change coordinate patch form xµ to xµ′:

tµ′(x′) = tν(x)
∂xµ′

∂xν
(1.5.100)

Indeed a convenient way of defining a fibre-bundle is provided by specifying the way its sections
transform from one local trivialization to another one which amounts to giving all the transition
functions. This method can be used to discuss the construction of the cotangent bundle.

1.5.2 The Lie algebra of vector fields

In section 1.3 we saw that the tangent space TpM at point p ∈M of a manifold can be identified
with the vector space of derivations of the algebra of germs (see definition 1.3.5). After gluing
together all tangent spaces into the tangent bundle TM such an identification of tangent vectors
with the derivations of an algebra can be extended from the local to the global level. The crucial
observation is that the set of smooth functions on a manifold C∞(M) constitutes an algebra
with respect to point–wise multiplication just as the set of germs at point p. The vector fields,
namely the sections of the tangent bundle, are derivations of this algebra. Indeed each vector
field ~X ∈ Γ(TM,M) is a linear map of the algebra C∞(M) into itself:

−→
X : C∞(M) → C∞(M) (1.5.101)

that satisfies the analogue properties of those mentioned in eq.s(1.3.48) for tangent vectors,
namely:

~X (αf + βg) = α ~X (f) + β ~X (g)

~X (f · g) = ~X (f) · g + f · ~X (g)

[∀α, β ∈ R ( or C ) ; ∀f, g ∈ C∞(M)] (1.5.102)

On the other hand the set of vector fields, renamed for this reason:

Diff(M) ≡ Γ (TM,M) (1.5.103)

forms a Lie algebra with respect to the following Lie bracket operation:

[
~X , ~Y

]
f = ~X

(
~Y (f)

)
− ~Y

(
~X(f)

)
(1.5.104)

Indeed the set of vector fields is a vector space with respect the scalar numbers (R or C, depending
on the type of manifold, real or complex), namely we can take linear combinations of the following
form:

∀λ, µ ∈ R or C ∀ ~X, ~Y ∈ Diff(M) : λ ~X + µ ~Y ∈ Diff(M) (1.5.105)

having defined: [
λ ~X + µ ~Y

]
(f) = λ

[
~X(f)

]
+ µ

[
~Y (f)

]
∀ f ∈ C∞ (M) (1.5.106)

Furthermore the operation (1.5.104) is the commutator of two maps and as such it is antisym-
metric and satisfies the Jacobi identity.
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The Lie algebra of vector fields is named Diff(M) since each of its elements can be interpreted
as the generator of an infinitesimal diffeomorphism (for the concept of generators see chapter ??)
of the manifold onto itself. As we are going to see Diff(M) is a Lie algebra of infinite dimension,
but it can contain finite dimensional subalgebras generated by particular vector fields. The
typical example will be the case of the Lie algebra of a Lie group: this is the finite dimensional
subalgebra G ⊂ Diff(G) spanned by those vector fields defined on the Lie group manifold that
have an additional property of invariance with respect to either left or right translations (see
chapter ??)

1.5.3 The Cotangent bundle and differential forms

Let us recall that a differential 1-form in the point p ∈ M of a manifold M , namely an element
ωp ∈ CTpM of the cotangent space over such a point was defined as a real valued linear functional
over the tangent space at p, namely

ωp ∈ Hom (TpM,R) (1.5.107)

which implies:
∀~tp ∈ TpM ωp : ~tp 7→ ωp(~tp) ∈ R (1.5.108)

The expression of ωp in a coordinate patch around p is:

ωp = ωµ(p) dx
µ (1.5.109)

where dxµ(p) are the differentials of the coordinates and ωµ(p) are real numbers. We can glue
together all the cotangent spaces and construct the cotangent bundles by stating that a generic
smooth section of such a bundle is of the form (1.5.109) where ωµ(p) are now smooth functions
of the base manifold point p. Clearly if we change coordinate system, an argument completely
similar to that employed in the case of the tangent bundle tells us that the coefficients ωµ(x)
transform as follows:

ωµ(x
′)′ = ων(x)

∂xν

∂xµ′
(1.5.110)

and equation (1.5.110) can be taken as a definition of the cotangent bundle CTM , whose
sections transform with the jacobian matrix rather than with the inverse jacobian matrix as the
sections of the tangent bundle do (see eq.(1.5.100)). So we can write the

Definition 1.5.3. << A differential 1–form ω on a manifold M is a section of the cotangent
bundle, namely ω ∈ Γ (CTM,M). >>

This means that a differential 1–form is a map:

ω : Γ (TM,M) 7→ C∞ (M) (1.5.111)

from the space of vector fields (i.e. the sections of the tangent bundle) to smooth functions.
Locally we can write:

Γ (TM,M) 3 ω = ωµ(x)dx
µ

Γ (CTM,M) 3 ~t = tµ(x)
∂

∂xµ
(1.5.112)

and we obtain

ω(~t) = ωµ(x) t
ν(x)dxµ

(
∂

∂xν

)
= ωµ(x) t

ν(x) (1.5.113)
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using

dxµ
(

∂

∂xν

)
= δµν (1.5.114)

which is the statement that coordinate differentials and partial derivatives are dual bases for
1-forms and tangent vectors respectively.

Since TM is a vector bundle it is meaningful to consider the addition of its sections, namely
the addition of vector fields and also their pointwise multiplication by smooth functions. Taking
this into account we see that the map (1.5.111) used to define sections of the cotangent bundle,
namely 1–forms is actually an F–linear map. This means the following. Considering any F–linear
combination of two vector fields, namely:

f1 ~t1 + f2 ~t2 , f1, f2 ∈ C∞(M) t1, t2 ∈ Γ (TM,M) (1.5.115)

for any 1–form ω ∈ Γ (CTM,M) we have:

ω
(
f1 ~t1 + f2 ~t2

)
= f1(p)ω

(
~t1
)
(p) + f2(p)ω

(
~t2
)
(p) (1.5.116)

where p ∈M is a any point of the manifold M .
It is now clear that the definition of differential 1-form generalizes the concept of total

differential of the germ of a smooth function. Indeed in an open neighborhood U ⊂M of a point
p we have:

∀f ∈ C∞p (M) df = ∂µf dx
µ (1.5.117)

and the value of df at p on any tangent vector ~tp ∈ TpM is defined to be:

dfp(~tp) ≡ ~tp(f) = tµ ∂µf (1.5.118)

which is the directional derivative of the local function f along ~tp in the point p. If rather than
the germ of a function we take a global function f ∈ C∞(M) we realize that the concept of 1-form
generalizes the concept of total differential of such a function. Indeed the total differential df fits
into the definition of a 1-form, since for any vector field ~t ∈ Γ (TM,M) we have:

df
(
~t
)
= tµ(x)∂µf(x) ≡ ~tf ∈ C∞ (M) (1.5.119)

A first obvious question is the following. Is any 1-form ω = ωµ(x)dx
µ the differential of some

function? The answer is clearly no and in any coordinate patch there is a simple test to see

whether this is the case or not. Indeed, if ω
(1)
µ = ∂µf for some germ f ∈ C∞p (M) then we must

have:
1

2

(
∂µω

(1)
ν − ∂νω

(1)
µ

)
=

1

2
(∂µ∂µ) f = 0 (1.5.120)

The left hand side of eq.(1.5.120 are the components of what we will name a differential 2–form

ω(2) = ω(2)
µν dx

µ ∧ dxν (1.5.121)

and in particular the 2–form of eq.(1.5.120) will be identified with the exterior differential of
the 1–form ω(1), namely ω2) = dω(1). In simple words the exterior differential operator d is the
generalization on any manifold and to differential forms of any degree of the concept of curl,
familiar from ordinary tensor calculus in R3. Forms whose exterior differential vanishes will be
named closed forms. All these concepts need appropriate explanations that will be provided
shortly from now. Yet, already at this intuitive level, we can formulate the next basic question.
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We saw that, in order to be the total differential of a function, a 1–form must be necessarily
closed. Is such a condition also sufficient? In other words are all closed forms the differential of
something? Locally the correct answer is yes, but globally it may be no. Indeed in any open
neighborhood a closed form can be represented as the differential of another differential form,
but the forms that do the job in the various open patches may not glue together nicely into a
globally defined one. This problem and its solution constitute an important chapter of geometry,
named cohomology. Actually cohomology is a central issue in algebraic topology, the art of
characterizing the topological properties of manifolds through appropriate algebraic structures.

1.5.4 Differential k–forms

Next we introduce differential forms of degree k and the exterior differential d. In a later section,
after the discussion of homology we show how this relates to the important construction of
cohomology. For the time being our approach is simpler and down to earth.

We have seen that the 1–forms at a point p ∈ M of a manifold are linear functionals on
the tangent space TpM. In section ?? we discussed the construction of exterior k–forms on any
vector spaceW defined to be the k–th linear antisymmetric functionals on such a space. It follows
that on TpM we can construct not only the 1–forms but also all the higher degree k–forms. They
span the vector space Λk (TpM). By gluing together all such vector spaces, as we did in the case
of 1–forms, we obtain the vector–bundles of k–forms. More explicitly we can set:

Definition 1.5.4. << A differential k–form ω(k) is a smooth assignment:

ω(k) : p 7→ ω(k)
p ∈ Λk (TpM) (1.5.122)

of an exterior k–form on the tangent space at p for each point p ∈M of a manifold. >>

Let now (U,ϕ) be a local chart and let
{
dx1

p, . . . , dx
m
p

}
be the usual natural basis of the cotangent

space CTpM. Then in the same local chart the differential form ω(k) is written as:

ω(k) = ωi1,...,ik (x1, . . . , xm) dxi1 ∧ . . . ∧ dxik (1.5.123)

where ωi1,...,ik (x1, . . . , xm) ∈ C∞ (U) are smooth functions on the open neighborhood U , com-
pletely antisymmetric in the indices i1, . . . , ik.

At this point it is obvious that the operation of exterior product, defined on exterior forms,
can be extended to exterior differential forms. In particular, if ω(k) and ω(k′) are a k–form and a
k′–form, respectively, then ω(k) ∧ ω(k′) is a (k + k′)–form. As a consequence of eq.(??) we have:

ω(k) ∧ ω(k′) = (−)k k
′

ω(k′) ∧ ω(k) (1.5.124)

and in local coordinates we find:

ω(k) ∧ ω(k′) = ω
(k)
[i1...ik

(x1, . . . , xm)ω
(k)
ik+1...ik+k′ ]

dx1 ∧ . . . dxk+k
′

(1.5.125)

where [. . .] denotes the complete antisymmetrization on the indices.
Let A0(M) = C∞ (M) and let Ak(M) = C∞ (M) be the C∞ (M)–module of differential

k–forms. To justify the naming module, observe that we can construct the product of a smooth
function f ∈ C∞(M) with a differential form ω(k) setting:

[
f ω(k)

] (
−→
Z 1, . . .

−→
Z k

)
= f · ω(k)

(
−→
Z 1, . . .

−→
Z k

)
(1.5.126)
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for each k-tuplet of vector fields
−→
Z 1, . . .

−→
Z k ∈ Γ (TM,M)

Furthermore let

A (M) =
m⊕

k=0

Ak (M) wherem = dimM (1.5.127)

Then A is an algebra over C∞(M) with respect to the exterior wedge product
∧
.

To introduce the exterior differential d we proceed as follows. Let f ∈ C∞(M) be a smooth

function: for each vector field
−→
Z ∈ Diff(M), we have

−→
Z (f) ∈ C∞(M) and therefore there is a

unique differential 1–form, noted df such that df(
−→
Z ) =

−→
Z (f). This differential form is named

the total differential of the function f . In a local chart U with local coordinates x1, . . . , xm we
have:

df =
∂f

∂xj
dxj (1.5.128)

More generally we can see that there exists an endomorphism d, (ω 7→ dω) of A (M) onto itself
with the following properties:

i) ∀ω ∈ Ak (M) dω ∈ Ak+1 (M)
ii) ∀ω ∈ A (M) ddω = 0

iii) ∀ωk ∈ Ak (M) ∀ωk
′

∈ Ak′ (M)

d
(
ω(k) ∧ ω(k′)

)
= dω(k) ∧ ω(k′) + (−1)k ω(k) ∧ dω(k′)

iv) if f ∈ A0 (M) df = total differential

(1.5.129)

In each local coordinate patch the above intrinsic definition of the exterior differential leads to
the following explicit representation:

dω(k) = ∂[i1 ωi2...ik+1] dx
i1 ∧ . . . ∧ dxik+1 (1.5.130)

As already stressed the exterior differential is the generalization of the concept of curl, well known
in elementary vector calculus.

In the next section we introduce the notions of homotopy, homology and cohomology that
are crucial to understand the global properties of manifolds and Lie groups.

1.6 Homotopy, Homology and Cohomology

Differential 1–forms can be integrated along differentiable paths on manifolds. The higher differ-
ential p–forms, to be introduced shortly from now, can be integrated on p–dimensional submani-
folds. An appropriate discussion of such integrals and of their properties requires the fundamental
concepts of algebraic topology, namely homotopy and homology. Also the global properties of
Lie groups and their many–to–one relation with Lie algebras can be understood only in terms
of homotopy. For this reason we devote the present section to an introductory discussion of
homotopy, homology and of its dual, cohomology.

The kind of problems we are going to consider can be intuitively grasped if we consider fig.
1.20, displaying a closed two–dimensional surface with two handles (actually an oriented, closed
Riemann surface of genus g = 2) on which we have drawn several different closed 1–dimensional
paths γ1, . . . , γ6.

Consider first the path γ5. It is an intuitive fact that γ5 can be continuously deformed to just
a point on the surface. Paths with such a property are named homotopically trivial or homotopic
to zero. It is also an intuitive fact that neither γ2, nor γ3, nor γ1, nor γ4 are homotopically
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Figure 1.20. A closed surface with two handles marked by several different closed 1–dimensional paths

trivial. Paths of such a type are homotopically non trivial. Furthermore we say that two paths
are homotopic if one can be continuously deformed into the other. This is for instance the case
of γ6 which is clearly homotopic to γ3.

Let us now consider the difference between path γ4 and path γ1 from another viewpoint.
Imagine the result of cutting the surface along the path γ4. After the cut the surface splits into
two separate parts, R1 and R2 as shown in fig.1.21. Such a splitting does not occur if we cut the

Figure 1.21. When we cut a surface along a path that is a boundary, namely it is homologically trivial,

the surface splits into two separate parts

original surface along the path γ1. The reason for this different behaviour resides in this. The
path γ4 is the boundary of a region on the surface (the region R1 or, equivalently its complement
R2) while γ1 is not the boundary of any region. A similar statement is true for the paths γ2 or
γ3. We say that γ4 is homologically trivial while γ1, γ2, γ3 are homologically non trivial.

Next let us observe that if we simultaneously cut the original surface along γ1, γ2, γ3 the
surface splits once again into two separate parts as shown in fig. 1.22

This is due to the fact that the sum of the three paths is the boundary of a region: either
R1 or R2 of fig.1.22. In this case we say that γ2 + γ3 is homologous to −γ1, since the difference
γ2 + γ3 − (−γ3) is a boundary.

In order to give a rigorous formulation to these intuitive concepts,which can be extended
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Figure 1.22. The sum of the three paths γ1, γ2, γ3 is homologically trivial, namely γ2+γ3 is homologous

to −γ1

also to higher dimensional submanifolds of any manifold we proceed as follows.

1.6.1 Homotopy

Let us come back to the definition 1.3.1 of a curve (or path) in a manifold and slightly generalize
it.

Definition 1.6.1. << Let [a, b] be a closed interval of the real line R parametrized by the param-
eter t and subdivide it into a finite number of closed, partial intervals:

[a, t1], [t1, t2], . . . , [tn−1, tn], [tn, b] (1.6.131)

We name piece–wise differentiable path a continuous map:

γ : [a, b] → M (1.6.132)

of the interval [a, b] into a differentiable manifold M such that there exists a splitting of [a, b]
into a finite set of closed subintervals as in eq.(1.6.131) with the property that on each of these
intervals the map γ is not only continuous but also infinitely differentiable. >>

Since we have parametric invariance we can always rescale the interval [a, b] and reduce it to be

[0, 1] ≡ I (1.6.133)

Let

σ : I → M

τ : I → M (1.6.134)
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be two piece–wise differentiable paths with coinciding extrema, namely such that (see fig. 1.23):

σ(0) = τ(0) = x0 ∈ M

σ(1) = τ(1) = x1 ∈ M (1.6.135)

Figure 1.23. Two paths with coinciding extrema

Definition 1.6.2. << We say that σ is homotopic to τ and we write σ ' τ if there exists a
continuous map:

F : I × I → M (1.6.136)

such that:
F (s, 0) = σ(s) ∀ s ∈ I
F (s, 1) = τ(s) ∀ s ∈ I
F (0, t) = x0 ∀ t ∈ I
F (1, t) = x1 ∀ t ∈ I

(1.6.137)

>>

In particular if σ is a closed path, namely a loop at x0, namely if x0 = x1 and if τ homotopic to
σ is the constant loop that is

∀ s ∈ I : τ(s) = x0 (1.6.138)

then we say that σ is homotopically trivial and that it can be contracted to a point.
It is quite obvious that the homotopy relation σ ' τ is an equivalence relation. Hence we

shall consider the homotopy classes [σ] of paths from x0 to x1
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Next we can define a binary product operation on the space of paths in the following way.
If σ is a path from x0 to x1 and τ is is a path from x1 to x2 we can define a path from x0 to x2

traveling first along σ and then along τ . More precisely we set:

στ(t) =

{
σ(2t) 0 ≤ t ≤ 1

2
τ(2t− 1) 1

2 ≤ t ≤ 1
(1.6.139)

What we can immediately verify from this definition is that if σ ' σ′ and τ ' τ ′ then στ ' σ′τ ′.
The proof is immediate and it is left to the reader. Hence without any ambiguity we can multiply
the equivalence class of σ with the equivalence class of τ always assuming that the final point of
σ coincides with the initial point of τ . Relying on these definitions we have a theorem which is
very easy to prove but has an outstanding relevance:

Theorem 1.6.1. << Let π1 (M, x0) be the set of homotopy classes of loops in the manifold M
with base in the point x0 ∈M. If the product law of paths is defined as we just explained above,
then with respect to this operation π1 (M, x0) is a group whose identity element is provided by
the homotopy class of the constant loop at x0 and the inverse of the homotopy class [σ] is the
homotopy class of the loop σ−1 defined by:

σ−1(t) = σ(1− t) 0 ≤ t ≤ 1 (1.6.140)

(In other words σ−1 is the same path followed backward) >>

Proof 1.6.1.1. Clearly the composition of a loop σ with the constant loop (from now on denoted
as x0) yields σ. Hence x0 is effectively the identity element of the group. We still have to show
that σσ−1 ' x0. The explicit realization of the required homotopy is provided by the following
function:

F (s, t) =





σ(2s) 0 ≤ 2s ≤ t
σ(t) t ≤ 2s ≤ 2− t

σ−1(2s− 1) 2− t ≤ 2s ≤ 2
(1.6.141)

Let us observe that having defined F as above we have:

F (s, 0) = {σ(0) = x0 ∀s ∈ I

F (s, 1) =

{
σ(2s) 0 ≤ s 1

2
σ−1(2s− 1) 1

2 ≤ s ≤ 1
(1.6.142)

and furthermore:

F (0, t) = {σ(0) = x0 ∀ t ∈ I

F (1, t) =
{
σ−1(1) = x0 ∀ t ∈ I (1.6.143)

Therefore it is sufficient to check that F (s, t) is continuous. Dividing the square [0, 1]× [0, 1] into
three triangles as in fig. 1.24 we see that F (s, t) is continuous in each of the triangles and that is
consistently glued on the sides of the triangles. Hence F as defined in eq.( 1.6.141) is continuous.
This concludes the proof of the theorem ¥

Theorem 1.6.2. << Let α be a path from x0 to x1. Then

[σ]
α
−→

[
α−1σα

]
(1.6.144)
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Figure 1.24.

is an isomorphism of π1 (M, x0) into π1 (M, x1) >>

Proof 1.6.2.1. Indeed, since

[στ ] −→
[
α−1σα

] [
α−1τα

]
=
[
α−1στα

]
(1.6.145)

we see that
α
−→ is a homomorphism. Since also the inverse

α−1

−→ does exist, then the homomor-
phism is actually an isomorphism. ¥

¿From this theorem it follows that in a arc–wise connected manifold, namely in a manifold where
every point is connected to any other by at least one piece–wise differentiable path, the group
π1 (M, x0) is independent from the choice of the base point x0 and we can call it simply π1 (M).
The group π1 (M) is named the first homotopy group of the manifold or simply the fundamental
group of M.

Definition 1.6.3. << A differentiable manifoldM which is arc–wise connected is named simply
connected if its fundamental group π1 (M) is the trivial group composed only by the identity
element.

π1 (M) = id ⇔ M = simply connected (1.6.146)

>>
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1.6.2 Homology

The notion of homotopy led us to introduce an internal composition group for paths, the fun-
damental group π1 (M), whose structure is a topological invariant of the manifold M , since
it does not change under continuous deformations of the latter. For this group we have used a
multiplicative notations since nothing guarantees a priori that it should be abelian. Generically
the fundamental homotopy group of a manifold is non abelian. As mentioned above there are
higher homotopy groups πn (M) whose elements are the homotopy classes of Sn spheres drawn
on the manifold.

In this section we turn our attention to another series of groups that also codify topological
properties of the manifold and are on the contrary all abelian. These are the homology groups:

Hk (M) ; k = 0, 1, 2, . . . ,dim (M) (1.6.147)

We can grasp the notion of homology if we persuade ourselves that it makes sense to consider
linear combinations of submanifolds or regions of dimension p of a manifoldM, with coefficients
in a ring R that can be either Z, or R or, sometimes Zn. The reason is that the submanifolds
of dimension p are just fit to integrate p–differential forms over them. This fact allows to give a
meaning to an expression of the following form:

C(p) = m1 S
(p)
1 + m2 S

(p)
2 + . . . +mk S

(p)
k (1.6.148)

where S
(p)
i ⊂ M are suitable p–dimensional submanifolds of the manifold M, later on called

simplexes, and mi ∈ R are elements of the chosen ring of coefficients. What we systematically
do is the following. For each differential p–form ω(p) ∈ Λp (M) we set:

∫

C(p)
ω(p) =

∫

m1 S
(p)
1 +m2 S

(p)
2 + ...+mk S

(p)
k
C(p)

ω(p) =
k∑

i=1

mi

∫

S
(p)
i

ω(p) (1.6.149)

and in this we define the integral of ω(p) on the region C(p). Next let us give the precise definition
of the p–simplexes of which we want to take linear combinations.

Definition 1.6.4. << Let us consider the Euclidean space Rp+1. The standard p-simplex ∆p is
the set of all points {t0, t1, . . . , tp} ∈ Rp+1 such that the following conditions are satisfied:

ti ≥ 0 ; t0 + t1 + . . .+ tp = 1 (1.6.150)

>>

It is just easy to see that the standard 0-simplex is a point, simplexus namely t0 = 1, the standard
1-simplex is a segment of line, the standard 2-simplex is a triangle, the standard 3–simplex is a
tetrahedron and so on (see fig.1.25).

Let us now consider the standard (p − 1)-simplex ∆(p−1) and let us observe that there are
(p+ 1) canonical maps φi that map ∆(p−1) into ∆p:

φi : ∆(p−1) 7→ ∆p (1.6.151)

These maps are defined as follows:

φ
(p)
i (t0, . . . , ti−1, ti+1, . . . , tp) = (t0, . . . , ti−1, 0, ti+1, . . . , tp) (1.6.152)
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Figure 1.25. The standard p-simplexes for p = 0, 1, 2

Definition 1.6.5. << The p+1 standard simplexes ∆p−1 immersed in the standard p-simplex ∆p

by means of the p+1 maps of eq.(1.6.152) are named the faces of ∆p and the index i enumerates

them. Hence the map φ
(p)
i yields, as a result, the i-th face of the standard p-simplex >>

For instance the two faces of the standard 1-simplex are the two points (t0 = 0, t1 = 1) and
(t0 = 1, t1 = 0) as showns in fig.1.26.

Similarly the three segments (t0 = 0, t1 = t, t2 = 1 − t), (t0 = t, t1 = 0, t2 = 1 − t) and
(t0 = t, t1 = 1− t, t2 = 0) are the three faces of the standard 2-simplex (see fig.1.27).

Definition 1.6.6. << Let M be a differentiable manifold of dimension m. A continuous map:

σ(p) : ∆(p) 7→ M (1.6.153)

of the standard p-simplex into the manifold is named a singular p-simplex or simply a simplex
of M >>
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Figure 1.26. The faces of the standard 1-simplex

Figure 1.27. The faces of the standard 2-simplex

Clearly a 1–simplex is a continuous path in M, a 2–simplex is a portion of surface immersed
M and so on. The i–th face of the simplex σ(p) is given by the (p − 1)-simplex obtained by
composing σ(p) with φi:

σ(p) ◦ φi : ∆(p−1) 7→ M (1.6.154)

Let R be a commutative ring.

Definition 1.6.7. << Let M be a manifold of dimension m. For each 0 ≤ n ≤ m the group
of n-chains with coefficients in R, named C (M,R), is defined as the free R-module having a
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generator for each n–simplex in M >>

In simple words the definition 1.6.7 states that Cp (M,R) is the set of all possible linear combi-
nation of p-simplexes with coefficients in R:

C(p) = m1 S
(p)
1 +m2 S

(p)
2 + . . . mk S

(p)
k (1.6.155)

where mi ∈ R. The elements of Cp (M,R) are named p-chains.
The concept of p–chains gives a rigorous meaning to the intuitive idea that any p–dimensional

region of a manifold can be constructed by gluing together a certain number of simplexes. For
instance a path γ can be constructed gluing together a finite number of segments (better their
homeomorphic images). In the case p = 2, the construction of a two–dimensional region by means
of 2–simplexes corresponds to a triangulation of a surface.

As an example consider the case where the manifold we deal with is just the complex plane
M = C and let us focus on the 2–simplexes drawn in fig.1.28.

Figure 1.28. S
(2)
1 and S

(2)
2 are two distinct 2–simplexes, namely two triangles with vertices respectively

given by (A0, A1, A2) and B0, B1, B2. The 2-simplex S
(2)
3 with vertices B0, A1, A2 is the intersection of

the other two S
(2)
3 = S

(2)
1

⋂
S

(2)
2

The chain:
C(2) = S

(2)
1 + S

(2)
2 (1.6.156)

denotes the region of the complex plane depicted in fig.1.29, with the proviso that when we

compute the integral of any 2–form on C(2) the contribution from the simplex S
(2)
3 = S

(2)
1

⋂
S

(2)
2

(the shadowed area in fig.1.29) has to be counted twice since it belongs both to S
(2)
1 and to S

(2)
2 .

Relying on these notions we can introduce the boundary operator.
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Figure 1.29. Geometrically the chain S
(2)
1 + S

(2)
2 is the union of the two simplexes S

(2)
1

⋃
S

(2)
2

Definition 1.6.8. << The boundary operator ∂ is the map:

∂ : Cn (M,R) → Cn−1 (M,R) (1.6.157)

defined by the following properties:

(i) R-linearity

∀ C(p)
1 , C(p)

2 ∈ Cp (M,R) , ∀m1,m2 ∈ R

∂
(
m1 C

(p)
1 +m2 C

(p)
2

)
= m1 ∂C

(p)
1 + m2 ∂C

(p)
2 (1.6.158)

(ii) Action on the simplexes

∂ σ ≡ σ ◦ φ0 − σ ◦ φ1 + σ ◦ φ1 − . . .

=

p∑

i=1

(−)i σ ◦ φi (1.6.159)

>>

The image of a chain C through ∂, namely ∂C, is called the boundary of the chain.

As an exercise we can compute the boundary of the 2–chain C(2) = S(2)
1 + S(2)

2 of fig.1.28,
with the understanding that the relevant ring is, in this case Z. We have:

∂C(2) = ∂S
(2)
1 + ∂S

(2)
2

=
−−−→
A1A2 −

−−−→
A0A2 +

−−−→
A0A1 +

−−−→
B1B2 −

−−−→
B0B2 +

−−−→
B1B2 (1.6.160)

where
−−−→
A1A2, . . . denote the oriented segments from A1 to A2 and so on. As one sees the change

in sign is interpreted as the change of orientation (which is the correct interpretation if one thinks
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of the chain and of its boundary as the support of an integral). With this convention the 1–chain:

−−−→
A1A2 −

−−−→
A0A2 +

−−−→
A0A1 =

−−−→
A1A2 +

−−−→
A2A0 +

−−−→
A0A1 (1.6.161)

is just the oriented boundary of the S
(2)
1 -simplex as shown in fig.1.30.

Figure 1.30. The oriented boundary of the S(2) symplex.

Theorem 1.6.3. << The boundary operator ∂ is nilpotent, namely it is true that:

∂2 ≡ ∂ ◦ ∂ = 0 (1.6.162)

>>

Proof 1.6.3.1. It is sufficient to observe that, as a consequence of their own definition, the maps
φi defined in eq. (1.6.152) have the following property:

φ
(p)
i ◦ φ(p−1)

j = φ
(p)
j ◦ φ(p−1)

i−1 (1.6.163)

Then, for the p–simplex σ we have:

∂∂ σ =

p∑

i=0

(−)i δ [σ ◦ φi]

=

p∑

i=0

p−1∑

j=0

(−)i (−)j σ ◦
(
φ

(p)
i ◦ φ(p−1)

j

)

=

p∑

j<i=1

(−)i+j σ ◦
(
φ

(p)
j ◦ φ(p−1)

i−1

)
+

p−1∑

0=i≤j

σ
(
φ

(p)
i ◦ φ(p−1)

j

)
(1.6.164)
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We can verify that everything in the last line of eq.(1.6.164) cancels identically and this proves
the theorem. ¥

As an illustration we can calculate ∂∂ S
(2)
1 for the 2–simplex S

(2)
1 described in fig.1.28. We obtain:

∂∂ S
(2)
1 = A2 −A1 −A2 +A0 +A1 −A0 = 0 (1.6.165)

The nilpotency of the boundary operator ∂ that acts on the chains is the counterpart of the
nilpotency of the exterior derivative d that acts on differential forms as explained in section 1.5.4.
Consider fig.1.31. As one sees the sequence of the vector spaces Cm of m–chains can be put into
correspondence with the sequence of vector spaces Λm of differential m–forms.

Figure 1.31. Homology versus cohomology groups.

The operator:
∂ : Ck → Ck−1 (1.6.166)

makes you to travel on the sequence from left to right, while the exterior derivative operator:

d : Λk → Λk−1 (1.6.167)

causes you to travel along the same sequence in the opposite direction from right to left. Both ∂
and d are nilpotent maps.

1.6.3 Homology and Cohomology groups: general construction

Let π : X → Y be a linear map between vector spaces. We define kernel of π and we denote
kerπ the subspace of X whose elements have the property of being mapped into 0 ∈ Y by π:

kerπ = {x ∈ X /π(x) = 0 ∈ Y } (1.6.168)
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We call image of π and we denote Imπ the subspace of Y whose elements have the property that
they are the image through π of some element of X:

Imπ = { y ∈ Y /∃x ∈ X /π(x) = y} (1.6.169)

A nilpotent operator that acts on a sequence of vector spaces Xi defines a sequence of linear
maps πi:

X1
π1−→ X2

π2−→ X3 −→ . . . Xi
πi−→ Xi+1 (1.6.170)

that have the following property:
Imπi ⊂ kerπi+1 (1.6.171)

The inclusion of Imπi in kerπi+1 is what has been pictorially described in fig. 1.31 and ap-
plies both the boundary and exterior derivative operator. This situation suggests the following
terminology:

Definition 1.6.9. << In every space Ck (M,R) we name cycles the elements of ker ∂, namely
the chains C, whose boundary vanishes ∂C = 0. Similarly in every space Λk (M) we name closed
forms or cocycles the elements of ker d, namely the differential forms ω such that dω = 0. >>

At the same time:

Definition 1.6.10. << In every space Ck (M, R) we name boundaries all k–chains that are the
boundary of a k + 1–chain:

C(k) = boundary ⇔ ∃C(k) = ∂C(k+1) (1.6.172)

Similarly in every space Λk (M) we name exact forms or coboundaries all differential forms
ω(k) such that they can be written as the exterior derivative of a (k − 1)–form: ω(k) = dω(k−1)

>>

Clearly eq.(1.6.171) can be translated by saying that every boundary is a cycle and every cobound-
ary is a cocycle. The reverse statement, however, is not true in general. There are cycles that
are not boundaries and there are cocycles that are not coboundaries.

The concept of homology (or cohomology) previously discussed in an intuitive way can be
formalized in the following way.

Definition 1.6.11. << Consider the k–cycles. We say that two cycles C
(k)
1 and C

(k)
2 are homol-

ogous and we write C
(k)
1 ∼ C

(k)
2 if their difference is a boundary:

C
(k)
1 ∼ C

(k)
2 ⇒ ∃C(k+1)

3 /C
(k)
1 − C

(k)
2 = ∂ C

(k+1)
3 (1.6.173)

>>

Clearly homology is an equivalence relation since:

C
(k)
1 − C

(k)
2 = ∂ C

(k+1)
a

C
(k)
2 − C

(k)
3 = ∂ C

(k+1)
b

}
⇒ C

(k)
1 − C

(k)
3 = ∂

[
C(k+1)
a + C

(k+1)
b

]
(1.6.174)

Definition 1.6.12. << We name k-th homology group and we denote Hk (M , R) the group
of equivalence classes of the k–th cycles with respect to the k–boundaries.
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Similarly we define k–th cohomology group and we denote Hk (M , R) the group of
equivalence classes of the k–cocycles with respect to the k–th coboundaries. Indeed we say that
two closed forms ω and ω′ are cohomologous if their difference is an exact form: ω ∼ ω′ ⇒
∃φ /ω − ω′ = dφ >>

More generally when we have a sequence of vector spaces Xi as in eq.(1.6.170) and a sequence of
linear maps πi satisfying eq.(1.6.171) we define the cohomology groups relative to the operator
π as:

Hi
(π) ≡

kerπi
Imπi−1

(1.6.175)

The relation existing between homology and cohomology is fully contained in the following
formula which generalizes to an arbitrary smooth manifold and to differential forms of any degree
the familiar Gauss lemma or Stokes lemma:

∫

∂C(k+1)

ω(k) =

∫

C(k+1)

dω(k) (1.6.176)

Equation (1.6.176), whose general proof we omit, implies that in the case C(k) is a cycle we have:
∫

C(k)

[
ω(k) + dφ(k−1)

]
=

∫

C(k)

ω(k) (1.6.177)

namely the integral of a closed differential form along a cycle depends only on the cohomology
class and not on the choice of the representative. Similarly if ω(k) is a closed form:

∫

C(k)+∂C(k+1)

ω(k) =

∫

C(k)

ω(k) (1.6.178)

namely the integral of a cocycle along a cocycle depends on the homology class of the class and
not on the choice of representative inside the class.

1.6.4 Relation between Homotopy and Homology

The relation between homotopy and homology groups of a manifold is provided by a fundamental
theorem of algebraic geometry that we state without proof:

Theorem 1.6.4. << Let M be a smooth manifold. Then there exists a homomorphism:

χ : π1 (M) → H1 (M , Z) (1.6.179)

that sends the homotopy class of each loop γ into the 1–simplex γ. If M is arc–wise connected,
then the map χ is surjective and the kernel of χ is the subgroup of commutators in π1 (M). >>

We recall that the subgroup of commutators of a discrete group G is the group G′ generated by
all elements of the form x−1 y−1 x y for some x, y ∈ G.

¿From this theorem we have two consequences:

Corollary 1.6.1. << If π1 (M) is abelian, then H1 (M) ' π1 (M), namely the homotopy and
cohomology groups coincide. >>

Corollary 1.6.2. << If a manifoldM is simply connected (π1 (M) = 1) then also the first homol-
ogy group is trivial H1 (M) = 0 >>

The second of the above corollaries implies that in a simply connected manifold every closed loop
is homologous to zero, namely is the boundary of some region.
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1.7 Sheaves, Cech cohomology and the classification of bundles

Having described the general structure of cohomology frameworks we can reconsider the con-
struction of fibre bundles in terms of transition functions looking more closely at the meaning
of eqs. (1.2.12). So doing we realize that the classification of equivalence classes of equivalent

bundles E
π
−→ M , on a given manifold M and with a given structural group G can be recast

in a more abstract set up that utilizes the language of cohomology and captures the profound
essence of the bundle, namely its twisting or deviation from global triviality. This is the language
of sheaves and of sheaf cohomology.

We introduce

Definition 1.7.1. A sheaf over a manifold M is a family of groups F (U) associated to each open
subset U ⊂ M . The elements σ ∈ F (U) of the group F (U) are called the sections of the sheaf
over the open chart U . Given a subspace U ⊂ V ⊂ M of a subspace V ⊂ M there is a map:

rV,U : F (V ) −→ F (U) (1.7.180)

between the two associated groups. The map rV,U is called the restriction map. It must satisfy
the following axioms:

a) Given three nested charts U ⊂ V ⊂ W we must have

rW,U = rV,U ◦ rW,V (1.7.181)

We denote by σ|U the restriction to U of our element σ ∈ F (V ).
b) Given any two submanifolds U and V and any given two sections σ ∈ F (U) and τ ∈ F (V )

such that
σ|U∩V = τ |U∩V (1.7.182)

there exists a section ρ ∈ F (U ∪ V ) such that

ρ|U = σ ; ρ|V = τ (1.7.183)

c) If σ ∈ F (U ∪ V ) and σ|U = σ|V = 0 then σ = 0.

The prototype of a sheaf is the sheaf of C∞-functions. Indeed C∞(U) is clearly an abelian group
under addition.

f(x) + g(x) = h(x) (1.7.184)

and the restriction of a function to a subdomain obviously satisfies the axiom a). Axiom b) is the
principle of analytic continuation that states that if two functions coincide on a open intersection
of their domains then they are the same function. Axiom c) is also obvious in this case.

Other important examples of sheaves are, for instance:
O(M) = the sheaf of holomorphic functions on a complex manifold M
O?(M) = the sheaf of never vanishing holomorphic functions on M
Ω(p)(M) = the sheaf of holomorphic p-forms on M
In all these cases, for each U ⊂M the group F (U) is a continuous infinite-dimensional group

(the group of all C∞-functions on the open set U , for instance), but we can also consider sheaves
where the F (U) are discrete groups like Zn.

In the application of sheaf theory to the classification of fibre bundles, the group F (U) is
made by all continuous maps g : U −→ G from the open set U to the structural group G
(which is a finite-dimensional Lie group); in other words by all G-valued C∞ functions on U .
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The functions ∀p ∈ U ; g(p) ∈ G are what physicists call local gauge transformations. Hence

the relevant sheaf for the classification of fibre bundles E
π
−→ M with base manifold M and

structural group G is the sheaf over M of G-gauge transformations.
Next we discuss the notion of sheaf cohomology (Cech cohomology). The most familiar

and most used cohomology construction relates to differential forms and is named de Rham
cohomology. Yet cohomology complexes have a general algebraic structure that we start by
illustrating in the present case of sheaves. We define a sequence of vector spaces Cp of p-cochains
(p = 0, 1, 2...) and a nilpotent coboundary operator δ2 = 0 that defines a sequence of linear
maps:

δ : Cp −→ Cp+1 (1.7.185)

Let (F,m) be a sheaf of groups over the manifoldM . Let ∪α∈A Uα = M be a finite atlas covering
M . Then we have the groups F (U1) , F (U2) , . . . , F (Un). The space of 0-cochains C0(U,F ) is
defined by

C0(U,F ) = ⊗α∈A F (Uα) (1.7.186)

In other words a 0-cochain is a collection of n sections gα ∈ F (Uα) of the sheaf over the open
charts Uα:

C0 = ( g1 , g2 . . . gn ) (1.7.187)

On the other hand a 1-cochain C1 is a collection of 1
2n(n− 1) sections of the sheaf gαβ = g−1

βα

C1 =
(
g12 , g13 , . . . g(n−1)n

)
(1.7.188)

defined on all possible intersections Uα ∩ Uβ . A 3-cochain is a collection of 1
6 n (n − 1) (n − 2)

sections gαβγ of the sheaf:

C2 =
(
g123 , g124 , . . . g(n−2)(n−1)n

)
(1.7.189)

defined over all possible intersections Uα ∩ Uβ ∩ Uγ and so on. The definition of the coboundary
operator is as follows. Let C(p−1) = {gα1α2...αn} be a (p − 1)-cochain. The corresponding
(p)-cochain δ C(p) that is in the image of δ(p−1) is given by the following alternating product of
sections and inverse sections:

(δg)α1α2...αnαn+1
=

gα2α3...αn+1
|Uα1...αn+1

◦ g−1
α1α3...αn+1

|Uα1...αn+1
◦

gα1α2α4...αn+1
|Uα1...αn+1

◦ . . . ◦ gα1α2...αn |Uα1...αn+1
(1.7.190)

where Uα1...αn+1
= Uα1

∩ Uα2
∩ . . . ∩ Uαn+1

. The nilpotency of the operator δ is easily verified.
Then we define the p-th cohomology group Hp − (F,M) of the sheaf (F,M) as

Hp (F,M) = ker δp
imδp−1

(1.7.191)

namely as the space of p-cocycles δC(p) = 0 modulo the p-coboundaries δC(p−1). At this point,
if we reconsider eqs. (1.2.12) we can appreciate the sheaf-theoretic interpretation of the transition
functions of a fibre bundle. The set T = {tαβ} defines a 1-cocycle of the sheaf (G , M) of local
G-gauge transformations over the base manifold M . The last of eqs. (1.2.12) is precisely the
statement that δT = 0. On the other hand in a trivial fibre bundle the transition functions are
of the form:

tαβ(p) = g−1
α (p) gβ(p) (1.7.192)
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In other words eq. (1.7.192) states that a fibre bundle is trivial if T = δ(∫ omet〈〉\}) is a
coboundary. Hence the space of non-trivial G-bundles over a given manifold is isomorphic to the
first cohomology group of the sheaf (G , M):

set of G-bundles on M ≈ H1 (G , M ) (1.7.193)

In this identification we have tacitly assumed that fibre bundles form a group. This is quite
obvious if as transition functions of the product we take the point-wise product of the transition
functions. As an example let us consider a complex manifold M and the complex line bundles
L

π
−→ M constructed over it. A complex line bundle is a fibre bundle where the structural group

is just C, namely the set of complex numbers. According to our previous discussion we have

group of line bundles on M = H1 (O? ,M) (1.7.194)

where O? denotes the sheaf of non-vanishing holomorphic functions. If M = Σg is a Riemann
surface of genus g, then the group of line bundles H1 (O? , Σg) = Pic (Σg) is named the Picard
group of the surface.

1.7.1 Bundle maps

Let E
π
−→ M and E

′ π
′

−→ M
′

be two fibre bundles. A smooth map

f : E −→ E
′

(1.7.195)

is named a bundle map if it preserves the fibers. This means that if π(x) = π(y) then π
′

(x) =
π
′

(y). A bundle map induces a smooth map of the base manifolds:

f(p) = p
′

∈ M
′

(1.7.196)

1.7.2 Equivalent bundles

Two bundles E
π
−→ M and E

′ π
′

−→ M constructed over the same base space M are equivalent
if there exists a bundle map f : E −→ E

′

such that the induced map f : M −→ M is the
identity, while f is a diffeomorphism:

E
′ f
−→ E

π
′↓ ↓π

M
idM−→ M

(1.7.197)

1.7.3 Pull-back bundles

Let E
π
−→ M be a fibre bundle and N some other smooth manifold N . Let

f : N −→ M (1.7.198)

be a smooth map from the manifold N to the base space of the fibre bundle E. Then we can define

a new fibre bundle f?E
f?π
−→ N that admits N as base space through the following construction.

Consider the space
S = N ⊗ E (1.7.199)
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The points in S are the pairs {p, u}, where p ∈ N is a point in the base space of the new bundle
to be constructed and u ∈ E is a point in the total space of the old bundle. Consider now the
subspace f?E ⊂ N ⊗ E:

f?E = { (p, u) ∈ S | f(p) = π(u)} (1.7.200)

of those pairs where the image of p ∈ N through the map f coincides with the image of u ∈ E
through the projection π of the old bundle. The space f ?E is the total space of the new bundle.
The projection

f?π : f?E −→ N (1.7.201)

is defined by
f?π (p, u) = p (1.7.202)

The new bundle f?E
f?π
−→ N is named the pull-back of E

π
−→ M through f . In this way we

have a bundle map:
f?E

π2−→ E
f?π↓ ↓π

N
f
−→ M

(1.7.203)

where π2 : f?E −→ E is defined by π2 (p, u) = u. (Remember that the pair (p, u) ∈ f ?E
satisfies, by definition, f(p) = π(u).) In terms of transition functions the pull-back bundle is

described as follows. The standard fibre F for E
π
−→ M and f?E

f?π
−→ N are the same;

the transition functions of the former are the pull-back of the transition functions of the latter.
Indeed let {Uα} be a covering ofM and {φα} be a corresponding local trivialization of the original
bundle:

φα : Uα ⊗ F −→ π−1 (Uα) (1.7.204)

The inverse images f−1 (Uα) provide a covering of the new base manifold N . We have an
associated local trivialization of the pull-back bundle:

ψα : f−1 (Uα) ⊗ F −→ f? π−1
(
f−1 (Uα)

)
(1.7.205)

defined as follows. Take p ∈ f−1 (Uα) and consider any point u ∈ E such that π(u) = f(p). In
this case the pair (p, u) ∈ f?E is an element of the total space of the new bundle. Let φ−1 (u) =
(f(p), fα) , where fα ∈ F is a point in the standard fibre. We set ψ−1

α (p, u) = (p, fα) and this
defines ψα. The transition function tαβ (f(p)) at a point f(p) ∈ Uα ∩Uβ in the intersection of two
charts of M maps a point fα ∈ F of the standard fibre to a new point fβ = tαβ (f(p)) fβ . By
definition the transition function t?αβ (p) at a point p ∈ f−1 (Uα) ∩ f−1 (Uα) in the intersection
of two charts of N , does the same, namely we have

t?αβ (p) = tαβ (f(p)) (1.7.206)

Summarizing, the transition functions of the pull-back bundle are the pull-back of the transition
functions in the original bundle, as already stated. This is particularly significant from the point
of view of sheaf cohomology introduced above.

An important result for the classification of fibre bundles is contained in the following theorem
due to Steenrod (1951), whose proof we omit [?]:

Theorem 1.7.1. Let E
π
−→ M be a fibre bundle and N be some other manifold. Let

f :M −→ N

g :M −→ N (1.7.207)
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be two homotopic maps from M to N . The f ?E and g?E are equivalent bundles.

This theorem sheds light on the fact that the non triviality of a fibre bundle is possible only
if the base space has a non-trivial topology, namely a non trivial homotopy. Only in this case can
the fibers be aligned in such a way as to wind along non-trivial homotopy cycles. In particular
we have:

Corollary 1.7.1. All bundles constructed over a base manifold that is contractible to a point are
trivial bundles.

Indeed let E
π
−→ M be a fibre bundle and let M be contractible. This means that there is a

homotopy:
F : M ⊗ [0, 1] −→ M (1.7.208)

such that

F [p, 0] = p ; ∀ p ∈ M

F [p, 0] = p0 ; ∀ p ∈ M (1.7.209)

where p0 ∈ M is some fixed point. Consider the continuous family of bundles f ?t E where
ft(p) = F (p, t). Due to Steenrod’s theorem, all these bundles are equivalent. On the other hand,
since f0 = id, f?0E = E, while f?1E is a trivial bundle constructed over a base manifold that is

just the single point p0. Hence E
π
−→ M is also trivial.


