
Chapter 1

GENERAL STRUCTURE AND PROPERTIES

1.1 Introduction

In this Chapter we would like to introduce the main definitions and describe the main properties
of groups, providing examples to illustrate them. The detailed discussion of representations is
however demanded to later Chapters, and so is the treatment of Lie groups based on their relation
with Lie algebras.

We would also like to introduce several explicit groups, or classes of groups, which are often
encountered in Physics (and not only). On the one hand, these “applications” should motivate
the more abstract study of the general properties of groups; on the other hand, the knowledge
of the more important and common explicit instances of groups is essential for developing an
effective understanding of the subject beyond the purely formal level.

1.2 Some basic definitions

In this Section we give some essential definitions, illustrating them with simple examples.

1.2.1 Definition of a group

A group G is a set equipped with a binary operation ·, the group product, such that1

(i) the group product is associative, namely

∀ a, b, c ∈ G , a · (b · c) = (a · b) · c ; (1.2.1)

(ii) there is in G an identity element e:

∃ e ∈ G such that a · e = e · a = a ∀ a ∈ G ; (1.2.2)

(iii) each element a admits an inverse, which is usually denoted as a−1:

∀ a ∈ G ∃ a−1 ∈ G such that a · a−1 = a−1 · a = e . (1.2.3)

1 Notice that the axioms (ii) and (iii) above are in fact redundant. Show as an exercise that it would be sufficient
to require

(ii’) ∃ e ∈ G such that e · a = a ∀ a ∈ G, i.e., there is a left identity;
(iii’) ∀ a ∈ G ∃ b ∈ G such that b · a = e, i.e., each element a admits a left inverse b (here e is the left identity

introduced in (ii’)).

That e is also a right identity follows, and one retrieves (ii) and (iii).

1
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In the following, we will often indicate the group product simply as ab. We may indicate it with
different symbols when the particular group operation is usually denoted differently, e.g. as a+b,
when the product law is in fact the usual addition. In such a case, to stress the specific choice of
the product law, we may also indicate the group as, for instance, (G,+).

Some examples

• Consider the set {0, 1} with the group product being the usual addition defined mod 2; this
is a group (show it), usually denoted as Z2.

• The set {1,−1} with the usual multiplication as group product is a group (show it). We will
see that this group is isomorphic, i.e. it has the same abstract structure, to the previous
example.

• The set of real numbers R, with the group law being the addition, is a group (show it).
• The set U(1) ≡ {eiθ; θ ∈ [0, 2π]} with the usual multiplication is a group.
• The groups {e, a, a2 ≡ a · a, . . . , ak−1} containing all the “powers” of a single “generator” a

with respect to the group product, with the single extra relation ak = e, are named cyclic
groups, and denoted as Zk. Do you see a concrete “realization” of these groups that justifies
their name?

• The set of complex numbers of the form a + b
√
−5, with a, b ∈ Q and not simultaneously

zero, forms a group under the usual multiplication of complex numbers (show it).
• The set of permutations of three numbered objects 1,2,3 form a group called S3, the product

law being the composition of the permutations. This group has order 6, containing: the
identical permutation, three exchanges: p12 = (1 ↔ 2), p13 = (1 ↔ 3), p23 = (2 ↔ 3) and
two cyclic permutations p123 = (1→ 2→ 3→ 1) and p132 = (1→ 3→ 2→ 1).

1.2.2 Abelian groups

The group product is not required to be commutative. When the product is commutative, the
group is called an Abelian group:

G Abelian : ab = ba ∀a, b ∈ G . (1.2.4)

Abelian groups are of course the simplest types of groups. All the groups of the previous examples
are in fact Abelian, except the permutation group S3 (check both assertions).

1.2.3 The group commutator

Two elements g, h of a group commute if, with the group product, gh = hg, i.e., ghg−1h−1 = e.
(e being the identity). Then the group commutator of g and h, defined as

ghg−1h−1 (1.2.5)

indicates if (and how) the two elements fail to commute.

1.2.4 Conjugated elements

Two group elements h and h′ are said to be conjugated (in which case we write h ∼ h′) if

∃g ∈ G such that h′ = g−1 h g . (1.2.6)
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If the group is Abelian, each element is conjugate only to itself. Notice that the relation “being
conjugate to” is an equivalence relation, namely it is symmetric, reflexive and transitive:

(i) (h ∼ h′)⇔ (h′ ∼ h) ;
(ii) h ∼ h ;
(iii) (h ∼ h′) and (h′ ∼ h′′)⇒ (h ∼ h′′) ,

as it is elementary to check.

1.2.5 Order and dimension of a group

The “number” of elements of a group G can be (1) finite, (2) infinite but denumerable or (3)
continuously infinite.

In the first two cases, the number of elements of G is named the order of the group, and
denoted as |G| (in the second case, |G| =∞). A group of finite order is called a finite group.

Examples

• The cyclic group Zk is a finite group of order k.
• The relative integers Z with the group product being the addition form a group of infinite

order.
• The set of real numbers (with the zero excluded) R \ {0}, with the ordinary product, is a

continuous group.

1.2.6 Topological groups

A group G containing a continuous infinity of elements is called a topological group if G as a
set is a topological space. The group product law and the topological structure are tied by the
requirement that the map φ : G × G 7→ G defined by φ(x, y) = xy−1, ∀x, y ∈ G, be continuous
in x and y. Notice that the continuity of xy−1 in x, y implies the continuity in x, y of the map
xy and x−1.

Example The set of real numbers R, with the addition as product law, is an Abelian topological
group. Indeed R is a topological space (topology of open intervals) and the map φ(x, y) = x− y
is continuous.

In the cases relevant in Physics, usually the map φ(x, y) enjoys, beyond continuity, differen-
tiability properties related to a finer structure of G, that of a differentiable manifold.

1.2.7 Lie groups

The group g is called a Lie group when G is a differentiable manifold and the group product
is related to the differentiable structure of G by the condition that the map φ(x, y) = xy−1 is
differentiable in x and y.

The concept of order of the group gets replaced by that of dimension of the group G, denoted
as dimG, which is the dimension of G as a manifold.

See Chapter ? for the treatment of Lie groups.
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Examples

• The set of real numbers R, with the addition as product law, is also a Lie group, as R is (the
prototype of) a manifold and the map φ(x, y) = x− y is differentiable.

• Consider the group SU(2), i.e. the group of 2×2 unitary matrices with unit determinant, the
group product being the matrix multiplication. A generic element g of this group satisfies
g†g = 1 and det g = 1, and can be thus written (show it) as

g =

(
a b
−b∗ a∗

)

, a, b ∈ C , |a|2 + |b|2 = 1 (1.2.7)

or, introducing four real parameters xa, defined by a = x0 + ix3 and b = x2 + ix1, as

g =

(
x0 + ix3 x2 + ix1

−x2 + ix1 x0 − ix3

)

= x01+ ixiσi (1.2.8)

(where σi, i = 1, 2, 3 are the Pauli matrices), with

3∑

a=0

(xa)2 = 1 . (1.2.9)

We see that the elements of SU(2) are parameterized by the points of a three-sphere S3

defined by Eq. (1.2.9). Thus dimSU(2) = 3. It is possible to show that it is a Lie group, as
the product corresponds to a differentiable mapping.

1.2.8 Order of an element

If a ∈ G, then a2, a3, . . . ∈ G. If all the powers of a are distinct, then a is an element of infinite
order (then, of course, G cannot be a group of finite order). If some of the powers of a coincide,
this means (show it) that there exist some integer m such that am = e. Let n be the smallest of
such integers m. Then a is said to be an element of order n.

Observations

• In a finite group G all elements have order ≤ |G|.
• If G is a cyclic group of order n, then the order of any element is a divisor of n. Indeed, any

element can be written as ak, with a being the single generator, for which an = e. Then,
the order m of this element must be such that (ak)m = e = an. If in particular n = p, with
p a prime, then all elements have order n, and the group is called a ‘p-cyclic group.

• In a finite group, the inverse of any element a is a power of a: indeed, a−1 = an−1, where n
is the order of a.

1.2.9 The multiplication table of a finite group

A group is abstractly defined by describing completely (i.e., ∀g1, g2 ∈ G) the product law
(g1, g2) 7→ g1g2 namely, by identifying the result of each possible product. For finite groups
this can be encoded explicitely in a multiplication table whose entry in the i-th row and j-th
column describes which element is the result of the product gigj (so we use the convention that
g1 = e):
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e g2 g3 . . .

g2 (g2)
2 (g2g3) . . .

g3 (g3g2) (g3)
2 . . .

...
...

...
. . .

Notice that all the elements appearing in a line of the multiplication table are different (and
therefore all elements appear in each line). Indeed, if we had gigj = gigk we could conclude
that gj = gk. The same applies to each column. These properties constrain a lot the possible
multiplication tables, expecially at low orders.

A finite group is abstractly defined by its multiplication table, up to relabeling of the elements
(i.e., up to rearrangings of the rows and columns). A given table, i.e., a given group, may
have different concrete realizations. We will shortly make more precise what we mean by this
observation.

Examples

• The only possible multiplication table for a group of order 2 is the following:

e a

a e

This is the multiplication table of the cyclic group Z2: indeed we have a2 = e. This unique
group of order 2 admits hosts of realizations, e.g.:

– the set {0, 1} with addition mod 2 as product law;
– the set {1, 1} under ordinary product;
– the group of spatial inversions in three-space (reflections w.r.t. to the y, z plane), e being

the identity transformation, a the inversion x 7→ −x.
– the group S2 of permutations of two objects, e being the identical permutation, a the

exchange.

• There is only one possible group of order 3, with multiplication table

e a b

a b e

b e a

(show it). This is the multiplication table of Z3. Some realizations:

– the set {0, 1, 2} (with addition mod 3 as product law);
– the set {e2πni/3;n = 0, 1, 2} of cubic roots of unity, with the ordinary product.

• Show that there are two possible groups of order 4. One corresponds obviously to Z4, the
other, as we will see, to the dihedral group D2, that is the direct product Z2 ⊗ Z2.

• Write down the multiplication table of the group S3.

1.2.10 Homomorphisms, isomorphisms, automorphisms

We have seen that we can have different “realizations” of a given abstract group. We are interested
in concrete realizations of the group, where the elements of the group aquire an explicit meaning
as numbers, matrices, symmetry operations or other quantities with which we can perform explicit
computations.

In precise terms, finding a different realization G′ of a given group G means to find an
isomorphic mapping (or isomorphism) between G and G′. Let us explain this terminology.
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Homomorphisms A map φ from a group G to a group G′ is called an homomorphism iff it
preserves the group structure, namely iff

∀ g1, g2 ∈ G , φ(g1g2) = φ(g1)φ(g2) , (1.2.10)

where the products g1g2 and φ(g1)φ(g2) are taken with the group product law of G and G′

respectively. The map is not required to be invertible, i.e. one-to-one.

Representations An homomorphism D : G → G′, where G′ is a matrix group, namely a group
whose elements are square matrices and whose product is the usual matrix product, is called a
linear representation (representation, for shortness) of the group G. The properties and classi-
fication of group representations are probably the most important aspect of Group Theory, for
physicists.

Isomorphisms An homomorphism φ : G→ G′ which is also invertible is called an isomorphism.
Two groups G and G′ such that there exists an isomorphism φ : G→ G′ are said to be isomorphic.
They correspond to different realizations of the same abstract group structure.

An isomorphism DG→ G′, with G′ amatrix group defines a faithful representation.

Examples

• Find an homomorphic mapping of Z4 onto Z2.
• Describe the isomorphism between the group of cubic roots of unity and the integers mod 3.
• The group (R,+) and the group (R+, ·) (strictly positive real numbers with the ordinary

product) are isomorphic. An isomorphism between the two is given by the exponential
map exp : R → R+. Indeed the map is invertible and it respects the group product:
exp(x+ y) = exp(x) exp(y).

Automorphisms An isomorphic mapping σ from a group G to itself is called an automorphism
of G. The set of all automorphisms of a given group G forms a group called Aut(G), the product
law being the composition of mappings. Indeed, the composition 2 σ1 ◦σ2 of two automorphisms
σ1 and σ2 is still an automorphism:

(σ1 ◦ σ2)(h1h2) = σ1 (σ2(h1h2)) = σ1 (σ2(h1)σ2(h2)) = σ1 (σ2(h1))σ1 (σ2(h2))

= (σ1 ◦ σ2)(h1)(σ1 ◦ σ2)(h2) (1.2.11)

and of course the composition of mappings is associative, there’s an identical automorphism and
any automorphism is assumed to be invertible by definition so that the group axioms are satisfied.

For finite groups, the automorphisms of G are particular permutations of the elements of
G, namely Aut(G) is a subgroup of S|G|. They correspond to symmetries of the multiplication
table of G, in the following sense. As we remarked, the ordering of the rows and columns of the
multiplication table is irrelevant. If we apply a given map σ : g 7→ σ(g) to labels and entries of the
multiplication table it may happen that the resulting table corresponds just to a rearrangement
of rows and columns of the original table. In this case the permutation σ is an automorphism.

2 By this notation we intend acting first with σ2 and then with σ1
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Example For instance, consider the map σ exchanging a and a2 in the group Z3 and in the group
Z4, the other elements remaining invariant. Show that in the first case σ is an automorphism, in
the second it is not. Drawing in the complex plane the third and fourth roots of unity, it results
evident why this exchange is a symmetry in the first case but not in the second.

An important class of automorphic mappings is the one corresponding to conjugation by a
fixed element of a group:

σg : h ∈ G 7→ σg(h) = g−1 h g ∈ G . (1.2.12)

Show that such a mapping is indeed an automorphism. Automorphisms that correspond to
conjugations are called inner automorphisms, automorphisms which do not, outer automorphisms.
Notice that for Abelian groups the only non-trivial automorphisms are outer ones.

1.2.11 Rank, generators, relations (cursory look)

Let the elements of a finite group G be g1 = e, g2, g3, . . .. All elements can be written in the form

gk = gi1gi2 . . . gis , (1.2.13)

for suitable gij elements (at worst the only possibility is gk = gk). A set of group elements
(different from the identity e) which, multiplied in all possible ways, give all the elements of G
(a part, at most, from the identity) is said to generate the group G. The minimal such set is a
set of generators of G. The minimal number of generators is the rank of G.

If a group G is denumerable rather than finite, then we say that it is generated by a finite
subset B of elements iff every element g ∈ G can be written as

g = g±1
i1
g±1
i2
. . . g±1

is
, (1.2.14)

with all the gil belonging to B (they may be repeated, of course). So, with respect to the case of
finite groups, now not only positive but also negative powers of generators may appear. In the
case of finite groups, all generators have finite order, so their negative powers can be re-expressed
in terms of the positive ones; this is not true in general.

Examples

• The cyclic groups Zk have rank one, as all elements are powers of a single generator a:
Zk = {e = a0, a, a2, . . . ak−1}.

• The permutation group S3 is generated by the two exchanges p12 and p23. Indeed one has
then p132 = p12 p23, p123 = p23 p12 and p13 = p12 p23 p12 = p23 p12 p23. S3 has thus rank 2.

Presentation of a group. Relations A group can be described by giving its generators and (if
present) the relations that they satisfy. Such a description of a group is called a presentation of
the group.

Indeed, starting with the generators ga (a = 1, . . . rankG) one can construct words of in-
creasing length: ga, then gagb, etc. In this one obtains the further elements of G. In the process,
however, me must take into account the relations to which the generators may be subject, which
may be cast in the form Ri({ga}) = e, the Ri being a set of specific words. If G is a finite group,
then each generator must be of finite order and therefore we have at least the relations gna

a = e,
where na is the order of ga; there may then be others.

We will come back later in ?? to these concepts, to formalize them a bit more.
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Examples

• The group S3 is defined by its presentation consisting of two generators s = p12 and t = p13

subject to the relations that s2 = e, t2 = e and (st)3 = e. Show that indeed this presentation
permits to retrieve S3.

For continuous groups, as we will see, the analogue of generators and relations will be given
by the existence of a set of “infinitesimal generators” closing a Lie algebra.

1.2.12 Subgroups

A subset H ⊂ G is a subgroup of G if it is a group, with the same product law defined in G. To
this effect it is sufficient that

i) ∀h1, h2 ∈ H, h1h2 ∈ H;
ii) ∀h1 ∈ H, h−1

1 ∈ H.

Show this. While for an infinite (or continuous) group both requirements are to be checked (find
an example), if G is a finite group, then i) is enough; show it (hint: for a finite group all elements
are of finite order).

Examples

• Z ⊂ R (with the addition as product law) is a subgroup.
• A cyclic group Zn admits a subgroup Zm whenever m|n (i.e., when “m divides n”).

The relation “being subgroup of” is transitive:

{
H ⊂ G ,
K ⊂ H

⇒ K ⊂ G , (1.2.15)

where, as we will do from now on unless there is risk of confusions, with H ⊂ G we intend “H is
a subgroup of G”. In general, a given group G will admit chains of subgroups

G ⊃ H1 ⊃ H2 . . . ⊃ e . (1.2.16)

G itself and the group containing only the identity e are trivial subgroups of G, other sub-
groups are called proper subgroups. One of the most important problems in group theory is the
determination of all proper subgroups of a given group.

Infinite groups may admit infinite sequences of subgroups. For instance, consider (Z,+):

Z = G = . . . ,−2,−1, 0, 1, 2, . . .
∪ ∪
2Z = H1 = . . . ,−4,−2, 0, 2, 4, . . .
∪ ∪
4Z = H2 = . . . ,−8,−4, 0, 4, 8, . . .
...

...
...

(1.2.17)

In this case, all the elements of the sequence are isomorphic.
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1.3 Important examples

In this section we want to introduce many typical classes of groups which are encountered in
Physics. This should “substantiate” the definitions given before and provide a set of important
concrete examples which will be very useful (often essential) in the following.

1.3.1 Groups of matrices

Very often, physically interesting groups are matrix groups, i.e. groups whose elements are square
matrices of a given dimension, and where the product law is the ordinary matrix multiplication.
This product is in general non-commutative, but it is associative. The group must contain the
identity matrix. All the matrices M in the group have to be invertible, i.e. detM 6= 0, for axiom
(iii) to be satisfied.

General linear groups The group of all n× n invertible matrices with complex entries is called
the (complex) general linear group in n dimensions and is denoted as GL(n,C). If the entries are
real, we have the real general linear group GL(n,R), which is a subgroup of the former. Could
one also define a GL(n,Z) group?

An element of GL(n,C) is parameterized by n2 complex numbers, the entries of the matrix
(the n2 parameters are real for GL(n,R), of course).

One can define further matrix groups by placing restrictions, typically in form of matrix
equations or of conditions on the determinant, that are preserved by the matrix product.

Special linear groups The group of all n×n matrices with complex entries and determinant equal
to 1 is named the special linear group and is indicated as SL(n,C). It is obviously a subgroup of
GL(n,C): the condition of having unit determinant is preserved under the product. Similarly,
one defines SL(n,R). One can also define the group SL(n,Z); the inverse matrices too have
integer entries: the determinant, that would appear in the denominator, is 1.

An element of SL(n,C) depends on n2 − 1 complex parameters, as the relation detM = 1
has to be imposed on the n2 entries of any matrix M . Such parameters are real (integers) for
SL(n,R) or SL(n,Z).

Unitary groups The group of unitary matrices U(n,C) ⊂ GL(n,C) contains all the complex
matrices U such that

U †U = 1 . (1.3.18)

Check that it is a group. Which values can the determinant of a unitary matrix assume?. Similarly
one could define U(n,R) ⊂ GL(n,R), containing real unitary matrices: U †U = UTU = 1, but
these are nothing else than real orthogonal matrices, to be introduced shortly. So the group
of complex unitary matrices is usually simply denoted as U(n). Complex unitary matrices are
parameterized by 2n2 − n2 = n2 real parameters (we have to subtract the n2 real conditions
corresponding to the entries of the equation U †U − 1 = 0 from the n2 complex parameters of
the matrix U). So the unitarity conditions halves the number of parameters, with respect to a
generic complex matrix.

Special unitary groups The subgroup SU(n,C) ⊂ U(n,C) contains the unitary matrices with unit
determinant. It is usually denoted simply as SU(n). It is determined by n2 − 1 real parameters.
We have to subtract the real condition of having determinant 1 from the parameters of a unitary
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matrix; recall that the determinant of a unitary matrix can assume a continuous range of values
exp(2πiθ), θ ∈ [0, 1].

Orthogonal groups The group of orthogonal matrices O(n,C) ⊂ GL(n,C) contains all the com-
plex matrices O such that

OTO = 1 . (1.3.19)

Check that it is a group (which values can the determinant assume?). More frequently encoun-
tered are the real orthogonal matrices O(n,R) ⊂ GL(n,R). These groups are usually denoted
simply as O(n). Real orthogonal matrices are parameterized by n(n−1)/2 real numbers. Indeed,
from the n2 parameters of a general real matrix, we have to subtract the n(n + 1)/2 conditions
given by the entries of the matrix condition OTO = 1, which is symmetric.

Special orthogonal groups The group SO(n) contains the real orthogonal matrices with unit
determinant. Analogously one could define its complex extension SO(n,C). They have the same
number of parameters, n(n − 1)/2, as the orthogonal matrices. Indeed, the determinant of an
orthogonal matrix O can already have only a finite set of values: detO = ±1; imposing detO = 1
does not alter the dimensionality of the parameter space.

Symplectic groups The group of symplectic matrices Sp(n,C) contains the 2n× 2n matrices A
that preserve the “symplectic3 form” Ω, namely the matrices such that

AT ΩA = Ω , Ω =

(
0 1
−1 0

)

. (1.3.20)

Similarly one defines Sp(n,R). Since the restriction Eq. (1.3.20) is an antisymmetric matrix
expression, it poses (2n)(2n − 1)/2 conditions, and the symplectic matrices depend thus on
(2n)2 − (2n)(2n− 1)/2 = n(2n+ 1) parameters (complex or real for Sp(n,C) or Sp(n,R)).

The groups U(n), O(n) and Sp(n) form the three families of so-called “classical (matrix)
groups”.

1.3.2 Groups of transformations

Square matrices represent endomorphisms of some vector space. Thus the matrix groups are in
fact groups of linear transformations of vector spaces. More in general, very often in physical
applications the elements of G are transformations τ acting on some space V :

τ ∈ G : v ∈ V 7→ τ(v) ∈ V , (1.3.21)

and the group composition is the composition of transformations:

τ1τ2 ∈ G : v ∈ V 7→ τ1 (τ2(v)) ∈ V . (1.3.22)

In this case, the associativity is automatically satisfied. Notice our convention that in the product
τ1τ2 one acts first with τ2 and then with τ1: v

τ27→ τ2(v)
τ17→ τ1(τ2(v)) ≡ τ1τ2(v). This is of course

the same convention that arises in taking the matrix product as the group product law for groups
of linear transformations on vector spaces.

Transformations groups are Abelian when the order in which two transformations are sub-
sequently performed does not affect the final result.

Let us now consider some relevant examples.

3 The symplectic form is the non-positive quadratic form often appearing in analytical mechanics, e.g., in the
definition of the Poisson brackets: {F,G} = ∂F

∂yI Ω
IJ ∂F

∂yJ , where y
I = (qi, pi) are the phase-space coordinates.
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1.3.3 The permutation groups Sn

Consider a finite set A. The automorphisms of A, i.e., the bijective mappings P : A ↔ A, form
a group S(A), called the symmetric group of A. The nature of the objects in the set A does not
matter, only their number |A| does. So, if |A| = n, we can think the objects to be the numbers
1, 2, . . . n and indicate the symmetric group, also called the permutation group on n objects, as
Sn. An element of this group, a permutation P , i.e. a bijective map, is defined explicitely by its
action on the elements 1, . . . n of the set:

P =

(
1 2 . . . n

P (1) P (2) . . . P (n)

)

. (1.3.23)

The product law of the symmetric group is the composition of permutations, with the convention
described above: PQ means effecting first the permutation Q and then the permutation P . While
S2 is Abelian, all Sn with n > 2 are not Abelian. (Show by picking some particular permutations
that S3 is not Abelian.) The symmetric group Sn has n! elements (show it).

We may give an explicit expression of a permutation P ∈ Sn as an n× n matrix defined by

(P )ij = δi,P (j) , i, j = 1, . . . n . (1.3.24)

In this way composition of permutations corresponds to the product of the defining matrix rep-
resentatives Eq. (??):

(PQ)ij =
∑

k

δi,P (k)δk,Q(j) =
∑

k

δi,P (k)δP (k),P (Q(j)) = δi,P (Q(j)) . (1.3.25)

Notice that the matrix representatives of permutations are unitary and real, that is, they are
orthogonal matrices. So Sn can be seen as a subgroup of U(n), and in particular of O(n).

Cycle decomposition Let us illustrate the notion of “cycle” of a permutation by means of an
example. Consider the permutation P ∈ S8 given by

P =

(
1 2 3 4 5 6 7 8
2 3 1 5 4 7 6 8

)

. (1.3.26)

Let us follow what happens to the various elements 1, . . . 8 if we repeatedly apply the permutation
P . We have 1 → 2 → 3 → 1, after which everything repeats again. We say that 1, 2, 3 form a
cycle of order 3 in P , and we denote this cycle compactly as (123). We also have that 4→ 5→ 4,
so that we have a cycle (45). Also, 6 → 7 → 6 and thus there’s the cycle (67). Finally 8 is
invariant, i.e., it is a trivial cycle (8). The permutation P has a the cycle decomposition

P = (123)(45)(67)(8) . (1.3.27)

Often the cycles of length 1, such as (8) above, are omitted when writing the cycle decomposition.
It is quite evident that the example we took is not limited in any way, and every permutation of
any Sn group will admit a cycle decomposition. As we will see, the (type of) cycle decompositions
of permutations is of fundamental importance in the analysis of permutation groups. Let us make
some simple observations.

i) The sum of the lengths of the cycles in the cycle decomposition of P ∈ Sn equals n: every
element is in some cycle, and cycles do not have elements in common.
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ii) Having no common elements, two cycles in the decomposition of a given permutation com-
mute. For instance, in Eq. (1.3.27), (123)(45) = (45)(123).

iii) Just by their definition, the cycles can be shifted freely without affecting them: (123) =
(231) = (312) (but (123) 6= (213) !)

iv) Every cycle can in turn be decomposed into a product of cycles of order 2, called also
transpositions or exchanges. However the latter have now elements in common. For instance,
(123) = (13)(12). In general, (12 . . . n) = (1n)(1, n− 1) . . . (13)(12); show this.

Odd and even permutations As discussed above, every permutation can be decomposed into a
product of transpositions. A permutation is called odd or even depending if in such a decompo-
sition an odd or even number of transpositions is needed.

The alternating groups The even permutations form a subgroup of Sn (the odd ones clearly do
not form a subgroup) called the alternating group on n elements, denoted as An. Its order is
|An| = |Sn|/2 = n!/2.

1.3.4 The Euclidean groups

The so-called Euclidean group in d dimension is the group of isometry transformations in an Eu-
clidean space Rd. It consists of translations, of rotations around some axis (proper rotations) and
reflections with respect to hyperplanes. All such transformations leave unaltered the Euclidean
distance between any two points of Rd.

The Euclidean group in two dimensions Consider the transformations of a plane R2 into itself
given by rigid rotations around a perpendicular axis through the origin. They clearly form a
group. The elements Rθ of the group are identified by an angle θ (the angle of, e.g., anti-
clockwise, rotation) defined mod 2π; that it, the elements of the group correspond to the points
of a circle S1. The composition of two rotations results in Rθ1Rθ2 = Rθ1+θ2 ; the group is Abelian.
We can describe a transformation R(θ) via its effects on the Cartesian coordinates x ≡ (x, y) of

a point: x
R(θ)7→ x′, with

{
x′ = cos θ x+ sin θ y ,
y′ = − sin θ x+ cos θ y ,

(1.3.28)

that is, x′ = R(θ)x, with R(θ) an orthogonal 2×2 matrix with unit determinant: R(θ) ∈ SO(2).
In fact, this correspondence between rotations and matrices of SO(2) is an isomorphism. We
can thus say, with a slight abuse of language, that SO(2) is the (proper) rotation group in two
dimensions.

Also the translations T (v) by a two-vector vector v acting on the Euclidean space R2,
T (v) : x 7→ x + v, ∀x ∈ R2 form a group, with the composition of two translations resulting in
T (v1)T (v2) = T (v1 + v2); the group is Abelian.

Consider now the group of all transformations of R2 onto itself given by simultaneous ro-
tations and/or translations with arbitrary parameters. Let us denote such transformations as
g(θ,v) ≡ (R(θ), T (v)). They act on the coordinate vectors by

(R(θ), T (v)) : x 7→ R(θ)x+ v . (1.3.29)

Notice that the translation parameters v, being vectors, are acted upon by the rotations. Check
that the product law resulting from the composition of two such transformations is

(R(θ1), T (v1))(R(θ2), T (v2)) = (R(θ1)R(θ2), T (v1) + T (R(θ1)v2)) , (1.3.30)
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i.e. also

g(θ1,v1)g(θ2,v2) = g(θ1 + θ2,v1 +R(θ1)v2) . (1.3.31)

Check that this is a group; in particular, find the expression of the inverse of a given trans-
formation. This group is called “inhomogeneous rotation group” in two dimensions and indicated
as ISO(2).

A proper rotation sends an oriented orthogonal frame into a new orthogonal frame with the
same orientation. Inversions (or reflections) of the plane with respect to a line through the origin
also map it to an orthogonal frame, but with the opposite orientation. For instance, reflection
with respect to the x-axis maps (x, y) to (x,−y). The set of all transformations obtained as
compositions of proper rotations and inversions is a group (show it). The inversion w.r.t. to a
direction forming an angle θ with the x axis is effected by the matrix (show it)

I(θ) =
(
cos 2θ sin 2θ
sin 2θ − cos 2θ

)

= I(0)R(2θ) (1.3.32)

where I(0) = diag(1,−1) is orthogonal but with determinant -1. Thus rotations plus inversions
of the plane are represented by orthogonal 2× 2 matrices, i.e., by elements of O(2).

Translations, rotations and inversions form a group, Eucl2, which is called the Euclidean
group (in two dimensions).

The Euclidean group in three dimensions The translations acting on R3 form an Abelian group
(there’s no difference from the R2 case).

Consider then the rotations around any axis through the origin. Such transformations form
the group or proper orthogonal rotations in three dimensions; the effect of doing two subsequent
rotations around two axis is again a rotations around some other axis. The proper rotations
map an orthonormal frame into a new orthonormal frame with the same orientation, and are
represented on the vectors by orthogonal 3 × 3 matrices with unit determinant. In fact, the
group of proper rotations is isomorphic to SO(3). For instance, write the matrices representing
rotations around the coordinate axis. (Other exercise: given a SO(3) matrix, individuate the
axis and the angle of rotation by “diagonalizing” the matrix). The group of three–dimensional
rotations SO(3) is non Abelian (for instance, consider products of rotations around the coordinate
axes).

How is the rotation group parameterized? Take the rotation angle φ ∈ [−π, π]. A given
rotation is thus represented by a vector in three-space whose versor is that of the rotation axis,
and whose algebraic length is φ. This describes a ball of radius π. However, rotations of π or
of −π around an axis are to be identified. Thus the point of the surface S2 of the ball have to
be identified pairwise (antipodal identification). The elements of the group corresponds thus to
points of this space, which we will identify better later.

Again, the group ISO(3) of roto-translations in three dimensions can be defined with no
formal modifications with respect to the bi-dimensional case.

Reflections with respect to a plane and total spatial reflection x 7→ −x map orthogonal
frames to orthogonal frames of opposite orientation. They are represented by orthogonal 3 × 3
matrices with determinant -1. Rotations and reflections form a thus group, which is isomorphic
to the group O(3) of orthogonal matrices acting on the vectors.

Translations, rotations and reflections form the Euclidean group in three dimensions Eucl3.
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1.3.5 The Möbius group (complex projective transformations)

Consider the conformal transformations of the compactified complex plane (or Riemann sphere)
C̃ ≡ C ∪ {∞}. Conformal mappings z 7→ w are represented by analytic functions w(z). We ask
that the transformations be invertible, i.e. one-to-one, so the function w(z) can have at most a
pole (otherwise the point at infinity would have many counter-images) and therefore (logarithmic
indicator...) at most a zero; moreover the Jacobian ∂w/∂z must not vanish. We have thus that
a transformation M is given by

z
M7→ w(z) =

az + b

cz + d
, a, b, c, d ∈ C, ad− bc 6= 0 , (1.3.33)

where the last condition follows from the invertibility condition ∂w/∂z 6= 0 (check it). Notice
that all transformation of parameters (ka, kb, kc, kd), k ∈ C r {0} are equivalent: there is a scale
invariance that we can use to fix ad − bc = 1. The transformations Eq. (1.3.33) are known as
fractal linear transformations, projective transformations or Möbius transformations.

The composition of two Möbius transformations M,M ′is again a Möbius transformation
M ′′:

z
M7→ w =

az + b

cz + d

M ′

7→ x =
a′w + b′

c′w = d′
=

(a′a+ b′c)z + a′b+ b′d

(c′a+ d′c)z + c′b+ d′d
=
a′′z + b′′

c′′z + d′′
. (1.3.34)

Check that the product transformation z
M ′′

7→ x satisfies a′′d′′ − b′′c′′ = 1.
Thus, it is natural to associate to a Möbius transformation M a 2× 2 matrix M with unit

determinant

M =

(
a b
c d

)

, detM = ad− bc = 1 , (1.3.35)

that is an element of SL(2,C). Then to a product of transformations M ′′ =M ′M corresponds a
matrix which is the matrix product of the two factors: M′′ =M′M. However, the mapping from
the group of Möbius transformations to SL(2,C) is one-to-two, as the matrices ±M correspond
to the same Möbius transformation M .

1.3.6 Groups of invariance (symmetry groups)

Very often one is interested in groups which can be defined as group of transformations such that
they preserve some property or some operation defined in the space on which the transformations
act. Such groups are then called symmetry groups or groups of invariance. This is the context
in which group theory was originally developed, and also the framework of many of its physical
applications, for instance, in quantum mechanics. Let us now discuss some important (classes
of) examples.

1.3.7 Matrix groups and vector spaces

...

Special linear groups as volume-preserving transformations ...
In the particular case of V ⊗n (with V of dimension n), the fully antisymmetric subspace

has dimension
(
n
n

)
= 1, and its basis element is ~e1 ∧ ~e2 . . . ∧ ~en. It is called4 the volume element.

4 Though this name is in fact appropriate for the dual basis element of Λn(V ), the space of n-forms or n-linear
antisymmetric functionals on V .
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A change of basis A on V induces a transformation of the volume element by a multiplicative
factor:

(~e1 ∧ ~e2 . . . ∧ ~en)′ = detA~e1 ∧ ~e2 . . . ∧ ~en , (1.3.36)

where the determinant arises from the application of Eq. (??):

detA =
∑

P∈Sn

(−1)σ(P )Aj1
1 A

j2
2 . . . Ajn

n . (1.3.37)

The permutations P act by exchanging the indices ji.

We have defined the special linear group SL(n) (real or complex) to be the subgroup of the
general linear group GL(n) (real or complex) containing the matrices A such that detA = 1. We
see now by Eq. (1.3.36) that the special linear group is the subset of basis changes on V that
preserve the volume element of V ⊗n.

Metrics (bilinear or sesquilinear forms) Let V be a vector space based on a field F (which can
be either R or C for us). A metric on a vector space is a functional from V ⊗V into the F. That
is, a metric is the assignment of a value in F to every pair of vectors:

g : ~v1, ~v2 ∈ V 7→ (~v1, ~v2) ∈ F , ∀~v1,2 ∈ V . (1.3.38)

We have utilized above the notation (, ) for the metric action, which is natural since metrics are
indeed utilized to define scalar products; however for this purpose some further properties are
usually assumed. The metric can be required to be bilinear, in which case

(~v1, α~v2 + β~v3) = α(~v1, ~v2) + β(~v1, ~v3) ,

(α~v1 + β~v2, ~v3) = α(~v1, ~v3) + β(~v2, ~v3) , (1.3.39)

for any α, β ∈ F, or sesquilinear, in which case

(~v1, α~v2 + β~v3) = α(~v1, ~v2) + β(~v1, ~v3) ,

(α~v1 + β~v2, ~v3) = α∗(~v1, ~v3) + β∗(~v2, ~v3) . (1.3.40)

Of course, bi-linearity and sesquilinearity are different only if the field F = C. Let {~ei} be a basis
for the vector space V . A metric is specified by its action on the pairs of basis vectors. Let us
denote

(~ei, ~ej) = gij . (1.3.41)

Then we have, for instance with a sesquilinear metric, (~v, ~u) = vi
∗
giju

j . We assume that the
metric is non-degenerate, that is that detg 6= 0 (where g is the matrix of elements gij). Under a
change of basis A, a sesquilinear metric transforms as follows:

g′ij = (A k
i )∗ gklA

l
j . (1.3.42)

Notice that gij transforms covariantly. In matrix form, Eq. (1.3.42) reads g′ = A ∗ g AT =
(AT )† g AT .
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Diagonalization of the metric. Signature. If a (sesquilinear) metric is hermitean: gij = g∗ji (as
it should be the case if we want to use it to define a scalar product and a notion of distance on
our complex vector space), then it is always possible to find a basis change that puts it into a
canonical form

gij → diag(
p

1, . . . , 1
︸ ︷︷ ︸

,
q

−1, . . . ,−1
︸ ︷︷ ︸

) . (1.3.43)

Indeed, we can first diagonalize gij to λi δij changing basis with its eigenvector matrix ~e ′i = S j
i ~ej .

Since gij in our hypothesis is hermitean, the eigenvalues λi are real. We can then further change

basis rescaling the basis vectors to ~fi = |λi|−1/2~e ′i to obtain Eq. (1.3.43). A metric of canonical
form Eq. (1.3.43) is said to have signature (p, q).

Metric-preserving changes of basis Having endowed a vector space with a metric, we can consider
those automorphisms that preserve the metric. It is not difficult to see that such changes of basis
form a subgroup of the general linear group. Indeed, if A and B are two changes of bases that
preserve the metric, then the product change of basis BA also preserves it (check it), so closure
is verified. Also the inverse of a metric-preserving automorphism preserves it, and the identity
certainly does.

We now can identify the classical matrix groups as those subgroups of the general linear
group that preserve certain types of metrics.

• The pseudo-unitary group5 U(p, q;C) is the subgroup of GL(p + q,C) that preserves an
hermitean sesquilinear metric of signature (p, q). The prefix pseudo- is dropped when the
metric s definite positive, i.e. when q = o. In this case the metric in canonical form g = 1 is
preserved by a basis change U iff U †U = 1.

• The pseudo-orthogonal group6 O(p, q;R) is the subgroup of GL(p + q,R) that preserves a
symmetric bilinear metric of signature (p, q). Similarly one can define O(p, q;C). For a
positive definite metric, the condition to be preserved by a basis change O is just OTO = 1.

It is interesting to consider from a similar perspective also antisymmetric bilinear forms on vector
spaces; they, for instance, appear naturally in Hamiltonian mechanics.

• The symplectic group Sp(m,R) is the subgroup of GL(2m,R) that preserves an antisymmetric
bilinear form ω (also called symplectic form). One can similarly define Sp(m,C).
Notice that also a bilinear antisymmetric form ωij = −ωij can be put into a canonical form.
Such a form is non-degenerate only if the dimension n of the space is even, n = 2m. Indeed,
detω = detωT = det(−ω) = (−)ndetω. If n = 2m, ωij can be first “skew-diagonalized” by
a change of basis:

ωij →









0 λ1

−λ1 0
0 · · ·

0
0 λ2

−λ2 0
· · ·

...
...

. . .









(1.3.44)

and then brought to a canonical form by rescaling suitably the basis vector. The canonical
form can be that of Eq. (1.3.44), with all λi reduced to 1, or the so-called symplectic form
Ω already introduced in Eq. (1.3.20), obtained by a further reordering of the basis vectors.

5 One usually writes simply U(p, q), as the real unitary groups coincide with orthogonal real groups (on real vector
spaces there’s no difference between sesquilinear and bilinear).
6 One usually writes simply O(p, q), as the complex orthogonal groups are not so frequently used.
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We may further restrict the automorphisms to preserve the volume element, i.e. to have
unit determinant. In this case the various group acquire the denomination “special” and an S is
prepended to their notation. For instance, SL(n,C) ∩U(n) = SU(n), the special unitary group.

Example Let us compare the groups SO(2) and SO(1, 1). A generic matrix R ∈ SO(2), namely
a matrix satisfying ATA = 1 and detA = 1, can be parameterized by an angle θ as

R =

(
cos θ sin θ
− sin θ cos θ

)

. (1.3.45)

A matrix Λ ∈ SO(1, 1) must satisfy the following equations: ΛT ηΛ = η, where η = diag (−1, 1),
anddetΛ = 1. Writing Λ as a generic real 2× 2 matrix Λ =

(
a b
c d

)

, these equation read:

(
a c
b d

)(
−1 0
0 1

)(
a b
c d

)

=

(
−a2 + c2 −ab+ cd
−ab+ cd −b2 + d2

)

=

(
−1 0
0 1

)

(1.3.46)

and ad− bc = 1. Work out directly the solution to these requirements, that turns out to be the
following:

Λ =

(
cosh ν sinh ν
− sinh ν cosh ν

)

, (1.3.47)

with ν a real parameter, called the “rapidity”. A possible alternative is to introduce a parameter
β related to the rapidity by cosh ν = 1/

√

1− β2, sinh ν = v/
√

1− β2. Does the resulting
expression of Λ remind you of something (expecially if you write β as v/c)?

1.3.8 Isometries

The Euclidean group Eucld in d dimensions is in fact the group of invertible transformations of
the Euclidean space Rd into itself that preserve the Euclidean distance: for any transformation
E ∈ Eucld, if x

′
1,x

′
2 are the images under E of x1,x2, we have |x′2−x′1| = |x2−x1|, for any couple

x1,x1. Check that this agrees with the explicit description of Eucl2,3 given before. Notice that the
Euclidean distance is the one arising from having endowed the vector space Rd with a symmetric
bilinear metric positive definite gij = δij . This defines the scalar product (x,y) = xigijy

j = x ·y,
and hence the distance |x− y| =

√

(x− y,x− y).
More in general, a notion of distance can be introduced not only on vector spaces, but on

manifolds. Then one talks of Riemannian manifolds, i.e., differentiable manifolds of dimension d
equipped with a positive definite quadratic form, that is a metric locally expressible as

ds2 = gαβ dx
α ∨ dxβ , gαβ = gβα (α, β = 1, . . . d) (1.3.48)

with gαβ(x) a differentiable function of the coordinates (that transform as a two-tensor under
coordinate changes). ds2 defines the square length of the minimal arc connecting two points
whose coordinates differ by dxα.

Notice that this indeed is the generalization of the concept of metric introduced for vector
spaces, a part from the fact that here we require the metric to be symmetric, as we are interested
in constructing a notion of distance. Indeed, the differentials dxα are the generalization of the
basis elements for the dual of a vector space, the space of linear functionals (as the partial

derivatives ~∂α are the generalizations of the basis vectors ~ei). The metric ds2 of Eq. (1.3.48)
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therefore is a functional assigning to any couple of tangent vectors ~v = vα~∂α, ~w = wβ~∂β , a real

number. The functional is specified by its value on any pair of basis vectors ~∂α, ~∂β , namely gαβ .
On Riemannian manifolds there is a notion of distance, defined through the metric:

d(x, y) = min
γ

∫

γ

ds , (1.3.49)

where γ is a path connecting the points x and y; the “minimal length” path (defined as in
Eq. (1.3.49)) is called a geodetic curve. An isometry of a Riemannian manifold is an invertible
coordinate7 transformation x 7→ x′that preserves the metric: ds′2 = gαβ(x

′)dxαdxβ = ds2.
For Euclidean spaces Rd, the metric can always be chosen to be constant. Thus the possible

transformations are of the form x′α = Rα
β x

β + vα, that is, in matrix notation, x′ = Rx+ v. It

is easily seen that the metric, which in matrix notation is written as ds2 = dxT g dx, is invariant
iff

RT gR = g . (1.3.50)

In a coordinate choice where gαβ = δαβ , the isometry condition becomes simply RTR = 1,
namely, R ∈ O(d). We retrieve thus the description of Euclidean isometries as products of
translations ad orthogonal transformations (rotations plus inversions).

1.3.9 Geometric symmetry groups

The intuitive notion of “how much symmetry a geometric figure possesses” cen be made rigorous
by turning it into the discussion of the symmetry group of the figure. The symmetry group of
a given plane figure (or a body in three-space) is the subgroup of Eucl2 (or of Eucl3) containing
all transformations (rotations, reflections, translations) that leave the figure invariant.

Only a figure which is infinitely extended or repeated in some direction can be invariant
under a translation subgroup. We will concentrate here on finite figure, whose symmetry group
is a subgroup of the (proper and improper) rotation group O(2) (or O(3) in the three-dimensional
case).

Figure 1.1. A generic plane figure has no sym-

metry.

Figure 1.2. A circular disk is the most sym-

metric finite figure.

Consider for instance a generic “blot”: it is not symmetric. In fact, only the identical
transformation of the plane leaves it invariant, see Fig. 1.1: its symmetry group is the trivial
subgroup of Eucl2. Consider instead a round disk B2, see Fig. 1.2. It is the most symmetric
finite figure. Indeed it is left invariant by all rotations around its center, and by reflections w.r.t.
to any axis through the center: its symmetry group is this the entire O(2) subgroup of Eucl2.

7 We are taking the so-called “passive” point of view instead of the “active” point of view used in previous
examples, in which we regarded all transformations as mapping a point x to a different point x′. Both viewpoints
are possible, but is more customary to take the passive one, expecially in the context of General Relativity.
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Analogous rople is played by the three-ball B3 (i.e., the filled three-sphere S3) in R3 and, in
general, by Bd in Rd.

We will consider in the following regular polygons and regular polyhedra. It is intuitively
clear that these figure possess symmetries forming discrete subgroups of the O(2) or O(3) sym-
metry of the disk or the three-sphere.

1.3.10 The dihedral groups Dn

Let us start from the regular polygons in R2, and let us exhamine their symmetry groups. The
the symmetry groups of regular n-gons are named dihedral groups and are denoted as Dn.PSfrag replacements
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Figure 1.3. A regular triangle.
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Figure 1.4. The generator of the Z3 rotation subgroup.
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Figure 1.5. Reflection w.r.t the axis through the vertex 1.

Let us start grom an equilateral triangle, of which it is useful to label the vertices explicitely,
see Fig. 1.3. The triangle is obviously invariant under the group of rotations around its center by
angles which are multiple of 2π/3. This is a Z3 group generated by (say) the counter-clock-wise
rotation of 2π/3, which we denote by a (see Fig. 1.4). It is also invariant under reflections ri
(i = 1, 2, 3) with respect to an axis through the i-th vertex and the middle point of its opposite
side, see Fig. 1.5.

Check that the 6 elements described above form a group (the product being the composition
of the transformations) and write its multiplication table. Is the group, which is named D3,
Abelian?

D3 has rank 2. Indeed it is generated by a and by one of the reflections which we may denote
as b (for instance, b = r1). Check that indeed one has r2 = ab and r3 = a2b. Thus D3 can be
abstractly seen as the group generated by a, b subject to the relations

a3 = e , b2 = e , (ab)2 = e . (1.3.51)

Above, (ab)2 = e because ab = r2 is a reflection; check that the relation telling us that also a2b
is a reflection, namely (a2b)2 = e, has not to be included separately in Eq. (1.3.51) as it follows
from the others. The group D3 turns out to be isomorphic to to S3 (check it).

Let us consider now the symmetries of a square, see Fig. 1.6. Of course, there is a Z4 cyclic
subgroup generated by a, namely the counter-clock-wise rotation of π/2, see Fig. 1.7. Then there
are the reflections w.r.t. the diagonals and the axes through the middle points of opposite sides.
Let us name such reflections, using the labels of Fig. 1.8, as follows: r1 is the reflection w.r.t to
the axis 1− 3, r1 is w.r.t. the axis 2− 4, r′1 w.r.t. the axis 1′ − 3′ and r′2 w.r.t. the axis 2′ − 4′.

Altogether, we have a group, D4, of order 8. It has rank 2, as it is generated by a and by b,
where b is one of the reflections, e.g., b = r1. Indeed, one can check easily that ab = r′1, a

2b = r2
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Figure 1.7. The generator of the Z4 rotation subgroup.

PSfrag replacements

1 2

34

1′

2′

3′

4′

Figure 1.8. Axes defining the reflection symmetries.

and a3b = r′2. The group is abstractely presented by means of two generators a, b subject to the
relations

a4 = e , b2 = e , (ab)2 = e . (1.3.52)

Next comes the pentagon. It is easy to see that its symmetry group, D5, contains a cyclic
subgroup Z5 and 5 reflections ri w.r.t. the axes through the i-th vertex and the middle point of
the opposite sid and that it is generated by a, b subject to the relations

a5 = e , b2 = e , (ab)2 = e , (1.3.53)

where b is any of the reflections.
The general outcome is that the group Dn contains

• the Zn subgroup by a, where a is the counter-clock-wise rotation of angle 2π/n about the
centre of the figure;

• n reflection operations with respect to n symmetry axes which are the following:

– for n even, n/2 axes through opposite vertices, and n/2 axes through the middle points
of opposite sides;

– for n odd, n axes through a vertex and the middle point of its opposite side.

Such a group turns out to be abstractly described as the group generated by two generators a
and b, subject to the relations

an = e , b2 = e , (ab)2 = e , (1.3.54)

In the geometric interpretation, a is the rotation of angle 2π/n and b any of the reflections. It
follows from the presentation Eq. (1.3.54) that the order of Dn is |Dn| = 2n, the elements being

{e, a, a2, . . . , an−1, b, ab, a2b, . . . , an−1b} . (1.3.55)

1.3.11 Symmetry group of the tetrahedron

Analogously to the case of regular polygons in the plane, one can dissuss the symmetry groups
of regular polyhedra in R3. Let us take the simplest example, the tetrahedron. In Fig. ?? are
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described the proper rotations, i.e., the elements of SO(3), that leave invariant a tetrahedron.
They form a group which is isomorphic to the alternating group A4. Indeed, all these discrete
operations correspond to an even permutation of the 4 vertices. If we adjoin to the above the
reflections with respect to suitable planes, that is, if we consider symmetry operations that belong
to O(3), the symmetry group is enlarged to the full symmetric group S4. Indeed, referring to
the notations in Fig.??, consider for instance a reflection with respect to the plane containing
the side 1-2 and the bisecant in 1 of the face individuated by 1, 3, 4 (and the bisecant in 2 of the
face individuated by 2, 3, 4). This reflection corresponds to the single exchange (34). The single
exchanges being obtained by reflections with respect to such symmetry planes, the entire S4 is
then generated by these.

1.3.12 Platonic solids and discrete subgroups of SO(3)

Regular polyhedra While there exist regular polygons in the plane with any given number of
sides, it is well known since Plato that very few regular polyhedra can be constructed in R3.
Indeed, consider a regular polyhedron made of plaquettes that are n-gons, such that in each
vertex of the polyhedron we have the confluence of f plaquettes (with f ≥ 3). The angle at each
vertex of a regular n-gon is π − 2π/n, see Fig. ??. In each vertex of the polyhedron, the sum
of the vertex angles of the f plaquettes should be less than 2π, so that in the vertex a “positive
curvature” is present, and the geometric figure can close itself: thus, the Diophantine inequality

f

(

π − 2π

n

)

< 2π ⇒ f

(

1− 2

n

)

< 2 (1.3.56)

must be satisfied. It is easy to check that this inequality admits anly 5 solutions.

V L F χ dual to

Tetrahedron 4 6 4 2 self-dual
Octahedron 6 12 8 2 Cube
Icosahedron 12 30 20 2 Dodecahedron

Cube 8 12 6 2 Octahedron
Dodecahedron 20 30 12 2 Icosahedron

Table 1.1. Vertices, sides and faces of the possible regular polyhedra.

We may have n = 3 and f = 3, 4, 5, or n = 4 and f = 3, or n = 5 and f = 3. Thus a regular
polyhedron can only have faces that are triangles (n = 3), squares (n = 4) or pentagons (n = 5).
The polyhedron such that in each vertex enter f = 3 triangles is the tetrahedron, see Fig ??. It
has 4 vertices, 6 sides and 4 faces. If in any vertex enter f = 4 triangles, we have an octahedron,
with 6 vertices, 12 sides and 8 faces, see Fig ??. If in any vertex enter f = 5 triangles, we have
an icosahedron, with 12 vertices, 30 sides and 20 faces, see Fig. ??. The polyhedron with f = 3
squares meeting at ach vertex is the cube, see Fig. ??; a cube has 8 vertices, 12 sides and 6
faces. Finally, f = 3 pentagons meeting in each vertex corresponds to the dodecahedron, with 20
vertices, 30 sides and 12 faces, see Fig. ??.

Discrete subgroups of SO(3) A regular polygon with n sides in R2 could be regarder as the
simplest geometric figures that is preserved by the discrete Zn subgroup of the rotation group
SO(2). In this perspective, the existence of infinite regular polygons is due to the existence of the
infinite family Zn, with n ∈ N ≥ 2, of such discrete subgroups. The actual symmetry group of a
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n-gon, as we saw, is enlarged from Zn to Dn by reflections (elements of O(2) but not of SO(2);
nevertheless the correct classification of polygons requires just the classification of SO(2) discrete
subgroups.

In the three-dimensional case, one could take the same point of view and try to classify
directly the possible discrete subgroups of SO(2). The result should be then compared to the
geometrical classification of regular bodies.

....

1.3.13 The modular group

A torus T is a parallelogram with opposite sides identified, see Fig. 1.16. When embedded in C,

Figure 1.9. The torus seen as a parallelogram with sides identified.

the parallelogram is individuated by two vectors (i.e., two complex numbers) ω1, ω2. Indeed T
can be defined (see Fig. 1.10) as the quotient space

T = C/Λ , (1.3.57)

where Λ is the lattice generated by ω1, ω2:

Λ = {mω1 + nω2 , m, n ∈ Z} . (1.3.58)

We require ω1, 2 6= 0 and ω1/ω2 6∈ R to avoid degeneracy (if ω1/ω2 ∈ R, the two vectors are
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Figure 1.10. The torus seen as the quotient

of the complex plane by a lattice Λ.
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linearly dependent), and in fact we impose further that Im(ω1/ω2) > 0. This latter choice fixes n
ordering (i.e., an orientation) so as to avoid redundant descriptions simply related by ω1 ↔ ω2.

By means of conformal transformations, i.e. analytic mappings well-defined on C, of the
form z → w = az + b, we can rotate and rescale ω2 to 1, putting the parallelogram in the
canonical form of Fig. 1.11, where τ (≡ ω1/ω2) is named the modulus of the torus T . As we
said, we take Imτ > 0. The modulus τ cannot be further changed by conformal transformations;
it is a conformal invariant. Therefore there are infinitely many conformally inequivalent tori
parametrized by τ ∈ H (where H is the standard notation for the upper half-plane).
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However, the torus being defined as T = C/Λ, it is invariant under changes of basis that
preserve the lattice Λ: these are integer changes of bases with unit determinant:

(
ω1

ω2

)

→M
(
ω1

ω2

)

=

(
a b
c d

)(
ω1

ω2

)

, a, b, c, d ∈ Z , ad− bc = 1 . (1.3.59)

Namely, the change of basis is by a matrix M ∈ SL(2,Z). Under such a change of basis, the
modulus τ undergoes the following transformation M :

M : τ =
ω1

ω2
7→ τ ′ =

ω′1
ω′2

=
aω1 + bω2

cω1 + dω2
=
aτ + b

cτ + d
. (1.3.60)

The transformations described above form a group M which is called the modular group of the
torus T . Notice that M is homomorphic to SL(2,Z) through the two-to-one mapping

σ :

(

±M = ±
(
a b
c d

)

∈ SL(2,Z)
)

7→
(

M : τ → aτ + b

cτ + d
∈M

)

: (1.3.61)

an overall change of sign does not matter in M as it cancels in the ratio.
The modular group M has rank 2. It is generated by

S : τ → −1

τ
,

(

corresponding to ±
(

0 1
−1 0

))

; (1.3.62)

and

T : τ → τ + 1 ,

(

corresponding to ±
(
1 1
0 1

))

. (1.3.63)

These generators are subject to the following two relations:

S2 = 1 , (ST )3 = 1 . (1.3.64)

The first relation is obvious, the second arises as follows:

τ
ST−→ − 1

τ + 1

ST−→ −τ + 1

τ

ST−→ τ . (1.3.65)

Notice that ST corresponds in SL(2,Z) to ±
(

0 1
−1 −1

)

, whose cube is indeed ±1.

1.3.14 Symmetry operations in quantum mechanics

We all know that symmetry operations are implemented in quantum mechanics as unitary op-
erators on the Hilbert space. For instance, geometrical transformations in the coordinate space
R3, such as translations or rotations, are associated to linear operators acting on wave-functions
ψ(x) as follows. Consider a transformation R : x 7→ x′ = Rx. The corresponding action R on
the wave-functions is defined requiring that

(Rψ)(Rx) = ψ(x) , (1.3.66)

or equivalently that Rψ(x) = ψ(R−1x). That is, the value if the transformed wave-function Rψ
at a point x is the value of the original function ψ at the pre-image R−1x of the point. The



Important examples 24

operator R so defined is generically unitary (certainly it is so if the operation is an isometry of
R3, as the scalar product involves an integration:

(Rψ,Rφ) = (ψ, φ) =

∫

d3xψ∗(x)φ(x) . (1.3.67)

For instance, translations by a vector a, T : x 7→ x+ a is realized by the operator T = exp(−ia ·
p/~), where p = −i ~∇ is the momentum operator. Rotations R of an angle θ around an
axis individuated by a versor n are represented by the operator R = exp(−in · L/~), where
L = −i ~x ∧∇ is the angular momentum operator8.

If the transformations R form a group, the composition of such transformations maps ho-
momorphically into products of linear operators. In fact, to the transformation x 7→ R(Sx) is
associated the operator RS:

ψ(S−1(R−1x)) = Sψ(R−1x) = RSψ(x) . (1.3.68)

Thus, symmetry groups have a representation by means of unitary operators acting on the Hilbert
space. It is then clear that unitary representations of groups are a subject of great importance
in group theory, expecially for a physicist.

1.3.15 Groups of invariance of operators

Consider a group G acting as a transformation group on a given space, typically as a group
of linear operators on a vector space V , finite or infinite-dimensional. In the case of quantum
mechanics, for instance, think of a group of unitary operators on the Hilbert space associated to
some symmetry group. Consider any other operator O acting on the same space V (for instance, a
quantum mechanical hermitean operator on the Hilbert space corresponding to some observable).
The group transformations R induce an action on O given by

O 7→ O′ = ROR−1 . (1.3.69)

In the case of quantum mechanics, for instance, in fact we determine O′ by requiring (ψ,Oφ) =
(Rψ,O′Rφ), whence O′ = ROR−1 indeed.

In particular, in quantum mechanics, consider the Hamiltonian operator H. A transforma-
tion R on the Hilbert space is a symmetry of the quantum mechanical system if it leaves the
Hamiltonian invariant, that is if

RH R−1 = H , (1.3.70)

or, equivalently, RH = HR, namely if R commutes with H. The set of transformations that leave
H invariant form a group, the group of invariance of the Hamiltonian. Some typical examples:

• Rotations The group of invariance of a quantum mechanical system with spherically sym-
metric potential contains the rotation group SO(3), a continuous group.

• Point groups Consider a crystalline configuration. The Hamiltonian is invariant under sym-
metry operations that bring the arrangement of atoms into itself (these form discrete groups).

• Translations The electron wave-function in a perfect crystal feels a periodic potential. The
Hamiltonian is invariant under lattice translations.

8 Note that the unitary operators above are written as exponentials of hermitean operators, e.g the momentum
and the angular momentum, which generate infinitesimal transformations. We will come back to this when
discussing continuous groups
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• Identical particles The Hamiltonian H for a system of n identical particles is invariant with
respect to permutations of the particles’ coordinates.

We will see that the structure of representations of the group of invariance of H leads to
a group-theoretical explanation of the degenerations of the eigenvalues of H, i.e. of the energy
levels.

1.3.16 The first homotopy group of a manifold

Certain groups, called homotopy groups of a manifold M, and denoted as Πn(M), with n ∈ N,
play a very important role in the topological characterization of manifolds. We will discuss
here the group Π1(M), which will also play some role later in our discussion of the topological
properties of continuous groups. Our description will be at an extremely intuitive level. We refer
to other text such as ... for a more precise and rigorous introduction to the subject.
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Figure 1.12. Curves σ : I ⊂ R 7→ M on a manifold M

We consider curves on a manifoldM, namely maps σ from an interval I ⊂ R (which can be
fixed, without loss of generality, to I = [0, 1]) to M; see Fig. 1.12. The curves can be naturally
“oriented” by considering that the curve evolves in the direction of t growing (we may think of
the parameter t as a “time” during which we follow the path σ(t) on M. Thus a curve σ goes
from x0 = σ(0) to x1 = σ(1).

It is possible and natural to define the product τσ of two curves τ and σ as the curve obtained
by doing “first” the path σ and then the path τ . That is, supposing that σ goes from x0 to x1,
and τ from x1 to x2, we define

τσ(t) =

{
σ(2t) , 0 ≤ t ≤ 1

2 ;
τ(2t− 1) , 1

2 < t ≤ 1 .
(1.3.71)

Two curves σ, τ having the same extrema x0, x1 are said to be homotopic (and we write then
σ ∼ τ) iff they are continuously deformable into each other. In more precise terms, there must
exist a continuous function F : I × I 7→ M such that

{
F (t, 0) = σ(t) ,
F (t, 1) = τ(t) ,

∀t ∈ I ;

{
F (0, s) = x0 ,
F (t, 1) = x1 ,

∀s ∈ I . (1.3.72)

Namely, F (t, s) represent a family of curves, parametrized by s, all with the same fixed extrema,
and such that they are continuosly deformed from the curve σ(t) (for s = 0) to the curve τ(t)
(for s = 1), see Fig. 1.13.

The relation “being homotopic to” is an equivalence relation, as it is easy to see. Therefore,
it makes sense to discuss homotopy classes of curves, denoted as [σ]. It is immediate to verify
that the product of curves, defined as in Eq. (1.3.72), respects the homotopy relation. Namely,
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Figure 1.13. Homotopically versus non-homotopically equivalent curves.

if σ ∼ σ′ and τ ∼ τ ′, then also τσ ∼ τ ′σ′. Thus the product Eq. (1.3.72) gives rise to a product
of homotopy classes: [σ][τ ] ≡ [στ ].

Let us consider the loops based in a point x0 ∈ M, that is the curves σ such that σ(0) =
σ(1) = x0. These curves can be viewed as continuous maps σ(t) from S1 intoM, where the circle
S1 is the compactification of the interval I = [0, 2π]

Let Π1(M;x0) be the set of homotopy classes of loops based at x0. Equipped with the
product of homotopy classes defined as above, Π1(M;x0) is a group. The identity is the class
of constant loops, i.e. the class of homotopically trivial loops. The inverse of a loop is the loop
with the opposite orientation: σ−1(t) = σ(1− t). Indeed, with this definition σ−1σ is homotopic
to x0, i.e. the constant loop, see Fig. 1.14.

PSfrag replacements

x0

M

σ
σ−1

Figure 1.14. The product σ−1σ is homotopi-

cally trivial

PSfrag replacements

x0

x1

M

σ

α
α−1
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Any continuous path α from x0 to x1 establishes an isomorphism φα between the homotopy
groups based at x0 and x1, see Fig. 1.15. Explicitely,

φα : Π1(x0;M) −→ Π1(x1;M) , such that

φα : [σ] 7→ [α−1σα] , (1.3.73)

where σ is a loop based in x0. Check that the map φα is an homomorphism, and furthemore is
invertible.

Thus, for an arc-wise connected manifoldM, that is, for a manifold such that any two points
of M are joined by at least one continuous path, the abstract group Π1(x0;M) is independent
from the choice of the base point x0. We can simply denote this group, which is known as the
first homotopy group or fundamental group of M, as Π1(M).

An arc-wise connected manifold is said to be simply-connected iff its homotopy group Π1(M)
is trivial.

Examples

• On the two-sphere S2, any two loops are deformable into each other, an in particular into
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the constant loop, see Fig. ??. Thus, there is an unique homotopy class: Π1(S2) is trivial,
and S2 is simply connected.

• On the two-torus T2, there are homotopically inequivalent loops, see Fig. ??. Thus Π1(T2)
is non-trivial, and the torus T2 is not simply-connected.

Homotopy groups are usually and naturally described in terms of generators and relations.

Examples

• Consider a circle S1. The simplest homotopically non-trivial curve we can draw on it (see
Fig. ??): it is a map from S1 to S1 with winding number 1; let us call its homotopy class a.
All further non-trivial classes are generated by taking products of this class. The generator
a is of infinite order, since there is no way that making a map wind a certain number of
times it becomes trivial. In this way we obtain classes an, for all n ∈ Z. There is an evident
isomorphism

Π1(S1)↔ Z , (1.3.74)

given by associating an ↔ n. Indeed anam = an+m.
Notice that all higher-dimensional spheres Sd, d > 1, are instead simply-connected; we
cannot draw any non-trivial loop on them.

• On the torus T2 there are two evident instances of homotopically non-trivial loops. These
loops are traditionally denoted as a, b, and are most easily described in when representing
the torus as a parallelogram with opposite sides identified, see Fig. ??. More complicated
loops are obtained by taking products of a, b (and of their inverses). Thus, Π1(T2) is a group
of rank 2, generated by a, b. The generators satisfy a single relation, which is evident in the
drawing of Fig. ??:

aba−1b−1 = e , (1.3.75)

where of course e represent the trivial homotopy class. The relation Eq. (1.3.75) tells us
that a and b commute. The group Π1(T2) generated by a, b subject to this condition is
Abelian, and a generic “word” constructed out of the generators, am1bn1am2bn2 . . . amkbnk ,
with mi, ni ∈ Z, can be rearranged in the form ambn. Thus, the products of loops of type a
and of type b are completely independent, each corresponding to the homotopy group of an
S1, i.e. to Z. The group Π1(T2) is thus isomorphic to thedirect product9 of two Z groups:

Π1(T2)↔ Z⊕ Z ,

ambn ↔ (m,n) . (1.3.76)

This decomposition of the fundamental group is related to the fact, easy to visualize, that
topologically two-torus is the direct product of two circles: T2 = S1 × S1. In fact, it is
possible to prove in general that for a direct product manifold one has

Π1(M1 ×M2) = Π1(M1)⊗Π1(M2) . (1.3.77)

• For a multi-dimensional torus Td, which can be defined as an hypercube with sides identified
pairwise, the story is analogous to the case of T2. Indeed, one finds d generators subjects to
relations imposing that they commute with each other, so that in the end

Π1(Td)↔ Z⊕ Z . . .⊕ Z
︸ ︷︷ ︸

d times

. (1.3.78)

9 We will discuss later the notion of direct product G1 ⊗ G2 of two groups. Let us notice here that the additive
notation ⊕ for the direct product Z ⊕ Z is traditional and due to the fact that the group operation in Z, the
addition, is denoted as +.
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This agrees with the fact that topologically Td = S1 × S1 . . .× S1 (d times).
• In the examples above, all generators of the fundamental group were of infinite order. This

is not always true. As an example,consider the manifold10 S2/Z2. The Z2 by which we are
taking the quotient acts by identification of anti-podal points. Thus S3/Z2 can be described
as an hemi-sphere, with the equator being further subject to the identification of opposite
points. On this space there there is a non-trivial loop a, which is closed only because of the
identifications on the equator, see Fig. ??. This non-trivial loop can be continuosly deformed,
as suggested in the figure, into its inverse a−1. This means that [a] = [a−1] = [a]−1, namely,
the homotopyclass of a is of order 2. There is no other non-trivial class, so all in all

Π1(S
2/Z2) = Z2 . (1.3.79)

As another example, try to describe the fundamental group of the Moebious strip (assuming
you know what it is).

1.4 Basic structure properties of groups

A basic aim of group theory is that of classifying the groups. If this was accomplished, given a
specific realization of a group arising, e.g., in some physical situation, one could then just look
for an isomorphic realization of the group sitting in the general classification and read from it
(via the isomorphism) the relevant properties of the group. For finite groups, this would mean
to classify all the possible distinct (non-isomorphic) groups of a given finite order n. This is too
much, but there is a logical way to proceed.

One is able to single out certain types of groups (the so-called simple groups) which are
the “hard core” of the possible different group structures. These have to be classified. This
has been achieved (recently? What are the references) after a huge effort, and with much aid
from computers. We will not discuss the classification, except for some series that are easily
individuated or defined.

Then one has to study the possible extensions by which further groups can be built, having
simple groups as building blocks, and so on. Again, we will not discuss much this problem, except
for some simple instances of extensions such as the direct and semi-direct products.

Also for groups of infinite order there are some general results in the line of a classification,
mainly regarding Abelian groups. we will touch briefly on this.

Finally, for Lie groups the quest for a classification follows a very similar pattern to the case
of finite groups, involving the definition of simple Lie groups to be classified first. This we will
discuss in later chapters.

To start the search for the classification of groups, though, one has first of all to introduce
many concepts and entities related to the inner structure of a given group; for instance, essential
is the concept of conjugacy classes and of invariant subgroups11. These concepts and entities
which permits us to discuss in much finer detail the structure of groups (in particular of finite
groups) are the subject of this section.

10This manifold is also called RP 2, the real projective plane, namely the space of all lines through the origin in
R

3, which indeed are in correspondence with the points of an unit S2 up to identification of antipodal points.
11 Indeed the essential properties of a group should be independent from the labeling of elements; the term invariant
used above means in fact invariant under (inner) automorphisms, as we will see.



Basic structure properties of groups 29

1.4.1 Cayley’s theorem

Let us start with a theorem that at first sight seems to bring under control the problem of the
classification of finite groups.

Cayley’s theorem states that any group G of finite order |G| is isomorphic to a subgroup of
the permutation group on |G| objects, S|G|.

An obvious consequence of Cayley’s theorem is that the number of distinct groups of order
G is finite, as the number of subgroups of S|G| certainly is. It can also be used to determine
the possible group structures of low orders. However, though the permutation groups are easily
defined, the structure of its subgroups is far from obvious, and the problem of classifying the
finite groups is far from being solved by Cayley’s theorem alone.

The proof of Cayley’s theorem stays in the observation that the in fact each row of the
multiplication table defines a distinct permutation of the elements of the group. We can thus
associate to a given element g ∈ G the permutation π ∈ S|G| that acts as gk

πi7−→ (ggk) (k =
1, . . . |G|). To distinct group elements are associated distinct permutations. The identity e is
mapped into the identical permutation πe. The product is preserved by the mapping: indeed we
have, for any c, b ∈ G,

πcπc =

(
bg1 . . . bgn
cbg1 . . . cbgn

)(
g1 . . . gn
bg1 . . . bgn

)

=

(
g1 . . . gn
cbg1 . . . cbgn

)

= πcb , (1.4.80)

were we have described, for convenience, πc by its action on the elements bgi; this amounts just
to a relabeling of the elements gi. All in all, the set {πb : b ∈ G} is a subgroup of S|G| isomorphic
to G.

Regular permutations The permutations πg associated to the elements g ∈ G in the previous
isomorphism can be read directly from the multiplication table of the group. Such permutations
are called regular permutations, and the subgroups of Sn isomorphic to groups G of order n are
subgroups of regular permutations. Let us summarize here some properties of such subgroups.

i) A part from the identical permutation, all other πg do not leave any “symbol” (any of the
objects on which the permutation acts) invariant; this corresponds to the property of the
rows of the multiplication table of G.

ii) Any of the n permutations πgmaps a given symbol in a different symbol; this corresponds
to the property of the columns of the multiplication table.

iii) All the cycles in the cycle decomposition of a regular permutation have the same length.
Indeed, if a regular permutation πg had two cycles of lengths l1 < l2, then (πg)

l1would leave
invariant the elements of the first cycle, but not those of the second, which however cannot
be the case for a regular permutation.

Cayley’s theorem is useful in determining the possible group structures, for instance of low
order. As an exercise, use it to determine the possible group structures of order 4, 5 and 6. Also,
the following result can be obtained as corollary of Cayley’s theorem.

Groups of prime order The only group structure of order p, where p is a prime, is the cyclic
group Zp. Indeed, by Cayley’s theorem, such a group is isomorphic to a subgroup of Sp made of
regular permutations. Since all cycles of a regular permutation must have the same length, this
latter must be a divisor of p. But then the possible regular permutations have p cycles of length
1 (in which case we have the identical permutation) or one cycle of length p, which is the case
for cyclic permutations. The subgroup can only be the subgroup of cyclic permutations, which
is isomorphic to Zp.
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1.4.2 Left and right cosets

Let H = {e = h1, h2, . . . hm} be a subgroup of G of order |H| = m. Given an element a1 not in
H, a1 ∈ G \H, define its right coset (or “complex”)

a1H = {a1, a1h2, . . . a1hm} . (1.4.81)

Since hi 6= hj , ∀ i, j = 1, . . .m, we have also a1hi 6= a1hj (otherwise a1 = e, but then a1

would belong to H). Moreover, ∀ i, a1hi 6∈ H, otherwise a1hi = hj for some j, and therefore
a1 = hj(hi)

−1 would belong to H. We can now take another element a2 of G \ H not yet
contained in a1H. The m elements of its left coset a2H are again all distinct, for the same
reasoning as above. Moreover, ∀ i, a2hi 6∈ H, as above, but also a2hi 6∈ a1H, otherwise we would
have a2hi = a1hj , for some j, so that a2 = a1hj(hi)

−1 would belong to a1H. We can iterate the
reasoning until we exhaust all the elements of G.

Thus G decomposes into a disjoint union (or partition) of right cosets with respect to a
subgroup H:

G = H ∪ a1H ∪ a2H ∪ . . . ∪ alH . (1.4.82)

Of course, in a perfectly analogous manner, given a subgroup H, we can introduce the left
cosets

Ha1 = {a1, h2a1, . . . hma1} , (1.4.83)

and we can repeat the entire reasoning done above for the left cosets.
A consequence of the above construction is the following important theorem.

1.4.3 Lagrange’s theorem

Lagrange’s theorem states that the order of a subgroup H of a finite group G is a divisor of the
order of G:

∃ l ∈ N such that |G| = l |H| . (1.4.84)

The integer l is called the index of H in G. Lagrange’s theorem is very important for the task
of classifying possible subgroups of given groups. For instance, if |G| = p is a prime, G does not
admit any proper subgroup. This indeed is the case for G = Zp (the only group of order p, as we
saw before).

Corollary A corollary of Lagrange’s theorem is that the order of any element of a finite group
G is a divisor of the order of G. Indeed, if the order of an element a ∈ G is h, then a generates a
cyclic subgroup of order h {e, a, a2, . . . , ah−1}. This being a subgroup of G, its order h must be
a divisor of |G|.

1.4.4 Conjugacy classes

We have already introduced (see sec. 1.2.4) the relation of conjugacy between elements of a group
G, (g′ ∼ g ⇔ ∃h ∈ G such that g′ = h−1gh). We remarked that it is an equivalence relation. We
can therefore consider the quotient of G (as a set) by this equivalence relation. The elements of
the quotient set are the conjugacy classes. Any group element g defines a conjugacy class [g]:

[g] ≡ {g′ ∈ G such that g′ ∼ g} = {h−1gh , for h ∈ G} . (1.4.85)

Basically, conjugation is the implementation of an inner automorphism (see sec. 1.2.10) of the
group; we may think of it as a “change of basis” in the group (it is indeed so for matrix groups).
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Often, one is interested in properties and quantities which are independent of conjugation. Such
properties pertain to the conjugacy classes rather than to single elements.

1.4.4.1 Conjugacy classes of the symmetric groups and Young tableaux

The key fact that allows an efficient description the conjugacy classes of the symmetric group
Sn is that the structure of the cycle decomposition of a permutation P ∈ Sn is invariant under
conjugation.

Indeed, suppose that P contains a cycle of length k, (p1, p2, . . . , pk). Then a conjugate per-
mutation Q−1PQ contains a cycle of the same length, namely

(
Q−1(p1), Q

−1(p2), . . . , Q
−1(pk)

)
:

(
Q−1(p1), Q

−1(p2), . . . , Q
−1(pk)

) Q−→ (p1, p2, . . . , pk)
P−→ (p2, p3, . . . , p1)

Q−1

−→
(
Q−1(p2), Q

−1(p3), . . . , Q
−1(p1)

)
. (1.4.86)

Thus, conjugacy classes of Sn are in one-to-one correspondence with possible structures of
cycle decompositions. If a permutation P is decomposed into rl cycles of length l (l = 1, . . . n),
there is an obvious request

n∑

l=1

rl l = n (1.4.87)

stating that the cycle decomposition must contain once and only once all elements 1, . . . , n. The
conjugacy class of P is determined by the set of integers {rl} describing how many cycles of each
length l appear in its decomposition. The possible conjugacy classes are thus in correspondence
with the set of solutions to equation Eq. (1.4.87). These solutions, in turn, correspond to the set
of partitions of n. A partition12 of n is a set of integers {λi}, with

∑

i

λi = n , λ1 ≥ λ2 ≥ . . . ≥ λn ≥ 0 . (1.4.89)

Indeed, a set {rl} of integers satisfying Eq. (1.4.87) is obtained from a partition {λi} by setting

r1 = λ1 − λ2 , r2 = λ2 − λ3 , . . . , rn−1 = λn−1 − λn , rn = λn . (1.4.90)

Thus, conjugacy classes of Sn are in one-to-one correspondence with partitions of n, which in
turn can be graphically represented by means of Young tableaux with n boxes, see Fig. ??. In
a Young tableaux, the boxes are distributed in rows of non-increasing length. The length of the
i-th row is λi; the label rl (the number of cycles of length l) corresponds instead to the difference
between the length of the l-th and the (l + 1)-th row.

The number of elements in a given conjugacy class {rl}, that we call the order of the class
and denote as |{rl}|, is obtained as follows. The n elements 1, . . . , n must be distributed in the
collection {rl} of cycles, ordered as follows:

(·) . . . (·)
︸ ︷︷ ︸

r1

(··) . . . (··)
︸ ︷︷ ︸

r2

(· · ·) . . . (· · ·)
︸ ︷︷ ︸

r3

. . . . (1.4.91)

12The number of partitions of n, p(n) is expressed through the generating function

P (q) ≡

∞∑

n=0

p(n)qn =

∞∏

k=1

1

1− qk
. (1.4.88)

The coefficient of qn in the expansion of the infinite product given indeed the number of partitions of n.
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There are n possible positions, so n! possibilities. However, distributions differing for a permu-
tation between cycles of the same length correspond to the same element (of course, (12)(45) is
the same as (45)(12)); thus we must divide by r1!r2! . . .. Moreover, in each cycle of length l we
can make l periodic shifts (by 1,, by 2, . . . by l− 1) that leave the cycle invariant. Thus we must
divide by 1r12r23r3 . . .. Altogether we have obtained

|{rl}| =
n!

r1! 2r2r2! 3r3r3! . . .
. (1.4.92)

1.4.5 Conjugate subgroups

Let H be a subgroup of a group G. Let us consider

Hg ≡
{
hg ∈ G : hg = g−1hg , for h ∈ H

}
, (1.4.93)

which we will also write simply as Hg = g−1Hg. It is esay to see (check it) that Hg is a subgroup.
The subgroups Hg are called conjugate subgroups to H.

1.4.6 Invariant subgroups

A subgroup H of a group G is called an invariant (or normal) subgroup if it coincides with all
its conjugate subgroups: ∀g ∈ G, Hg = H. A rather practical alternative definition is that an
invariant subgroup H is such that for any h ∈ H, all elements conjugated to h belong to H: if
H contains an element, then it contains all its conjugacy class.

Left and right cosets (again) Given any subgroupH of G, we can define two equivalence relations
in G:

g1 ∼L g2 ⇔ ∃h ∈ H : g1 = hg2 (left equivalence) ,

g1 ∼R g2 ⇔ ∃h ∈ H : g1 = g2h (right equivalence) . (1.4.94)

Show that these are indeed equivalence relations. We can therefore consider the set of equivalence
classes with respect to this left (right) equivalence, the left (right) cosets. The right coset G/H
contains the left classes already introduced in sec. 1.4.2, that we write simply as gH. The right
coset H\G contains the left classes Hg.

If H is an invariant subgroup, then the two equivalence relations of Eq. (1.4.94) coincide
(show it):

g1 ∼L g2 ⇔ g1 ∼R g2 . (1.4.95)

In this case, the right and left cosets coincide: H\G = for H an invariant subgroup.Indeed, in
thsi case gH = gHg−1g = Hg.

Eq. 1.4.96 amounts to the same as saying that the two equivalence relations are compatible
with the group structure:

{
g1 ∼ g2
g3 ∼ g4

⇔ g1g3 ∼ g2g4 , (1.4.96)

where ∼ stands for ∼L (or ∼R). Show indeed that requiring Eq. (1.4.96) for ∼L,R implies that
they should coincide.

There is a further important property of G/H.
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1.4.7 Factor groups

If H is an invariant subgroup of G, then G/H (= H\G) is a group, with respect to the product
of classes defined as follows:

(g1H)(g2H) = g1g2H. (1.4.97)

This product is well-defined. Infact (since g2H = Hg2 for H invariant) we have g1H g2H =
g1g2HH but in this formal writing HH = H, as it is a subgroup. H itself is the identity of G/H,
and the inverse of an element gH is g−1H. We have thus a natural homomorphism from G to the
factor group G/H, in which all elements of G belonging to the same conjugacy class are mapped
to a single element in G/H.

A sort of converse to the above statement is also true: if φ : G→ G′ is an homomorphism,
then there exists an invariant subgroup H ⊂ G such that G′ = G/H.

Example Consider the group nZ, namely the set of multiples of n: {. . . ,−2n,−n, 0, n, 2n, . . .},
with the addition as group law. Show that it is an invariant subgroup of Z. Show that the factor
group Z/nZ is isomorphic to the cyclic group Zn.

1.4.8 Centre, centralizers, normalizers

The centre of a group The centre Z(G) of a group G is the set of all those elements of G that
commute (in the group sense) with all the elements of G:

Z(G) =
{
f ∈ G : g−1fg = f , ∀ g ∈ G

}
. (1.4.98)

Show that Z(G) is an Abelian subgroup of G.

Example: the centres of U(N) and SU(N) The centres of U(N) or SU(N) must consist of
matrices A commuting with all unitary or special unitary matrices; the only possibility is that
they are proportional to the unit matrix : A = a1, with a ∈ C. For A to be unitary, a must be a
phase: A = eiα1. For A to be spacial unitary, detA = aN = 1 implies that a is an N -th root of
unity, so A = exp( 2πik

N )1. Altogether, we have

C (U(N)) ∼= U(1) ; C (SU(N)) ∼= ZN . (1.4.99)

The centralizer of a subset The centralizer C(A) of a subset A ⊂ G is the subset of G containing
all those elements that commute with all the elements of A:

C(A) =
{
g ∈ G : ∀ a ∈ A , (g)−1ag = a

}
. (1.4.100)

A is (loosely speaking) in the centre of C(A), which explains the nomenclature. If A contains a
single element a, then C(A) is simply called the centralizer of a and indicated as C(a).

For any fixed element g, the product of the order of the conjugacy class of g and of its
centralizer equals the order of G:

|[g]| |C(g)| = |G| . (1.4.101)

Indeed, let g′ = u−1gu be an element of [g] different from g. Also the conjugation of g by w = ut,
where t ∈ C(g), gives g′: in fact, w−1gw = u−1t−1gtu = u−1gu = g′. Thus, constructing [g] as
the set

{
u−1gu : u ∈ G

}
we obtain |C(g)| times each distinct element.
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Example: centralizers of permutations Let a permutation P ∈ Sn be decomposed into a set
of {rl} cycles. It is easy to convince oneself that any permutation that i) permutes between
themselves the cycles of equal length in P or ii) effects arbitrary periodic shifts within any cycle
(there are l possibilities for each cycle of length l) commutes with P . Thus, the number of
permutations commuting with P is given by

|C(P )| =
n∏

l=1

rl! l
rl . (1.4.102)

We see that this expression, together with Eq. (1.4.92) giving the order of the conjugacy class of
P , is consistent with Eq. (1.4.101).

The normalizer of a subset The normalizer N(A) of a subset A ⊂ G is the subset of elements
of G with respect to which A is invariant:

N(A) =
{
g ∈ G : (g)−1Ag = A

}
. (1.4.103)

If A contains a single element a, then N(A) is simply called the normalizer of a and indicated as
N(a), and it coincides with the centralizer C(a).

1.4.9 The derived group

The group of commutators, or derived group D(G) of a group G (ofted also indicated as G′)
is the group generated by the set of all group commutators in G (namely, it contains all group
commutators and products thereof).

The derived group D(G) is normal in G, i.e. it is an invariant subgroup. Indeed, take an
element of D[G] which is a commutator, say ghg−1h−1. Then, any conjugate of it by an element
f ∈ G, f−1ghg−1h−1f is still a commutator, that of f−1gf and f−1hf . To an element of D[G]
that is a product of commutators, the reasoning applies with little modification.

The factor group G/D(G) is Abelian: it is the group obtained from G by “pretending” it is
abelian. Another property is that any subgroup H ⊂ G that contains D(G) is normal.

Example: the alternating groups An On the one hand, we know that the alternating group An

contains the derived group of the symmetric group Sn:

An ⊇ D(Sn) , (1.4.104)

because the factor group Sn/An contains only two elements, and thus it is isomorphic to Z2 and
in particular it is Abelian. On the other hand, since An ⊂ Sn, also

D(An) ⊆ D(Sn) (1.4.105)

For n = 2, 3, 4, it is easy to construct directly the commutator subgroups D(Sn) and verify
explicitely (do it as an exercise!) that

An = D(Sn) , (n = 2, 3, 4) . (1.4.106)

For n ≥ 5 we can proceed in a systematic way, by showing that

D(An) = An , (n ≥ 5) . (1.4.107)
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Indeed, for n ≥ 3, An certainly contains 3-cycles (arising from products of two exchanges).
For n ≥ 5 there exist couples of 3-cycles whose commutator is again a 3-cycle; for instance,
commutator of (124) and (135) gives (124)(135)(142)(153)= . . . = (123). The point is that such
3-cycles must have only one elemet in common; this is possible only for n ≥ 5. In this case, D(An)
contains some 3-cycle; by normality, it contains the entire conjugacy class, namely it contains all
3-cycles. But it is possible to show that, for n ≥ 5, all even permutations can be generated by
3-cycles. Indeed, even permutations are generated by pairs of transpositions, so it is sufficient to
show that every pair of transpositions can be obtained as products of suitable 3-cycles. If the two
transposition have an elemet in common, then they directly correspond to a 3-cycle. Consider
instead two exchanges with no element in common : (a1, a2)(b1, b2), with ai, bi all distinct. Then,
for n ≥ 5, ∃c 6= ai, bi, and we have (check it!)

(a1, a2)(b1, b2) = (c, a1)(c, a2)(c, a1)(c, b1) = (a1ca2)(a1cb1)(b2cb1) . (1.4.108)

From Eq.s (1.4.104,1.4.105.1.4.107) it follows immediately that, for n ≥ 5, the alternating group
An coincides with the derived group of the symmetric group Sn:

An = D(Sn) , (n ≥ 5) . (1.4.109)

1.4.10 Simple, semi-simple, solvable groups

A given group G will in general admit a chain of invariant subgroups, called a subnormal series:

G = Gr ⊃ Gr−1 ⊃ Gr−2 ⊃ . . . ⊃ G1 ⊃ {e} , (1.4.110)

with every Gi a normal subgroup.

Simple groups G is a simple group if it has no proper invariant subgroup. For simple groups,
the subnormal series is minimal:

G ⊃ {e} . (1.4.111)

Simple groups are the “hard core” of the possible group structures. There is no factor group
G/H smaller than G out of which the group G could be obtained by some “extension”, because
there’s no normal subgroup H other than the trivial one or G itself.

Semisimple groups G is a semi-simple group if it has no proper invariant subgroup which is
abelian.

Solvable groups G is solvable if it admits a subnormal series Eq. (1.4.110) such that all the factor
groups G/G1, G1/G2, . . ., Gk−1/Gk, . . . are abelian.

Example: the symmetric groups Sn for n ≤ 4 Let us write down the subnormal series for the
symmetric groups of low order.

• S2, isomorphic to Z2 is obviously solvable, being Abelian.
• For S3, the subnormal series is

S3 ⊃ D(S3) = A3 ⊃ {e} . (1.4.112)

Since S3/A3 = Z2 and A3 = {e, (123), (132)}, isomorphic to Z3, is abelian, the group S3 is
solvable.
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• For S4, the subnormal series is

S4 ⊃ D(S4) = A4 ⊃ D2 = Z2 ⊗ Z2 ⊃ {e} . (1.4.113)

The alternating group

A4 = {e, (123), (132), (124), (142), (134), (143), (234), (243), (12)(34), (13)(24), (14)(23)}
(1.4.114)

is no longer abelian, as A3 was. It admits several subgroups, for instance a Z3 sub-
group {e, (123)((132)}, which are not invariant, and a single invariant subgroup D2 =
{e, (12)(34), (13)(24), (14)(23)}. We have denoted this agroup as D2 as it is indeed iso-
morphic to the symmetry group of a 2-gon (i.e., a segment) in the plane (show it), which is
also isomorphic to the direct product Z2⊗Z2 (the notion of direct product will be discussed
shortly). Since |A4|/|D2| = 12/4 = 3, the factor group A4/D2 can only be isomorphic to
Z3, hence Abelian. Therefore the factor groups in the subnormal series Eq. (1.4.114) are all
Abelian, and S4 is solvable.

1.4.11 Some important example of simple groups

Cyclic groups of prime order Cyclic groups Zp with p a prime are simple. Indeed, they are
abelian, so every subgroup would be a normal subgroup. However, by Lagrange’s theorem, the
order of any subgroup of Zp should be a divisor of p, which leaves only the improper subgroups
{e} and Zp itself. What is absolutely non trivial, and therefore we will just mention it :-), is
that in fact the cyclic groups of prime order are the only simple groups of odd order.

The alternating groups An It is possible to show that the alternating groups An with n ≥ 5
are simple. This can be shown by directly looking at the various possible expressions in terms of
cycle of a supposed normal subgroup H of An. The key point are

i) Any element of An, i.e., any even permutation, for n ≥ 5, is a product of 3-cycles.
ii) If H contains a 3-cycle, being normal, it contains all its conjugacy class, namely all three-

cycles; then H = An by i).
iii) If H contains an element made of two disjoint permutations, then by its normality it contains

all elements of its conjugacy class, namely all elements with two disjoint permutations;
multiplying certain such elements one certainly can reconstruct a 3-cycle, and we go back to
ii).

iv) Looking at the various possible cycle decompositions of an element of H, one sees that by
the normality of H one is forced to have in H elements that fall in cases ii)= or iii).

Solvable groups and solvable equations The theory of groups originated from the work of E.
Galois regarding the properties of algebric equations of degree n (and, in particular, the possibility
of solving such equations by radicals). Galois understood that many properties of an equations
are encoded in a certain group, called after him the Galois group of the equation. In particular,
the algebric equation is solvable by radicals iff its Galois group is solvable. The Galois group of
a generic equation of degree n is Sn. THe symmetric group Sn is not solvable for n ≥ 5: its
subnormal series is just

Sn ⊃ An ⊃ {e} , (n ≥ 5) , (1.4.115)

because An is simple, and it is not a solvable series because An is not Abelian. It follows that
the generic equation of degree n ≥ 5 cannot be solved by radicals (Abel-Ruffini theorem).
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1.4.12 Homomorphism theorems

PSfrag replacements G
G′

e e′

φkerφ

Figure 1.16. An homomorphism φ : G 7→ G′ and its kernel.

The important homomorphism theorem, also known as first isomorphism theorem, states
that, given an homomorphism φ of G onto G′:

i) the kernel of the homomorphism, kerφ, is an invariant subgroup of G;
ii) the restriction of the map φ to the factor group G/kerφ gives rise to an isomorphism between

G/kerφ and G′.

The kernel of φ is the subset of G that is mapped onto the identity element e′ of G′:

kerφ = {g ∈ G : φ(g) = e′} . (1.4.116)

It is immediate to see that kerφ is a subgroup. It is also normal, because if g ∈ kerφ, then
also its conjugates belongs to it: φ(u−1gu) = φ(u−1)φ(g)φ(u) = [φ(u)]−1e′φ(u) = e′; this proves
i). In case of finite groups, if kerφ has order m, then φ is an m-to-one mapping. Indeed, if ki
(i = 1, . . .m) are the elements of kerφ, then the image φ(g) of a given element coincide with that
of the elements φ(kig): The kernel being an invariant subgroup , we can define the factor group
G/kerφ. Since the kernel of the map φ : G/kerφ → G′ contains now only the identity of the
factor group, this map is an isomorphism. This proves ii).

There are other theorems regarding homomorphisms that we mention without proof.
The correspondence theorem states that, if φ : G→ G′ is an homomorphism, then

i) the preimage H = φ−1(H ′) of any subgroup H ′ of G′ is a subgroup of G containing kerφ
(this generalizes the property of kerφ = φ−1(e′) of being a subgroup). If H ′ is normal in G′,
then so is H in G.

ii) If there is any other subgroup H1 of G, containing kerφ, that is mapped onto H ′ by φ, then
H1 = H.

The above statements can be rephrased (via the first isomorphism theorem) in terms of factor
groups:

i) Let L be a subgroup of a factor group G/N . Then L = H/N for H a subgroup of G
(containing N). If L is normal in G/N , then H is normal in G.

ii) If H/N = H1/N , with H and H1 subgroups of G containing N , then H = H1.

The factor of a factor theorem states that if in the factor group G/N ther is a normal
subgroup of the form M/N , with M ⊇ N , then M is a normal subgroup of G, and

G/M ∼ (G/N)/(M/N) . (1.4.117)
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1.4.13 Direct products

The direct product G⊗F of two groups G and F is, as a set, the cartesian product of G and F :

G× F = {(g, f) : g ∈ G , f ∈ F} . (1.4.118)

Elements of G⊗F are couples, and |G⊗F | = |G| |F |. The group operation is defined as follows.
Elements of G⊗ F have to multiplied “independently” in each entry, in the first entry with the
product law of G, in the second with the product law of F :

(g, f)(g′, f ′) = (gg′, ff ′) . (1.4.119)

Examples

• Construct the direct product group Z2⊗Z2 and show it is isomorphic to the dihedral group
D2.

• Construct (and identify) the direct product Z2 ⊗ Z3.

Conversely, given a group G, we say that it is the direct product of certain subgroups:

G = H1 ⊗H2 ⊗ . . .⊗Hn (1.4.120)

if and only if

i) elements belonging to different subgroups Hi commute;
ii) the only element common to the various subgroups Hi is the identity;
iii) any element g ∈ G can be expressed as product

g = h1h2 . . . hn , (h1 ∈ H1, . . . hn ∈ Hn) . (1.4.121)

From ii), iii) it follows that the decomposition Eq. (1.4.121) is univoquely defined. Condition i)
is equivalent to the fact that all the subgroups Hi are normal (show it).

Example The orthogonal group in three dimensions, O(3) is the direct product of the special
orthogonal group SO(3) and of the matrix group (isomorphic to Z2) given by the two 3 × 3
matrices {1,−1}.

The direct product is the simplest way to build larger groups out of smaller building blocks.
We can start from, say, two simple groups G and F to obtain a larger group G⊗ F which is no
longer simple as it admits G and F as normal subgroups. These normal subgroups are embedded
into G × F in the simplest way; the homomorphism φ : (G ⊗ F ) → G corresponds simply to
neglect the F component: φ : (g, f) 7→ g.

1.4.14 Semi-direct products

A slightly more complicated construction, which is of great relevance in physics, to obtain a larger
group from two building blocks is the semi-direct product. Let G and K be two groups, and
assuume that G can be seen (that is, has an isomorphic image) as a group of transformations
acting on K:

∀ g ∈ G , g : k ∈ K 7→ g(k) ∈ K . (1.4.122)
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Let us use the symbols k1 ◦ k2 and g1 · g2 for the group products in K and G respectively. The
semi-direct product of G and K, denoted as GsK, is the cartesian product of G and K as sets,

GsK = {(g, k) : g ∈ G , k ∈ K} , (1.4.123)

but the product in GsK is defined as follows:

(g1, k1)(g2, k2) = (g1 · g2, k1 ◦ g1(k2)) . (1.4.124)

That is, “before” being multiplied by k1, the element k2 is acted upon by g1. The inverse of an
element of GsK is then given by (check it)

(g, k)−1 =
(
g−1, [g−1(k)]−1

)
, (1.4.125)

where the inverse g−1 is with respect to the product in G, while the “external” inverse in
[g−1(k)]−1 is with respect to the product in K.

The semi-direct product GsK possesses an invariant subgroup K̃, isomorphic to K, given
by the elements of the form (e, k), with e the identity of G and k ∈ k. Indeed, any conjugated of
such an element is again in the subgroup K̃:

(g, h)−1(e, h)(g, k) =
(
g−1, [g−1(h)]−1

)
(g, h ◦ k) =

(
e, [g−1(h)]−1 ◦ g−1(h ◦ k)

)
. (1.4.126)

The subgroup, isomorphic to G, containing elements of the form (g, e), where e is the identity in
K and g ∈ G, is instead not invariant.

Conversely, given a groups G, we say that is the semi-direct product G = G1sG2 of two
subgroups G1 and G2 iff:

i) G2 is an invariant subgroup of G;
ii) G1 and G2 have only the identity in common;
iii) every element of G can be written as a product of an element of G1 and one of G2.

From ii) and iii) it follows that the decomposition iii) is unique.

The euclidean groups The euclidean groups Eucld are semi-direct products of the orthogonal
group O(d) and of the abelian group Td of d-dimensional translations. Their structure as semi-
direct product has been discussed in in Eq.s (1.3.29,1.3.30) for the inhomogeneous rotation group
ISO(2), the extension to Euclidean groups is immediate.

Consider in particular the group ISO(2) = SO(2)sT2. Every element g(θ,v) = (R(θ), T (v))
can be written as the product of rotation and a translation: indeed, according to the semi-direct
product law Eq. (1.4.124), which in this specific case was described in Eq. (1.3.31), we have

g(θ,b)g(−θ,0) = g(0,b) , (1.4.127)

namely
g(θ,b)R(θ)−1 = T (b) , (1.4.128)

whence
g(θ,b) = T (b)R(θ) . (1.4.129)

Writing the elements in this form, the semi-direct product law of the full group is determined from
the products in T2 and in S)(2) plus the “adjoint” action of SO(2) on the invariant translation
subgroup T2:

R(θ)T (b)R−1(θ) = T (R(θ)b) (1.4.130)
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Indeed,

T (b1)R(θ1)T (b2)R(θ2) = T (b1)R(θ1)T (b2)R(θ1)
−1R(θ1)R(θ2)

= T (b1)T (R(θ1)b2)R(θ1)R(θ2)

= T (b1 +R(θ1)b2)R(θ1 + θ2) , (1.4.131)

in accordance with Eq. (1.3.30).

The Poincaré group Consider a Poincaré transformation of a quadri-vector xµ:

xµ → Λµ
νx

ν + cµ . (1.4.132)

Here Λ is a pseudo-orthogonal matrix, Λ ∈ O(1, 3), namely is a matrix such that ΛT ηΛ = η, where
η = diag (−1, 1, 1, 1) is the Minkowski metric, see sec. 1.3.7. These matrices implement rotaions
corresponding to Lorenz transformations. The 4-vector cµ is instead a translation parameter.
Poincaré transformations are the isometries of the Minkowski space R1,3; they are the analogue
of the transformations of the euclidean groups, but for the metric which they preserve, ηµν ,
being non-positive definite. Notice that the translation parameters, cµ are 4-vectors and as such
are acted upon by the Lorenz transformations: cµ → Λµ

νc
ν . The composition of two Poincaré

transformations gives

xµ
(2)−→ Λµ

(2)νx
ν + cν(2)

(1)−→ Λµ
(1)ν

(

Λν
(2)ρx

ρ + cρ(2)

)

+ cµ(1) = (Λ(1)Λ(2))
µ
ρx

ρ + (Λ(1)c(2))
µ + cµ(1) .

(1.4.133)
We see that the product law for the Poincaré group is

(Λ(1), c(1))(Λ(2), c(2)) = (Λ(1)Λ(2),Λ(1)c(2) + c(1)) (1.4.134)

and the Poincaré group is the semi-direct product of the Lorenz group O(1, 3) and the translation
group.

1.4.15 Extensions of a group

We have said that we can regard simple groups as building blocks of general groups. In fact, the
structure of a non-simple group G, with a nonrmal subgroup H, is substantially dependent on
the structure of H and on that of the factor group G/H.

Extension of a group In fact we say that a group G is an extension of a group H by a group K
iff there exists H̃, normal in G, such that G/H̃ = K̃, with H̃, K̃ isomorphic to H,K: H̃ ' H,
K̃ ' K.

The question is: how can be G be built out of H̃ and K̃? We will not exhamine the general
case, but only a (quite important) subcase, that of so-called splitting extensions.

Splitting of a group Let H be a normal subgroup of G, and let X be a so-called (left) transversal
of H, namely a set containing one and only one element from each coset of H in G. Suppose
that X is in fact a subgroup of G. The situation is altogether that

H normal in G , X subgroup of G , XH = G , H ∩X = {e} . (1.4.135)
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In such a case, G is said to slit over H, and X is called a complement of H. Indeed, one can show
that any element g ∈ G can be written uniquely as a product g = xh, with x ∈ X and h ∈ H, so
XH = G, and every element of X lies in a distinct coset of H, so H ∩X = {e}. Conversely, if G
splits over H, any complement X of H can be taken as a left transversal for H in G.

If G splits over H and X is a complement of H, then

G/H = HX/H = X/(H ∩X) = X , (1.4.136)

that is, G is an extension of H by X. In other words, if G splits over H, G/H is isomorphic to
any complement of H.

Splitting extension of a group One then introduces the following definition: G is a splitting
extension of H by X if there exists H̃ normal in G and such that X̃ = G/H is isomorphic to X.

Reconstructing a group by splitting extension All the products in a group G obtained by the
splitting extension of H by X are determined from:

a) the product law in H;
b) the product law in X;
c) an “adjoint” action of X on H, that is an homomorphism φ : X → Aut(H).

In simple words, take two elements a, b ∈ G. They will decompose as a = Aα and b = Bβ, with
A,B ∈ X and α, β ∈ H. Then we have

ab = AαBβ = ABB−1αBβ , (1.4.137)

where now AB is a product in X. Moreover, B−1αB is again in H as H is normal, so B ∈ X
defines an automorphism of H. Assigning to each B ∈ X an automorphism of H, namely point
c) above, is thus a key point to determine the products in G. FInally, the product B−1αBβ is
then within H.

Direct and semi-direct products It is not difficult to see that a direct product group G = H ⊗K
is in fact a particular splitting extension of H by K, in which the “adjoint” action of K on H
is trivial (namely B−1αB = α, ∀B ∈ K and ∀α ∈ H. Similarly, one can see that a semi-direct
product group G = KsH is also a splitting extension of H by K.

1.4.16 Free groups

When a group G is generated by a set X = {xi} of elements, we say that G = gp (X), with

gp (X) = {x±1
1 . . . x±1

n , xi ∈ X , n ∈ N} . (1.4.138)

Namely, gp (X) contains all the words, of any length n, formed with the generators xi.
We name reduced words those words in which the obvious simplifications xix

−1
i have been

carried out. For instance, the non reduced word xyy−1xxy becomes has the reduced form xxxy.
Consider the infinite cyclic group gp (x) generated by a single generator x (mapping x into

1 and the product to be the addition, gp (x) ∼= Z, hence the name). It has the obvious property
that (xm = xn)⇒ m = n, that is, different reduced expressions correspond to different elements.

The infinite cyclic group is the prototype of the so-called freely generated groups. We say
that G is the free group on X (or that G is freely generated by X iff
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i) G = gp (X), i.e., G is generated by X;
ii) distinct reduced products correspond to distinct elements.

I will use for brevity the notation G = freegp (X) for the gree group on X (this notation is not
very diffuse). Intuitively, this means that there are no relations between the generators that could
be used to write the same element in different ways. Note that if G is a free group, every element
is written uniquely as xε1i1 ....x

εn

in
, so that we can associate to it the length n.

An important theorem (which we do not prove) states that every subgroup of a free group
is free.

Another fundamental result (which again we mention without proof) is that every finite
group G is the homomorphic image of some free group.

This last fact leads to the possibility of describing the group G by means of a presentation,
consisting of generators and relations, as we already metioned in sec. 1.2.11.

To define precisely the notion of presentation of a group, we need the concept of normal
closure N (S) of a subset S ⊂ G. It is the intersection of all the normal subgroups of G containing
S. It is a normal subgroup of G (check it) containing S, adn can be written as

N (S) = gp
(
{g−1sg : s ∈ S , g ∈ G}

)
. (1.4.139)

A presentation is a couple (X;R) with X a set of generators, R a set of words in freegp (X)
A presentation (X;R) defines a group denoted as gp (X;R) as follows:

gp (X;R) = freegp (X)/N (R) , (1.4.140)

namely as the quotient of the free group on X by the normal closure generated by the set of
relations.

Example Let X = {a} consist of a single generator, and let R = {a2} contain the single word
a2. The free group on X is then

freegp (X) = {. . . , a−2, a−1, e, a, a2, . . .} ,

so that freegp (X) ∼= Z, and the normal closure of R is

N (R) = {. . . , a−4, a−2, e, a2, a4, . . .} ,

, so that N (R) ∼= 2Z. The presentation (X;R) defines the group

freegp (X)/N (R) ∼= Z/(2Z) ∼= Z2 .

A group G admits a finite presentation iff it is isomorphic to some gp (X;R).

Example The homotopy group of a two-torus T2, see sec. 1.3.16, arises naturally as gp (X;R),
where X = {a, b} are the two simplest non-trivial homotopy classes and R = {aba−1b−1, namely
the single relation is the commutator. As we discussed, it follows that Π1(T2) = gp (X;R) is
abelian and is isomorphic to Z⊕ Z (using the additive notation). More in general, if X = {ai},
i = 1, . . . , n and R contains all the commutators: R = {aiaja−1

i a−1
j ,∀i, j}, it follows that

gp (X;R) = Z⊕ . . .⊕ Z
︸ ︷︷ ︸

n times

.
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1.4.17 Finitely generated Abelian groups

Additive notation For Abelian groups, the additive notation is often used. The group product
of two elements is indicated as a + b and powers of an element become integer multiples of it:
a → a + a = 2a → a + a + a = 3a . . .; the inverse of a is denoted as −a, and the identity as 0.
One speaks of direct sum G⊕G′ instead of direct product of groups. If G = ⊕n

i=1Gi, every g in
G can be decomposed uniquely (up to irrelevat reordering) as g = g1 + g2 + . . .+ gn. A coset of
an element g with respect to a subgroup H is denoted as g +H.

Free Abelian groups G is a free abelian group (on X = {xi}) iff

i) G = gp (X)
ii) G = ⊕iGi, with every Gi = gp (xi) an infinite cyclic group: Gi

∼= Z.

For instance, the free Abelian group on two generators x, contains all words formed with the two
generators assuming that the product is Abelian; namely, we may seea the two generators joined
by a direct product :

X = {(x, 0), (0, y)} , ⇒ gp (X) = {(nx,my) , n,m ∈ Z} ∼= Z⊕ Z

(we are using the additive notation).

Every Abelian group is the homomorphic image of some free Abelian group. If gi are the
elements of G, the free Abelian group F = ⊕ifreegp (xi) where the generators xi can be put
into 1-to-1 correspondence with the elements gi. The map xi → gi extends naturally to an
homomorphism from F to G.

Classification of Abelian groups Abelian groups can be distinguished in the following classes.

• Torsion-free groups The Abelian group G is a torsion-free group iff every element g in G
(except the identity) is of infinite order.
Examples of such groups are Z and Q (as additive groups).

• Torsion groups The Abelian group G is a torsion group iff every element g of G is of finite
order.
Examples:

– In a cyclic group Zn, all elements are of finite order. In general, if G is finite, all its
elements are of finite order.

– The factor group Q/Z is a torsion group. Indeed, an element r ∈ Q is of the form
r = m/n, with m,n ∈ Z. Elements of Q/Z are coosets [r] ≡ r + Z (i.e., “up to
integers”). But the n-th “power” of [r], is given by [nr] = nr+ Z = m+ Z = Z, i.e. the
identity class. So every element [r] = [m/n] of Q/Z has order equal to the denominator
n of r.

• Mixed groups The Abelian group G is a torsion group iff it contains elements both of finite
and infinite order.
An example is provided by C \ {0}, the multiplicative group of complex numbers. Indeed,
the elements exp(2πi/n) have order n. Any element z with |z| 6= 1 has infinite order (only
z0 = 1).
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The torsion subgroup Let G be an Abelian group. Let T (G) be the subset of elements of G that
are of finite order. T (G) is a subgroup of G, called the torsion subgroup. Indeed (in additive
notation), let a, b ∈ G have finite orders m = |a|, n = |b|, so that ma = 0, nb = 0. Then
mn(a− b) = mna−mnb = 0, so that also a− b has finite order mn.

An Abelian group can be finitely generated without being freely generated; it may be given
by a presentation (X;R). The typical example are the cyclic groups Zn, with X containing a
single generator: X = {a}, and R consisting of the single word an. The non-trivial fact is that in
fact this type of relations are the only that really give rise to different Abelian group structures.
Other relations, such as, for instance, those imposing that two generators commute, are in fact
equivalent to assesrting that the group decomposes in a direct sum of smaller groups, see above.

One has in fact the important result that every finitely generated Abelian group G is isomor-
phic to a direct sum of cyclic groups, of infinite or finite order:

G = Z⊕ . . .Z⊕ Zn1
⊕ . . .⊕ Znk

. (1.4.141)

Moreover, sometimes the finite cyclic groups Zn can in turn be decomposed into direct sums
of smaller cyclic groups. More precisely:

• The groups Zpq , with p a prime, and q ∈ N, cannot be decomposed.
• The groups Zn with a generic n = pq11 pq22 . . .. with pi primes, can be decomposed as

Zn = ⊕iZp
qi
i
. (1.4.142)

For instance, Z4 cannot be further decomposed: Z4 6∼= Z2 × Z2. Indeed, all elements of Z2 × Z2

are of order 2, while in Z4 we have elements of order 4. We have instead Z6
∼= Z2 ⊕ Z3. In this

case, the element (a, b) ∈ Z2 ⊕ Z3, with a the generator of Z2 and b the generator of Z3, is of
order 6 (the m.c.m. of 2 and 3). It is along these line that one proves in general Eq. (1.4.142).

Altogether, using Eq. (1.4.142) in Eq. (1.4.141), we see that every finitely generated Abelian
group G can be written “canonically” as

G = Z⊕ . . .Z⊕ Zp
q1
1
⊕ . . .⊕ Zpqm

m
. (1.4.143)

The type of decomposition individuated by the canonical decomposition Eq. (1.4.143) identifies
G up to isomorphisms; i.e., all isomorphic finitely generated Abelian groups have the same de-
composition type and an abstract group structure of this type is individuated by a decomposition
as in Eq. (1.4.143).


