Chapter 1

REPRESENTATIONS OF LIE ALGEBRAS

1.1 Introduction

In this Chapter ...

1.1.1 Relation to group representations

Via the exponential map, a matrix representation of a real section of a Lie algebra G
D: zeGww D(x) € Hom(V), (1.1.1)

where V is a real vector space, gives rise to a representation of the associated simply connected
Lie group Gfs
D :g=¢e" s D(g) =eP@ e End(V). (1.1.2)

Indeed, the homomorphicity of the map D defining the Lie algebra representation, Eq. (77?),
implies the homomorphicity, in the group sense, Eq. (??), of the map D: for any g = e*, h = e¥,

D(g)D(h) = eP@ePW) — exp (D(:c) +D(y) + % [D(x), D(y)] + - )

1
= exp {D (a: ty+ eyl + )} =D (ez+y+%[wl+~-) — D(gh). (1.1.3)

Namely, the representation of the group is obtained by exponentiating the matrix represen-
tatives of the algebra. Notice that the linear operators D(z) in Eq. (1.1.1) need not be invertible,
but the operators D(g) are instead invertible.

1.1.2 Irreducible representations

Just as it happens for group representations, Lie algebra representations can be reducible, fully
reducible or irreducible. The definitions (starting from the definition of equivalent represen-
tations) are exactly as in Sec. ?7, so we do not repeat them here. In particular, irreducible
representations admit no invariant subspaces, and can be used as a buinding block of reducible
representations. The latter, in an appropriate basis, are made of block-diagonal matrices, each
block (when no further reducible) corresponding to an irrep. So, as we aready argued for group
representations, we need to concentrate on irrepses only.
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We will use for irreducible represetation of Lie algebras a notation reminiscent to the one
adopted for group representations, denoting them as

D,: 2€G—D,(z) € Hom(V). (1.1.4)

The dimension of D,,, which is the dimension of the carrier space V, is denoted as d,,.

1.1.2.1 Schur’s lemma

The Lie algebraic analogue of Schur’s lemma holds. In an irreducible representation D,,, a matrix
commuting with all matrix representatives can only be proportional to the identity:

[A,D,(z)]=0V2€eG = Ax1 (or A=0). (1.1.5)

The proof is analogous to that of Schur’s lemma for group representations: eigenspaces of A
correspond to invariant subspaces of D. Since the representation is irreducible, the only invariant
subspaces are the whole carrier space V' or the trivial subspace {0}, corresponding to A =1 and
A = 0 respectively.

1.1.2.2 Conjugate representations

Consider a Lie algebra G, with generators ¢, (a = 1,...,dim G) satisfying
[tasts] = ey te - (1.1.6)

Let T, = D(t,) be the representatives of the generators in a representation D of dimension d; the
T,’s are usually referred to simply as “the generators in the representation D”.

The Lie algebra G admits then always another representation D, of the same dimension d,
in which the generators are taken to be

o T T
T,=D(t,) =—(D(ta))” =—(Tu)" . (1.1.7)
Indeed, these generators satisfy the same algebra:
[T.,Ty) = [T1, 1] = = [T0, Ty)" = ot TT = ¢ T (1.1.8)

The representation D is called the conjugate representation of D. The reason is that in a
real section of the algebra the generators are typically chosen to be anti-hermitean or hermitean
(depending on the compactness or not of the corresponding one-parameter subspace). If, for
instance, the generators are antihermitean, T, = —7., then we have

Ty,=-TF =17, (1.1.9)

namely, the generators in the conjugate representation are actually the complex conjugates of
the generators.

In general, the operation of complex conjugation does not correspond to a change of basis
T, — S™'T,S. When it does, the conjugate representation D is equivalent to D. The self-
conjugated representation D is also called a real representation.
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1.2 Representations of complexified simple Lie algebras

We have discussed in the previous Chapter how general Lie algebras can be obtained from “basic
building blocks” corresponding to simple Lie algebras. The complexified simple Lie algebras can
be described in the canonical form of Cartan, which is extrmely well suited also for the discussion
of their possible

1.2.1 The weight lattice

Let D be a representation of a (semi-)simple Lie algebra G of rank r. The weights of this
representation are a set of vectors A, labelling the states |A) in the representation, whose r
components \; are the eigenvalues of the Cartan generators H; on the states |A):

D(H)A) = MJA), (i=1,...,7). (1.2.10)

Indeed, the Cartan generators commute with each other and can be simultaneously diagonalized.
The basis {|\)} is the basis in which this diagonalization is displayed. The weight vectors are vec-
tors in the (Euclidean) r-dimensional space corresponding to the (dual of the) Cartan subalgebra
‘H*, that is, the same space in which the roots & live.

A representation D is identified by the corresponding set of weights I1p. Notice that a certain
weight X can occur in general with a multeplicity m(X) > 1.

The weight vectors X of any representation can be shown to obey a very restrictive integrality
property:

Vaed, (X a) eZ (1.2.11)

of its hook scalar products with the roots of G. The proof is along similar lines to the proof of
the integrability property of the hook products of two roots, see Sec. 77.
The condition Eq. (1.2.11) is tantamount to say that the possible weight vectors are rescricted
to a lattice
Aw ={mX, n,€Z,i=1,....,r} (1.2.12)

generatated by the so-called simple weights Xi, which have the properties that

(X, d;) =o', (1.2.13)
where a; € A are the simple roots of G. Indeed, any root @ € ® can be written as @ = m'a;,
with m® € Z (and all positive or negative). Then, using Eq. (1.2.12) and Eq. (1.2.13) we have

(X,a@) = "nm/ (X', d;) = n'm; € L. (1.2.14)

.7

Taking into account the definition Eq. (??) of the Cartan matrix: C;; = (&;,d;), we have
from Eq. (1.2.14) that the simple weights can be expanded on the basis provided by the simple
roots as follows:

Xo=(C™YHYia,. (1.2.15)
Of course, the inverse relation
al = CiyN (1.2.16)

holds as well.
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The weight lattice Aw is the dual lattice of the root lattice Ag generated by the simple roots:
Ar={n'd;, n"€Z,i=1,...,r} (1.2.17)

The definition of the dual lattice of a lattice as in Eq. (?7?) is precisely is that it is spanned by
basis vectors A\’ that are dual to the @; in the sense of Eq. (1.2.14).

1.2.1.1 Highest weights and irreducible representations

Afinite-dimensional irreducible representation D,, of G is determined by assigning a single “dom-
inant” weight _
A:mi/\Z, (miZOVizl,...,r) (1218)

as the “highest weight” of the representation, namely as the state that is annihilated by asll
“raising” operators E,, with @ € ®*:

D, (Eq)|A) =0, Vaedt. (1.2.19)

Thus, an irreducible representation may be labeled by the set of non-negative integers {m;}
describing the expansion of the highest weight A in the basis of the simple weights, see Eq. (1.2.18).
These integers are called the Dynkin labels of the irreducible representation. We will use often

the notation B
A= {ml,mg,...} (1220)

to denote a weight vector . . .
A=mgA Fma? . (1.2.21)

The other weights in the representation defined by K, and their multiplicities, can be deter-
mined taking into account the following properties.

i) For every weight X, i.e., for every state |A) in the representation, the action of the lowering
operators can only be as follows:

0 .
— + o 5
Va e ®", Du(E_y|\) = { A —a). (1.2.22)
This follows from the homomorphicity of the representation:
Dyu(Hi)Du(E-a)|A\) = [Du(Hi), Du(E_a)] |A) + Du(E—qy [Py (Hs), [)]A
= — aiDM(E,a)|)\> + /\{DN(E,Q)D\) . (1.2.23)

So, if it is not zero, D,,(E_4)|\) corresponds to a weight vector X — @ of the representation.

ii) Moreover, the @-string through X,
XN—=7T@, iy XNy At qa (1.2.24)
has an asymmetry .
r—q=(\d). (1.2.25)

This is entirely analogous to the meaning of the hook product between two roots, see
Eq. (1.2.17). In particular, from the highest weight A = m\' start a;-strings of total
length

(A, @) =m;+1 (1.2.26)
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(since A is the highest weight, for all such strings ¢ = 0 in Eq. (1.2.25), and the total number
of elements in the string is r 4+ 1). Considering the weights appearing an these strings, they
can still have positive “Dynkin labels”, so that they may again give rise to some &, strings,
and so on.
iii) There are some rules to decide the multeplicity of weights appearing in several of the &,
strings construced as above. Define the level of a weight X as the number of simple roots
that must be subtracted from the h.w. A to get to it. Then
— the total number of weights (counted with their multiplicities) of the weights in two
levels symmetrically placed betwee the highest and lowest weight must be the same;

— the number of weights at a level k must be non-decreasing with k until half-way towards
the lowest weight (after this point, it must of course non-increasing, according to the
previous rule).

iv) The set IIp of weights is closed under the action of the Weyl group Wg of the Lie algebra.

1.2.1.2  Weights of conjugate representations

Let IIp = {X} be the set of weights of a representation D. The set of weights Iz of the conjugate
representation D contains the negative of the weights of D:

;= {-X, Xellp}. (1.2.27)

Indeed, the Cartan generators H; can be realized in D as diagonal matrices D(H;). Therefore
the definition Eq. (1.1.9) of the conjugate representation implies that

D(H;) = ~D(H;). (1.2.28)

Hence, from the definition Eq. (1.2.10) of the weigth components A; as the eigenvalues of the
representatives of the Cartan generators H; it follows that if to each weight A = {A1,..., A} of
D corresponds the weight —Xof D.

1.2.1.3 Weights of the adjoint representation

Comparing the Cartan canonical form Eq. (1.2.17) of a Lie algebra G of rank r with the definition
Eq. (1.2.10) of the weight vectors, it is clear that the roots @ of G, plus r null vectors, represent
the weights of the adjoint representation. Recall that the adjoint representation acts on the
vector space given by G itself. Denote as |«) the basis state of G given by the generator E,,, for
every root @, and as |i) (i = 1,...,r) the states given by the Cartan generators. We have then

ad(H;)|a) = | [H;, Eo]) = o'|a) . (1.2.29)

Ezample: irreducible representations of Ay The A; ~ sl(2,C) algebra admits as a compact real
form the su(2) algebra. We expect therefore the finite-dimensional irreducible representations of
Aj to be characterized by the semi-integer “spin” j, as we are familiar from Quantum Mechanics.

Since A; has rank 1, it has a single simple root @i, a uni-dimensional vector whose norm
we chose to be /2. The Cartan matrix has a single entry C1; = 2, so the single simple weight is
given by

X = (1.2.30)

M‘Sl
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so its norm is 1/4/2. An irreducible representation is defined by a dominant weight
KN=nX, (1.2.31)

i.e. by a single Dynkin label n € Z (with n > 0). From X there departs an a1-string of total
length n + 1: . L . . .
A=nX,A—a =mn-2)\, ..., A—nd; =-n\'. (1.2.32)

So the representation defined by the Dynkin label n is n + 1-dimensional. The single components
of the weight vectors appearing in Eq. (1.2.35) represent, according to Eq. (1.2.10), the eigenvalue
of the single Cartan generator H in this representation. The component of X' is 1/v/2, so the
eigenvalues corresponding to Eq. (1.2.35) are

n n—2 n

—_— e, ——=. 1.2.33

\/§ ) \/i ) \/i ( )
Notice that the above values are obtained starting from a normalization in which, in the 2 x 2
representation, H; is normalized so that tr(H;)? = 1, see Eq. (1.2.17). The traditional normaliza-
tion in Physics for su(n) algebras is that in the fundamental n x n representation trs t,t, = %6(11,.
This choice correponds to rescale Hy, and thus its eigenvalues, by % Setting

n=2j, (1.2.34)

the eigenvalues Eq. (1.2.35) in the 2j + 1-dimensional representation labeled by j are given, in
the “physical” normalization, by
jyi—=1,...,—j. (1.2.35)

The eigenvalue of the Cartan generator are usually denoted as m, and referred to as the “third
component” of the spin, as Hy x o3.
1.2.1.4 Highest weight prepresentations of A

The algebra Az ~ sl(3,R) admits as a compact real section the algebra su(3). It has rank 2,
and its root system was already described in Sec. 1.2.17. The simple roots can be described,
according to the general theory for A,, algebras, in an R? space with versors €}, as

&1 =é — _}27 &2 = 52 — _’3 . (1236)

[a

They belong to the hyperplane orthogonal to ) ?:1 €;. An O.N. basis for this hyperplane is given
by
. €1 —€ , €]+ —2€3
i= R P 1.2.37
\/5 . \/6 ( )

We have then, from Eq. (1.2.36) and Eq. (1.2.37),

Lo /3
=——i -j-
2 NG 59

We will write also simply @; = (v/2,0) and @, = (—1/v/2,/3/2). These are exactly the simple
root vectors of Fig. 1.2.17, obtained there by considering their relative angle 27/3 and their norm

V2.

ar =V2i,

=J

(1.2.38)
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Figure 1.1. The weight and root lattices for As.

The Cartan matrix and its inverse are given by
(2 -1 11 /2
C_<—1 2)’ ¢ _5(1

s0, according to Eq.s (1.2.15,1.2.16), the simple weights X and A2 are related to the simple roots
by

—_

> , (1.2.39)

[\

@ o= 2N - X, Moo= 3a+d) = F5 (1 J5) (1.2.40)
dy = =M +2)07% X2 = 3@ +2d2) = J5 (0, 2

The simple weights and simple roots, and the weight and root lattices Aw and Agr that they
generate, are drawn in Fig. 1.1.
Let us construct some irreducible representations of A,.

e Let us take the highest weight
A=\ ={1,0}, (1.2.41)

where in the last term we utilized the handy notation of Eq. (1.2.20). From A departs an
@y string of total length 2:

A={1,0} =% {-1,1}, (1.2.42)

where we used Eq. (1.2.40) that says that &; = {2,—1}. From the new weight {—1,1} =
—A! + A2 obtained above starts an @o-string of total lenght 2. Indeed, (—A! 4+ A%, ds) = 1.
So, altogether we have the following structure:

(1,0} =B {—1,1} =8 {0, -1} (1.2.43)

This set of weights is depicted in Fig. 1.3. The last weight obtained has no more positive
coefficients in its expansion in simple weights, so no more &;-strings depart from it.

The representation defined by A = {1,0} is therefore 3-dimensional. It is called the funda-
mental representation, and it is usually denoted as 3.
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Figure 1.2. The weight diagram of the repre- Figure 1.3. The weight diagram of the repre-
sentation 3 of As. sentation 3 of As.

e Let us take the highest weight
A=X=1{0,1}. (1.2.44)

From A departs an @ string of total length 2:
A=1{0,1} =% {1,-1}, (1.2.45)

where we used Eq. (1.2.40) that says that ds = {—1,2}. From the new weight {1, -1} =
Al — A2 obtained above starts an @;-string of total lenght 2. Indeed, (A\! — X2, @) = 1. So,
altogether we have the following structure:

0,1} =% (1,1} =B {—1,0}. (1.2.46)

This set of weights is depicted in Fig. ??7. The last weight obtained has no more positive
coefficients in its expansion in simple weights, so no more &;-strings depart from it.
The 3-dimensional representation defined by A = {0,1} is the conjugate of the fundamental
representation 3 described above. Indeed its set of weights contains exactly all the negatives
of the 3-dimensional. This representation is called the anti-fundamental representation, and
it is usually denoted as 3.

e Let us now consider the irreducible representation with highest weight

A=X'+X2={1,1}. (1.2.47)
Notice that, according to Eq. (1.2.40), we have
A=a,+as,. (1.2.48)
From A start an @;- and and do-string, both of total length 2:

K={11} =d +ds "5 {~1,2} = d,,
B 1l =a. (1.2.49)
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From the new weight {—1,2} = &5 starts an da-string of total length 3, which is nothing
else than the string containing the root ds, 0 and —ds:

{~1,2} = d» =% {0,0} =3 {1, -2} = —d>. (1.2.50)
Similarly, from the other weight{2, —1} = &; starts the &;-string
(2,-1} =a —%{0,0} =B {-2,1} = -4, (1.2.51)

From the lowest weight {1, —2} = —d&5 in Eq. (1.2.50) departs an &;-string of total length
2, and from the lowest weight {—2,1} = —d&; in Eq. (1.2.53) departs an &;-string of total
length 2:

{1,-2) = —dp "B {1, -1} = —(d, + @») (1.2.52)
{21} = —d@; "B {1, -1} = —(d, + d») . (1.2.53)

The null weight {0,0}, of level 2 is reached subtracting two simple roots from the h.w. in
two different ways, see Eq. (1.2.49) and then Eq. (1.2.50) and Eq. (1.2.50). The multiplicity
of the weight has to be two, because we have two distinct weights both at level 1 and 3 (so
if the multeplicity was 1 it would increase then decrease then increase again, contrary to the
general behaviour mentioned in Sec. 1.2.1. Also the lowest weight {—1,—1} = —(d1 + d)
is reached in different ways, but its multeplicity is 1, as it is symmetric with respect to the
unique highest weight.

Thus this representation contains 8 states, namely it has dimension 8. It is usually denoted
as 8. Notice that:

— this is the adjoint representation of As: indeed its set of weights coincides exactly with
the roots of As, plus two null weights corresponding to the two Cartan generators.

— It is a real representation (as it is always the case for the adjoint representation): for
each weight the opposite weight is also a weight of the representation.

Figure 1.4. The weight diagram of the adjoint representation 8 of As.

1.2.2 The Casimir operator in an irreducible representation

The quadratic casimir operator was defined in Eq. (1.2.17) as
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In the Cartan basis, the Killing metric has the form of Eq. (1.2.17). The Casimir operator....

1.2.2.1 Action of the step operators in an irreducible representation

1.2.2.2 The indez of a rapresentation



