
Chapter 1

LIE GROUPS

1.1 Introduction

In this Chapter we discuss general features of Lie Groups, and expecially their relation to the
corresponding Lie Algebras of infinitesimal generators.

Before plugging into a general analysis, it is convenient to discuss a preliminary simple
example that while being elementary to follow, introduces many of the main concepts and helps
establishing a concrete picture for the general theory. The example is the simplest instance of a
Lie group, namely the group of proper rotations in two dimensions, isomorphic to SO(2).

The composition of the rotations by two angles θ1 and θ2 corresponds to a rotation of the
angle θ1 + θ2:

R(θ2)R(θ1) ≡ R (ϕ(θ1, θ2)) = R(θ2 + θ1) , (1.1.1)

so that the map ϕ describing the product law is continuous and differentiable:

ϕ(θ1, θ2) = θ1 + θ2 . (1.1.2)

The proper rotations form thus an Abelian Lie group of dimension 1. We have one more important
property, namely that rotations of angles differeing by multiples of 2π are equivalent:

R(θ + 2π) = R(θ) . (1.1.3)

As a manifold, this group is the circle S1, a compact manifold.

The continuity and differentiability of the product law has a very profound consequence: the
elements of the group are determined (up to a global property, the periodicity in the parameter)
by the elements close to the identity, i.e. the infinitesimal transformations. Indeed, suppose
we want to determine how a rotation R(θ) depends on θ. We look at how R changes upon an
infinitesimal change of θ: we have

R(θ + dθ) ∼ R(θ) + dθ
dR(θ)

dθ
. (1.1.4)

In particular, for a transformation by an infinitesimal angle dθ, we have

R(dθ) ∼ R(0) + dθ
dR

dθ

∣∣∣∣
θ=0

≡ 1+ dθ J , (1.1.5)
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where we used the fact that in our parametrization θ = 0 corresponds to the dientity element,
and we introduced implicitely the definition of the infinitesimal generator J , which explicitely
reads

J ≡ dR

dθ

∣∣∣∣
θ=0

. (1.1.6)

By utilizing the explicit form Eq. (1.1.2) of the map ϕ, we can express the element R(θ + dθ) as
follows:

R(θ + dθ) = R (ϕ(dθ, θ)) = R(dθ)R(θ) = (1+ dθ J)R(θ) = R(θ) + dθJR(θ) . (1.1.7)

This is pictorially expressed in Fig. 1.1.
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Figure 1.1. The rotation R(θ + dθ) can be described also as the product R(dθ)R(θ).

Comparing this expression with the one obtained in Eq. (1.1.4) we find a differential equation,
accompanied by the initial condition R(0) = 1:

dR(θ)

dθ
= J R(θ)

R(0) = 1 . (1.1.8)

The unique solution to this equation is

R(θ) = eθ J , (1.1.9)

as can be verified utilizing the definition of the exponential of an operator as a power series.
When the rotations are realized as matrices of SO(2):

R(θ) =

(
cos θ sin θ
− sin θ cos θ

)
(1.1.10)

we have an explicit parametrization of the group elements. The above discussion tells us that
the knowledge of an infinitesimal rotation

R(dθ) =∼
(
1 dθ
−dθ 1

)
= 1+ dθ J , (1.1.11)

corresponding to the infinitesimal generator

J =

(
0 1
−1 0

)
, (1.1.12)
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would be sufficient to determine the generic transformation by exponentiation:

R(θ) = exp (θ J) = exp

[
θ

(
0 1
−1 0

)]
=

(
cos θ sin θ
− sin θ cos θ

)
. (1.1.13)

Let us notice that the rotation group can be regarded as a group of transformations acting
on its group manifold S1, parametrized by θ. Indeed, to every element of the group R(θ

′) is
associated a map

ϕθ′ : θ ∈ S1 7→ ϕ(θ′, θ) = (θ′ + θ) ∈ S1 , (1.1.14)

defined through the group composition law ϕ(θ1, θ2) defined in Eq. (1.1.2). Realizing the group
in this way, infinitesimal elements are transformations

ϕdθ : θ 7→ θ′ + dθ = (1+ dθJ )θ (1.1.15)

so that the generator J is realized by
J = ∂θ . (1.1.16)

1.2 Definition and basic types of Lie groups

As already stated in the introductory part of this course, section ??, Lie groups are first of all
continuous groups. For a continuous group G, the parameters that label the elements of the
group belong to a topological space, and the mapping φ : G × G → G such that ∀x, y ∈ G,
φ(x, y) = xy−1 induced on the parameter space by the group product is continuous. If the group
G is a Lie group, the parameter space is in addition a differentiable manifold, and the map φ
above is infinitely differentiable (i.e., is analytic) in both arguments.

Keep in mind the introductory examples of the SO(2) Lie group discussed in sec. 1.1.

1.2.1 Lie groups of transformations

Let us now discuss a class of Lie groups that is of the greatest importance.
In many instances (and basically in all the cases we are interested in in Physics), we encounter

Lie groups in the guise of groups of transformations (or, in particular, of linear transformations).
Consider a group G of transformations Tα acting on some space V (which we suppose to be a
n-dimensional manifold; in a local chart, let its coordinates be xi) and depending on a set of
continuous parameters αµ:

x ∈ V Tα7→ f(α, x) ∈ V , x ≡ xi (i = 1, . . . dimV ) , α ≡ αµ (µ = 1, . . . dimG) . (1.2.17)

We have already discussed groups of transformations: the product law is given by the composition
of transformations. As an exercise, write out explicitely the request posed by the group axioms
on the functions f i(xj , αµ). The composition of transformation defines a mapping ϕ : G×G→ G
which represents the continuous analogue of the multiplication table for finite groups. Indeed,
the composition

x
Tα7−→ f(α, x)

Tβ7−→ f (β, f(α, x)) (1.2.18)

corresponds to the action on x of a new group element Tϕ(α,β) ≡ TβTα:

x
Tα7−→ f(ϕ(α, β), x) . (1.2.19)



Definition and basic types of Lie groups 4

This defines (implicitely) the function ϕ(α, β), as by comparison with Eq. (1.2.18) we have
f(ϕ(α, β), x) = f (β, f(α, x)).

Groups of transformations are topological (Lie) groups if the parameters α form a topological
space (a manifold) G and the map ϕ(α, β) (as well as the map representing the inverse element)
is continuous (analytic) in both arguments.

Example An example of a Lie groups of transformations os the group C of conformal trasforma-
tions of the real axis, namely the group of transformations

Ta,b : x 7→ ax+ b , ∀x ∈ R , (1.2.20)

with a, b ∈ R, and a 6= 0 (why this last requirement?). Thus the group-manifold is parametrized
by (a, b) ∈ R

2 \ R (where R is the line a = 0). This group is a Lie group, as the composition of
the conformal transformations [Tc,d]

−1 and Ta,b gives rise on the parameters to the mapping

φ((a, b), (c, d)) = (a/c,−ad+ b) , (1.2.21)

which is continuous and has no poles since c cannot be zero. To check this, a convenient way is
to describe the transformations Eq. (1.2.20) by means of triangular matrices acting on vectors
(x, 1): (

x
1

)
Ta,b7−→

(
a b
0 1

)(
x
1

)
=

(
ax+ b
1

)
. (1.2.22)

In this way, the composition of transformations becomes a matrix product.

PSfrag replacements
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Figure 1.2. The (disconnected) group manifold of the real conformal group C.

1.2.1.1 Matrix Lie groups

Particular cases of transformation groups are the groups of linear transformations acting on some
vector space, namely the groups of matrices (if the space is finite-dimensional):

xi
M7−→M i

j x
j . (1.2.23)

Composition of transformations corresponds to the matrix product.
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Groups of matrices M(α) parametrized by a continuous set of parameters α and satisfying
the requirements of analiticity in both arguments of the composition law ϕ(α, β) defined by

M(α)M(β) =M (ϕ(α, β)) (1.2.24)

and of the mapping defined by taking the inverse are Lie groups, and are called1 Linear Lie
groups.

Notice that the linear transformation Eq. (1.2.23) can also be seen as the result of the
application of the differential operator on the space of the x coordinates

M =Mp
q x

q ∂

∂xp
. (1.2.25)

Indeed,

Mxi =Mp
q x

q ∂x
i

∂xp
=M i

q x
q , (1.2.26)

in accordance with Eq. (??). The operatorM is a linear combination, with coefficients M p
q, of

a basis of operators

J q
p = xq

∂

∂xp
. (1.2.27)

So, for groups of linear transformations on a space, we can use the language of differential
operators Eq. (1.2.25) or that of their matrix components, according to our taste and convenience.

Example Consider the matrix group GL(n,R). The n2 coordinates parametrizing the group
elements g can be taken simply as the entries gij of the matrix (the double index (ij) plays the
role of the index µ we generally use for coordinates αµ on the group manifold. The left translation
h 7→ gh of an element h by an element g is described explicitely by the matrix product:

hij 7→ ϕij(g, h) ≡
∑

k

gikhkj , (1.2.28)

This map clearly satisfies the requisites of continuity and differentiability.

1.2.2 Lie groups as transformation groups

Any Lie group G can be seen as a transformation group, the transformations acting on the group-
manifold G itself. Indeed, the product induces two set of mappings, the left and right translations
L,R : G×G→ G describing the transformations

Lg : h ∈ G 7→ Lg(h) = gh ;

Rg : h ∈ G 7→ Rg(h) = hg . (1.2.29)

These are two set of transformations acting on the points h ∈ G, and parametrized by the points
g ∈ G. In a coordinate chart for G (i.e., when an explicit parametrization is given for the group
elements) the left and right translations become explicit mappings. Denoting the coordinates of
a point h ∈ g in a given chart by αµ, µ = 1, . . . dimG and those of g by βµ, we write explicitely

αµ
Lg7−→ ϕµ(β, α) ,

αµ
Rg7−→ ϕµ(α, β) . (1.2.30)

1 In fact, the name of linear Lie group can be extended to all Lie groups G that possess at least one faithful
matrix representation (which is tha case for all groups of interest for us, in fact).
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1.3 Local properties: Lie groups and Lie algebras

The interplay between the topological and differential structure of Lie groups manifests itself in
a crucial property: to every Lie group G is associated a finite-dimensional Lie algebra G (with
dimG = dimG) which encodes all the local properties of the group itself. The correspondence is
not one-to-one: a single Lie algebra can correspond to several Lie groups, all locally isomorphic.
In this section we will explain and investigate this relation in detail.

1.3.1 The role of infinitesimal transformations: Lie’s theorems

1.3.1.1 Infinitesimal generators

Let us consider a Lie group G, and let us describe it as a group of transformations acting on he
manifold G itself, by means of the left or right translation maps. Let us consider the effect of the
(say) left translation of a group element h = h(α)by an element g = g(δβ) close to the identity2 .
We have, using the differentiability of the group map ϕ,

αµ → αµ + dαµ = ϕµ(δβ, α) = αµ +
∂ϕµ(η, α)

∂ην

∣∣∣∣
η=0

δβν . (1.3.31)

We can also write Eq. (1.3.31) as follows:

αµ + dαµ =

(
1+ δβν J̃ ρ

ν(α)
∂

∂αρ

)
αµ ≡

(
1+ δβνJ̃ν(α)

)
αµ . (1.3.32)

The differential operators J̃ν(α), of components

J̃ ρ
ν(α) =

∂ϕρ(η, α)

∂ην

∣∣∣∣
η=0

, (1.3.33)

are called infinitesimal left generators.
We can of course consider infinitesimal right translations, in which case we write

αµ + dαµ =

(
1+ δβν J ρ

ν(α)
∂

∂αρ

)
αµ ≡ (1+ δβνJν(α))αµ . (1.3.34)

The differential operators Jν(α), of components

J ρ
ν(α) =

∂ϕρ(α, η)

∂ην

∣∣∣∣
η=0

, (1.3.35)

(notice the difference w.r.t. Eq. (1.3.33) in the order of the arguments of the map ϕ) are obviously
called infinitesimal right generators.

Notice that, while it does not make any sense to sum two points of a manifold, by choosing
local coordinates it makes sense to write αµ + dαµ as we did in Eq. (1.3.31): we are actually
working in the tangent plane T{α}(G) at the point {α} to the manifold. The infinitesimal gen-
erators J̃ν are vector fields, thus in every point {α} they belong to the tangent plane T{α}(G).
They act as infinitesimal transformations of the coordinates, while the group elements act as

finite transformations. J̃ν is not a group element, but
(
1+ δβνJ̃ν

)
is, to first order in δβ. We

will discuss the properties of the vector fields J̃ν in later Sec. 1.3.2
2 In this discussion, we are assuming that coordinates β = 0 parametrize the identity of the group, so that
elements with small cordinates correspond to group multiplications whose effect is close to the identity.
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Example The introductory example of the group SO(2), described in sec. 1.1, fits prefectly in
the above discussion. From the composition map ϕ(θ, θ′) defined in Eq. (1.1.2) it follows that
the infinitesimal generator is given by

J (θ) = ∂ϕ(θ, η)

∂η

∣∣∣∣
η=0

∂

∂θ
=

∂

∂θ
, (1.3.36)

in agreement with Eq. (1.1.16). The group is abelian, so there is no distinction between left and
right infinitesimal generators.

Explicit realizations of infinitesimal generators We could repeat the above discussion using other
explicit realizations of the group G, for instance as a group of transformations or as a matrix
group. An element g(δβ) close to the identity can be written as

g(δβ) = e+ δβν Jν , (1.3.37)

where the infinitesimal generators Jν are defined as

Jν ≡
∂g(η)

∂ην

∣∣∣∣
η=0

. (1.3.38)

Notice that an expression like e+δβν Jν has no direct meaning at the group level (the + is not the
group operation), but only on its suitably defined tangent space, where the addition makes sense.
For instance, in case of matrices the addition is the natural matrix addition; for transformations
acting on some target space, one can add locally add the result of transformations in the tangent
to the target space. Jν acts in the same way as a group element, e.g. by matrix multiplication
or as a transformation on some target space; however, Jν does not belong to the group, only
e+ δβνJν does, to first order in δβ.

Examples

• Consider again the introductory example of the group SO(2) in sec.1.1. When the group
element are explicitely realized as 2 × 2 special orthogonal matrices R(θ), parametrized by
an angle θ ∈ [0, 2π], as in Eq. (1.1.11), the infinitesimal generator is the matrix

J =
∂R(θ)

∂θ

∣∣∣∣
θ=0

=

(
0 1
−1 0

)
. (1.3.39)

The generator J is not a special orthogonal matrix (it is antisymmetric), but the matrix
1+ δθJ is special orthogonal, to first order in δθ: indeed,

(1+ δθJ)T (1+ δθJ) = (1− δθJ)(1+ δθJ) ∼ 1+O(δθ2) . (1.3.40)

• Consider the matrix group GL(n,R), and take the entries gij of a matrix g ∈ GL(n,R) as
its coordinates. The infinitesimal generators

Jij =
∂g

∂gij

∣∣∣∣
gij=0

(1.3.41)

are matrices whose single non-zero entry is a 1 in the i-th row and j-h column:

(Jij)kl = δikδjl . (1.3.42)

Notice that Jij 6∈ GL(n,R), as det Jij = 0; however, 1+ δgijJij ∈ GL(n,R), as its determi-
nant is close to 1 (and thus non-zero).
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1.3.1.2 First Lie theorem

Let us consider the expression in coordinates of the left translation by an element g = g(β) of
coordinates {βµ} of an element h = h(α) of coordinates {αµ}:

αµ
Lg−→ ϕµ(β, α) . (1.3.43)

Consider now the effect of a small variation of β, i.e. of the element by which h(α) is multiplied
on the left: β → β + dβ. The situation is depicted in Fig. 1.1, and is the generalization of that
described in the introduction to this Chapter for the group SO(2), see Fig. 1.3.

PSfrag replacements

G
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β

γµ

δβ

β + dβ

γµ + dγµ

Figure 1.3. Effect of a small variation of the element β by which the element α is left-translated.

The resulting element undergoes a small change (due to the continuity properties of the
group multiplication map ϕ)

γµ + dγµ ≡ ϕµ(β + dβ, α) . (1.3.44)

On the other hand, the result can be interpreted as the translation of γ by a smallelement δβ,
and is therefore determined by the generators of infinitesimal left translations, see Eq. (1.3.32):

γµ + dγµ = ϕµ (δβ, γ = ϕ(β, α)) = γµ +
∂ϕµ(β, α)

∂βν

∣∣∣∣
β=0

δβν = γµ + J̃ µ
νδβ

ν . (1.3.45)

Because of the associativity of the group law, the element β + dβ corresponds to the com-
position of the multiplication by β and δβ:

βµ + dβµ = ϕµ (δβ, β) = βµ +
∂ϕµ(η, α)

∂ην

∣∣∣∣
η=0

δβν = βµ + J̃ µ
ν(β)δβ

ν , (1.3.46)

so that
dβµ = J̃ µ

ν(β)δβ
ν . (1.3.47)

Due to the group properties, the matrix J̃ µ
ν generating infinitesimal transformations is invertible

in every point; by comparing Eq. (1.3.45), Eq. (??) and Eq. (1.3.47) we can write

dγµ = J̃ µ
ν(γ)(J̃ −1)νρ(β)dβ

ρ . (1.3.48)
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Thus, we have obtained a set of first-order differential equations for the functions

γµ ≡ ϕµ(β, α) , (1.3.49)

namely

dγµ

dβρ
= J̃ µ

ν(γ)(J̃ −1)νρ(β) . (1.3.50)

If the integration of the above equation is possible, it yields the explicit expression of the map
ϕ(β, α) for generic finite values of β, i.e., the effect of a generic left translation Lg on any
fixed element h(α) from the knowledge of the infinitesimal group actions only, encoded in the

infinitesimal generators J̃ µ
ν . As it is clear from the derivation, this may happen because of

the interplay between the continuity and differentiability properties of the map ϕ and its group
properties (associativity, invertibility). Thus, it is specific of Lie groups. This powerful statement
goes under the name of Lie’s first theorem

It is obvious that we could have repeated the same discussion considering the right transla-
tions of an element h(α) by an element g(β) and the effect of the result of a small change in β
(do it for exercise). We would have obtained a set of differential equations for the functions

γµ ≡ ϕµ(α, β) (1.3.51)

(notice the difference w.r.t. Eq. (1.3.49) in the order of the arguments of the map ϕ), namely

dγµ

dβρ
= J µ

ν(γ)(J −1)νρ(β) , (1.3.52)

containing the generators of infinitesimal right translations.

1.3.1.3 Lie’s second theorem

Let us now consider the integrability conditions for the differential equations Eq. (1.3.50):

∂2γµ

∂βρ∂βσ
− (ρ↔ σ) = 0 , ∀ρ, σ . (1.3.53)

By explicit computation (exercise, or see appendix?) it turns out that, in order for Eq. (1.3.53)
to old, all the quantities

c γ
αβ (β) ≡ (J̃−1)γσ(β)

(
∂J̃ σ

α(β)

∂βρ
J̃ ρ

β(β)−
∂J̃ σ

β(β)

∂βρ
J̃ ρ

α(β)

)
(1.3.54)

have to be constant, i.e., they should not depend on β.

These quantities will turn out to be the structure constants of the Lie algebra associated to
the Lie group in question.

The two Lie’s theorem described above can be recast in a even more geometrical by focusing
on the properties of a class of vector fields on the group manifold, the invariant vector fields that,
ss we will see, correspond to the generators of infinitesimal group translations.
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1.3.2 Invariant vector fields on the group manifold

We can take advantage of the double nature of a Lie group G, which is a manifold and a group,
by singling out, among the vector fields defined on it, a special class of vector fields which are
invariant with rispect to the group action. The very definition of such invariant v.f. turns out
to be equivalent to Lie’s first theorem. On every manifold, the vector fields form are naturally
endowed with the algebric structure of Lie algebra (which we will soon define). It is immediate
to show that the invariant v.f. close a Lie algebra which is finite-dimensional. This algebra is the
Lie algebra G associated to the Lie group G. So, the discussion of invariant vector fields provides
a very general and direct path from the Lie group to its Lie algebra. As we will see, it also paves
the way to the reverse process of reconstructing the (local behaviour of) the Lie group from its
Lie algebra.

Let us now recall briefly the tranformation properties of vector fields on a manifold (see
Appendix ?? for the main definitions about vector fields on a manifold).

Induced mappings of vector fields Consider a mapping3

φ :
M→M ,
x 7→ x′ ≡ φ(x) .

(1.3.55)

Such a mapping induces a mapping on the space of vector fields Diff0(M) which is sometimes
indicated as dφ, and called differential of the map φ:

dφ :
Diff0(M)→ Diff0(M) ,
X 7→ X ′ ≡ dφ(X) .

(1.3.56)

The map dφ is defined by the requirement that X ′(x′) = X(x), i.e., that the transformed vector
field at the transformed point equals the original field at x. Thus the transformation of the
components of the vector field involve the Jacobian matrix:

X ′µ(x′)
∂

∂x′µ
= Xµ(x)

∂

∂xsµ
⇒ X ′µ(x′) =

∂x′µ

∂xν
Xν(x) . (1.3.57)

Left- and right-invariant vector fields The group structure of G provides a natural way to single
out two subset of vector fields, the left-invariant and right-invariant vector fields. Indeed, ∀g ∈ G,
the left- and right- translations Lg and Rg of Eqs. 1.2.29 and 1.3.79 induce an action on the
vector fields. For instance, for left translations the induced action

X 7−→ XLg ≡ dLg(X) (1.3.58)

reads explicitely in components, according to Eq. (1.3.57),

Xµ
Lg
(ϕ(β, α)) =

∂ϕµ(β, α)

∂αν
Xν (α) . (1.3.59)

An analogous expression holds, of course, for the right translations.

3 Considering the transformation x → x′ as a mapping is an “active” point of view. One could take a passive
point of view in which the transformation is considered to be a coordinate change. In this prespective, the induced
mapping describes the transition properties of the vector fields between different coordinate charts.
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We define left-invariant (right-invariant) vector fields XL(R) as vector fields which are in-
variant in form under the action induced by left (right) translations:

dLg(XL) = XL , dRg(XR) = XR , ∀g ∈ G . (1.3.60)

A left- (right-)invariant vector field is thus characterized as follows (in an explicit chart):

Xµ
L (ϕ

µ(β, α)) =
∂ϕµ(β, α)

∂αν
Xν
L(α) ,

Xµ
R (ϕ

µ(α, β)) =
∂ϕµ(α, β)

∂αν
Xν
R(α) , (1.3.61)

where αµ and βµ are the coordinates of any h, g ∈ G.

Examples

• Consider the group (R,+). The single coordinate parametrizing the group is the element
x ∈ R itself. The left translation by an element a ∈ R acts by x 7→ x + a (and coincides
obviously with the right translation). The single component X(x) of an invariant vector field
must satisfy Eq. (1.3.146), which in this case reads

XL(a+ x) =
∂(a+ x)

∂x
X(x) = X(x) , (1.3.62)

implying that XL(x) has to be a constant. The set of left-invariant vector fields

XL = k
∂

∂x
(k a real constant) (1.3.63)

is thus a vector space of dimension 1 (and no longer infinite-dimensional as the space diff(R)
of all vector fields: the functional dependence of X(x) has been fixed by Eq. (1.3.148). The
basis element (or generator) of this vector space is simply J = ∂/∂x. The story is exactly
identical for right translations, as the group is abelian.

• Consider R
+ with the multiplication as group product. The group is abelian, so again left-

or right-invariant vector fields coincide. The “translation” by an element a ∈ R
+ acts on a

point x ∈ R
+ by x 7→ ax, and the signle component of an invariant vector field must satisfy

XL(ax) =
∂(ax)

∂x
X(x) = aX(x) , (1.3.64)

namely XL(x) is homogeneous of degree 1. The set of left-invariant vector fields

XL = k x
∂

∂x
(k a real constant) (1.3.65)

is a vector space of dimension 1, spanned by the generator J = x ∂/∂x.
• Consider the matrix group GL(n,R), parametrized by the entries gij of its elements. The

group map ϕij(g, h) has been given in Eq. (1.3.65). Correspondingly, the components of
left-invariant vector fields satisfy therefore the relation

Xij
L (gh) =

∂
∑

k(gikhkj)

∂hlm
X lm
L (h) =

∑

k

gikX
kj
L = (gXL)

ij , (1.3.66)

namely, the value of the vector field at a translated point is obtained simply by the matrix ac-
tion gX of the group element on the vector field. Eq. (1.3.66) generalizes the uni-dimensional
case of Eq. (1.3.147)
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The invariant vector fields and the tangent space to the identity The vector spaces of both left-
and right-invariant vector fields are isomorphic to the tangent space Te(G) to the origin of the
group-manifold. Indeed, the condition of left- (or right-)invariance, Eqs. (1.3.147,1.3.148), allows
to associate a left- (or right-)invariant vector field to a tangent vector in a specific point (for
instance, the identity): in components,

Xµ
L (β) =

∂ϕµ(β, α)

∂αν

∣∣∣∣
α=α0

Xν
L(α0) = J µ

ν(β)X
ν
L(α0) ;

Xµ
R (β) =

∂ϕµ(α, β)

∂αν

∣∣∣∣
α=α0

Xν
R(α0) = J̃ µ

ν(β)X
ν
R(α0) , (1.3.67)

where αµ0 are the coordinates of the identity element and we use the notation introduced in
Eq. (??) and Eq. (??). The constants Xν

L,R(α0) are the components of a tangent vector to the
identity. Eq. (1.3.67) establishes a bijective correspondence between the the tangent space to
the identity and the space of left- or right-invariant vector fields, thanks to the properties of
differentiablilty and invertibility of the function ϕ(β, α) describing the group product.

PSfrag replacements

e

h
Lh

V0

V (h)
G

Te(G)

Th(G)

Figure 1.4. Given any tangent vector at the identity V0, the globally defined, differentiable, invertible

map provided by the group composition law allows to associate uniquely a tangent vector in any point

h ∈ G, i.e., allows to define a vector field V .

We can obviously look at the correspondence between Te(G) and the invariant vector fields
the other way round. On a manifold G which is also a Lie group, take any tangent vector
V0 = vµ ∂

∂αµ in a fixed point, e.g., the identity (this point corresponds to the origin of the
coordinate system {αµ}). We can associate to V0 a globally defined and everywhere non-vanishing
vector field V by defining its components in every point via the derivatives of the group map
ϕ(β, α):

V µ(β) = vν
∂ϕµ(β, α)

∂αν

∣∣∣∣
α=0

= vνJ µ
ν(β) . (1.3.68)

That is, we define a vector field V at the point h(β) via the differential of the left translation
map Lh : e→ h, i.e. we set

V (h) ≡ dLh(V (0)) . (1.3.69)

The vector field V (h) defined in this way is left-invariant by construction, as it is clear by consid-
ering Eq. (1.3.145) and Eq. (1.3.147). It the very existence of the globally defined, differentiable
and invertible left translation map Lh : g 7→ hg, i.e. αµ 7→ ϕµ(β, α) that allows to associate
to every tangent vector to the identity a vector field. Of course, we could repeat the discussion
associating to every tangent vector a right-invariant vector field.
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We can reformulate this correspondence in language that will be useful later on. Let us first
recall the meaning of a tangent vector v in point p of a manifold (see the section on manifolds,
sec. ?? of Chapter ?? for a more detailed review).

The tangent vector identifies the initial direction of a class of curves through the point p.
Let such a curve σ(t) be parametrized so that σ(0) = p. Then, for any function f locally defined
at p on the manifold, we can consider its derivative along the curve and view it as the result of
acting with a first-order differential operator v on the function f :

d

dt
[f (σ(t))]

∣∣∣∣
t=0

≡ v[f ](p) . (1.3.70)

In an explicit coordinate chart{αµ} (with αµ0 being, in particular, the coordinates of the point p
and σµ(t) the coordinate expression of the curve σ(t)) we have from Eq. (1.3.70)

v = vµ
∂

∂αµ
, vµ =

dσµ(t)

dt

∣∣∣∣
t=0

. (1.3.71)

For any tangent vector v at the identity point of G, we have, according to Eq. (1.3.70),

v[f ](e) =
d

dt
[f (σ(t))]

∣∣∣∣
t=0

, (1.3.72)

where the curve σ(t), such that σ(0) = e, has its initial direction specified by v according to
Eq. (1.3.71). Statting from v we can define a left-invariant vector field VL giving its value at any
point g ∈ G as follows:

VL[f ](g) =
d

dt
[f (gσ(t))]

∣∣∣∣
t=0

, (1.3.73)

where gσ(t) is the group product of g and σ(t). Indeed, let {βµ} be the coordinates of g, and
σµ(t) those of σ(t). The l.h.s. of the definition Eq. (1.3.73) reads then

V µ
L

∂f

∂βµ
(β) , (1.3.74)

while the r.h.s. is explicited as follows (ϕ being, as usual, the group product map):

∂f

∂ϕµ(β, σ(0))

∂ϕµ(β, σ(t))

∂σν(t)

∣∣∣∣
t=0

dσµ(t)

dt

∣∣∣∣
t=0

=
∂f

∂βµ
∂ϕµ(β, σ)

∂σν

∣∣∣∣
σ=0

vν , (1.3.75)

where in the second step we used Eq. (1.3.71) and the fact that the coordinates of the identity
element σ(0) = e are chosen to be zero. Equating the two sides, Eq. (1.3.74) and Eq. (1.3.75),
we desume the expression of the components of the l.i.v.f. VL at the point g(β):

V µ
L (β) =

∂ϕµ(β, σ)

∂σν

∣∣∣∣
σ=0

vν = J µ
ν(β)v

ν , (1.3.76)

in perfect agreement with Eq. (1.3.68).
Similarly we can define the right-invariant vector field VR:

VR[f ](g) =
d

dt
[f (σ(t)g)]

∣∣∣∣
t=0

. (1.3.77)
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Example

• Consider again GL(n,R), parametrized by the entries gij of its elements. We described the
condition of left-invariance for vector fields on GL(n,R) in Eq. (1.3.66). It follows from that
property that, if V0 (of components v

ij) is a tangent vector to the identity, the corresponding
left-invariant vector fields reads

XL,V0
(g) = (gv)ij

∂

∂gij
. (1.3.78)

Invariant vector fields and infinitesimal generators The spaces of left- or right-invariant vector
fields is therefore a vector space of finite dimension dimG, isomorphic to Te(G). A natural

basis of generators for this vector space is given by the invariant vector fields Jλ (J̃λ) associated
via Eq. (1.3.67) to the natural basis elements of Te(G), namely the derivatives ∂/∂β

λ
∣∣
β=β0

of

components δµλ :

Jλ(β) = J µ
λ (β)

∂

∂βµ
,

J̃λ(β) = J̃ µ
λ (β)

∂

∂βµ
. (1.3.79)

The Lie group G, admits thus at least dimG globally defined vector fields. J̃ν . While in
a neighbourhood of a point of a manifold the space of vector fields is infinite-dimensional, the
requirement of being globally defined is often so restrictive that no vector field obeys it. For
instance, as well known, no vector field exists on the two-sphere S2, as you cannot comb a tennis
ball :-) ; A vector fields exists instead on the circle S1, as it is easy to visualize. In this respect,
group manifolds are particular; for instance, S2 cannot be a group manifold (while S1 is the group
manifold of SO(2)).

Eq. (1.3.79) states that the natural basis for the space of left-invariant vector fields is pro-
vided by the generators of ininitesimal right translations Jλ. Analogously, the natural basis
for the space of right-invariant vector fields is provided by the generators of ininitesimal left
translations J̃λ. This relation can be understood as indicated schematically in Fig. 1.5.PSfrag replacements

e

δg

h

hδg

(Lh)
−1

LhJ

dLh(J ) G

Figure 1.5. The effect of a small right translation of an element h is described via the effect on tangent

vectors induced by the left mapping of h to the identity.

As we already discussed, the coordinate change dα of an element h(α) of the group under the
(say) right action of an element δg(δβ) close to the identity correspond to the action of a vector in
the tangent space Th(G). In turn, this change is determined, because of the group composition,
by the action of δg(δβ) at the identity, which corresponds simply to a tangent vector in Te(G) of
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components δβν . This is effected by mapping h to e with a left translation. The tangent vectors
are then related by the differential of this group translation.

Invariant vector fields and Lie’s first theorem Consider the invariance property of vector fields,
Eq. (1.3.146), in the case of the basis Eq. (1.3.79): for instance, for the components of left-
invariant v.f. we have

J̃ µ
λ(γ = ϕ(β, α)) =

∂ϕµ(β, α)

∂βν
J̃ ν

λ(β) . (1.3.80)

We can rewrite this relation as follows:

∂ϕµ(β, α)

∂βν
=
∂γµ

∂βν
= J̃ µ

λ(γ)(J̃ −1)µλ(β) . (1.3.81)

This is precisely the statement of Lie’s first theorem, Eq. (1.3.50).

1.3.3 Integral curves of invariant vector fields and one-parameter subgroups

We have emphasized in the introduction to this Chapter, and in the discussion of the first Lie
theorem, sec. 1.3.1.2 the following extremely important point. The fact that Lie groups are at
the same time e groups and manifolds, i.e. that the group composition map ϕ(β, α) is continuous,
differentiable (and invertible) in both arguments, allows to derive the expression of finite group
transformations from the generators of infinitesimal transformations.

1.3.3.1 The exponential map

In the introduction to this Chapter we saw how the differentiability of the product law of the group
SO(2) leads to a differential equation, Eq. (??), whose solution expresses the finite transformation
R(θ) as the exponential of the infinitesimal generator J , as in Eq. (1.1.8):

R(θ) = eθ J . (1.3.82)

The exponential expression of the finite transformation basically comes from the fact that, be-
cause, of the group property, a finite group element can be obtained by repeated products of an
element close to the identity (see Fig. 1.6):

lim
n→∞

(
1 +

θ

n
J

)n
(1.3.83)PSfrag replacements

θ = 0 θ

θ
N1

2

3

N − 1

N

Figure 1.6. The effect of a small right translation of an element h is described via the effect on tangent

vectors induced by the left mapping of h to the identity.
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The exponential expression Eq. (1.3.82) of finite group elements generalizes to any matrix
group. In fact, consider the endomorphisms End(V ) of a vector spaceV , which in a basis are
matrices of dimension dimV . Within End(V ) is well defined, via series expansion, the exponential
map

m 7→M = exp(m) =

∞∑

k=0

1

k!
mk . (1.3.84)

This map maps in a differentiable way a neighbourhood of the zero matrix m = 0 to a neighbour-
hood of the identity matrix M = 1. For matrices M in a suitable neighbourhood of the identity
the map is also invertible.

Properties of the matrix exponential The matrix exponential map enjoys many properties of the
usual exponential function, with some important differences due to the non-commutative nature
of the matrices. For instance, with m,n square matrices, one has

exp(m) exp(n) = exp(m+ n) ⇔ [m,n] = 0 , (1.3.85)

i.e. only if the two matrices commute. Otherwise, Eq. (1.3.85) generalizes to the so-called
Campbell-Hausdorff formula

exp(m) exp(n) = exp

(
m+ n+

1

2
[m,n] +

1

12
([m, [m,n]] + [[m,n] , n]) + . . .

)
. (1.3.86)

Deduce directly the first terms in the expansion above. A property which is immediate to show
(check it) is that

exp(U−1mU) = U−1 exp(m)U . (1.3.87)

A very useful property of the determinants is the following:

det (exp(m)) = exp (trm) , (1.3.88)

or equivalently, by taking the logarithm (which for matrices is defined via a formal power series)

detM = exp (tr(lnM)) . (1.3.89)

These relations can be proven easily for a diagonalizable matrix; indeed, determinant and trace
are invariant under change of basis, so we can think of having diagonalized M . If λi are the
eigenvalues of M , we have then

detM =
∏

i

λi = exp
(∑

i

lnλi
)
= exp (tr(lnM)) . (1.3.90)

The result can then be extended to generic matrices as it can be argued that every matrix can
be approximated to any chosen accuracy by diagonalizable matrices.

From infinitesimal generators to group elements We have already remarked that, for matrix
groups, the tangent space to the identity (i.e., to the matrix 1), is again given by the set of
matrices, forming a vector space w.r.t. to the addition of matrices. So it makes sense to write an
element close to the identity as 1+ δβJ , with δβ small. The infinitesimal generator J , belonging
to the tangent plane in 1, is a matrix constrained only by the fact that 1+ δβJ must belong to
the matrix group in question, to first order in δβ (for instance, be special orthogonal).
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Thus, for any matrix group, the matrix exponential realizes a map from the tangent plane
to the identiy, i.e. the space of infinitesimal generators, to a suitable part of the entire group,
the part “sufficiently close“ to the identity (we will discuss later the meaning of this remark). To
any infinitesimal generator J we can in fact associate, via the exponential map, a one-parameter
subgroup of matrices

M(β) = exp(β J) . (1.3.91)

with the simple composition law

M(α)M(β) =M(α+ β) . (1.3.92)

A generic element of the group (in the region connected to the identity) can be written as

g(β) = exp(βνJν) , (1.3.93)

where {Jν} is a basis of dimG infinitesimal generators. The parameters βν can be taken as
coordinates on the group manifold; this is often a convenient choice. Notice that the group
product of elements writen in the exponential parametrization Eq. (1.3.93) is determined, via the
Campbell-Hausdorff formula Eq. (1.3.86), by the commutators

[Jµ, Jν ] . (1.3.94)

The infinitesimal generators form, rispect to the commutation, a Lie algebra, as we will discuss at
length. Thus, the exponential parametrization of the group elements relates the group structure
to the structure of the Lie algebra of its generators.

From infinitesimal transformations to finite ones The exponential map that we just discussed
for matrices generalizes also to operators on infinite-dimensional spaces. Thus we can always
use an exponential parametrization when the Lie group G is a group of transformations. For
instance, consider the group (R,+) seen as a group of transformations acting on R itself: the
element a ∈ R acts by x 7→ x+a, for every x ∈ R. The infinitesimal translations are generated, on
any function f(x), by the invariant vector field J = ∂x, see Eq. (1.3.147). The finite translation
by a, i.e. the finite group element, are effected on the functions by exp(−a∂x)4. Indeed, we have

exp

(
−a d

dx

)
f(x) =

(
1− a d

dx
+
a2

2

d2

dx2
− . . .

)
f(x) = f(x)− a df

dx
+
a2

2

d2f

dx2
− . . . = f(x− a) .

(1.3.95)
We have seen in sec. 1.2.2 that every Lie group G can be seen as a transformation group

over the group manifold G itself; we have discussed how the infinitesimal generators of the group
are given, in this framework, by the invariant vector fields. We will now discuss in this geometric
framework, which is applicable to any Lie group, how the finite transformations can be recovered
from the expression of the infinitesimal generators.

1.3.3.2 Vector fields and fluxes

We recalled in previous section 1.3.2 the definition of tangent vectors as specifying the directional
derivative of functions in the initial direction of a curve σ(t), see Eq.s (1.3.70,1.3.70).

4 As we discussed in sec ??, given a group of transformations on a target spaceof coordinates x, the group
induces an action on the space of functions ψ(x), defined by the requirement that the transformed function in the
transformed point (x+ a in our case) equals the original function in the point x, namely, that ψ′(x) = ψ(x− a).
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Generalizing this definition, a vector field V represents in each point the tangent of a flux
line, a.k.a. as an integral curve of the vector field (think of fluido-dynamics or electro-magnetism).
The ensemble of the flux lines of a vector field is simply called the flux of the vector field. The
flux σ(t, p0) is a family of curves parametrized by t, passing through the point p0 at t = 0,
whose tangent is, in any point, representend by the value of V at that point. See Fig. 1.7 for a

PSfrag replacements
t = 0

p0

σ(t, p0)

Figure 1.7. The integral curves σ(t, p0) form the flux of a vector field.

graphicalexample. Namely, for any function f , we have

d

dt
[f (σ(t, p0))] = V [f ] (σ(t, p0)) ,

σ(0, p0) = p0 . (1.3.96)

In coordinates, this means

dσµ(t, p0)

dt
= V µ (σ(t, p0)) ,

σµ(0, p0) = αµ(p0) . (1.3.97)

Thus, σµ(t, p0) s given by the unique solution of the system Eq. (1.3.97) of ODE with specified
initial conditions.

For a given p0, σ(t, p0) is an integral curve through p0. We can also view σ(t, p0) as defining
a set of transformations σt, parametrized by t, acting on the manifold:

σt : p0 7→ σt(p0) = σ(t, p0) . (1.3.98)

These transformation form an abelian one-dimensional group w.r.t. to the composition of trans-
formations. Indeed we have

σ (t′, σ(t, p0)) = σ(t+ t′, p0) , (1.3.99)

which means that the group law is simply

σt′ · σt = σt+t′ . (1.3.100)

The inverse is clearly given by (σt)
−1 = σ−t, the identity by σ0. So, we have a group of transfor-

mations locally isomorphic to (R,+).



Local properties: Lie groups and Lie algebras 19

Exponential map and one-parameter subgroups of a Lie group On a group manifold G, to every
tangent vector to the identity v, i.e., to every infinitesimal generator, we can associate a left-
invariant (or a right-invariant) vector field VL (or VR), via Eq. (1.3.73) (or Eq. (1.3.77)), and
therefore a one-parameter group of transformations {σt}. These transformations map a group
element h to a new element σt(h). We can view these transformations as a one-parameter
subgroup of G itself by interpreting σt(h) as specifying the left (or right) translation of h by a
group element σ̂(t):

σt(h)↔ Lσ̂(t)h = σ̂(t)h , (1.3.101)

or σt(h) = Rσ̂(t)h = hσ̂(t). In other words, we have

σµ(t, h) = ϕµ(σ̂(t), h) = ϕµ(σ(t, e), α) , (1.3.102)

in terms of the group composition map ϕ, where we also noted that for the group element σ̂(t)
we have simply

σ̂(t)↔ σt(e) , (1.3.103)

so that the its coordinates are simply given by σµ(t, e).
The action of the finite transformations σt on each point h = h(α) of the group manifold are

determined by the infinitesimal transformations generated by the left- (or right-)invariant vector
field VL (or VR) of which σ(t, h) represents the flux. They can be given an explicit expression via
the operatorial exponential map:

σt = e
t VL , (1.3.104)

or σt = exp(t VR). When acting on a point h(α), the vector field VL is of course evaluated at
that point:

σµ(t, h(α)) = (exp(tVL(α))α)
µ
. (1.3.105)

Indeed, let us show that the flux σ(t, h) defined by Eq. (1.3.104) is really the flux of the
invariant vector field VL. We have from Eq. (1.3.105)

dσµ(t, α)

dt
= (VL(α) exp(tVL(α))α)

µ
= V ν

L (α)
∂

∂αν
σµ(t, α)

= V ν
L (α)

∂ϕµ(σ(t, e), α)

∂αν
= V µ

L (ϕ(σ(t, e), α)) = V µ
L (σ

µ(t, α)) . (1.3.106)

In the second line we used Eq. (1.3.102) and the definition of left-invariant vector field, Eq. (1.3.68).

Exponential parametrization It follows from the above discussion that a possible (and often
convenient) parametrization of a Lie group is obtained expressing every element (connected to
the identity, as we will see) as the exponential of a suitable infinitesiaml generator, i.e., of a
suitable linear combination of the infinitesimal generators Jλ, see Eq. (1.3.79):

h(α) = eα
λ Jλ , (1.3.107)

and using the parameters αλ themselves as coordinates on the group manifold. In Eq. (1.3.107)
we are viewing the finite group elements as finite right translations; of course, using the expo-
nentials of the J̃λ right-invariant vector fields we could write them as finite left translations. It
is always possible to express group elements as left- or right- translations, see sec. 1.2.2. Thus,
Eq. (1.3.107) has a general validity as it applies to any Lie group. More that this, the exponential
parametrization of finite group elements in terms of the infinitesimal generators applies to any
explicit realization of the Lie group elements. We have already seen this in the case of matrix
Lie groups in Eq. (1.3.93).
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Group product law from infinitesimal generators The product of two group elements seen as
transformations on the group manifold consists in the composition of the two transformations.
The parametrization Eq. (1.3.107) realizes them as exponentials of differential operators. The
exponential map of differential operators, see e.g. Eq. (??), enjoys the same properties as the
exponential map for matrices. In particular, the product of two exponentials is given by the
Campbell-Hausdorff formula Eq. (1.3.86). We see therefore that the group product law is de-
termined, upon use of the Campbell-Hausdorff formula, by the commutators of the infinitesimal
generators, i.e. by the commutators of the invariant vector fields

[Jλ,Jρ] =
[
J (α)σλ

∂

∂ασ
,J τ

ρ(α)
∂

∂ατ

]
(1.3.108)

As we will discuss in detail later, the space of invariant vector fields endowed with the commutator
forms an algebric structure called a Lie algebra. Thus, the group structure of a Lie group is etirely
determined, via the exponential map, from the Lie algebra of its infinitesimal generators.

Let us now side-track for a while and describe what a Lie algebra is, before discussing in
detail the Lie algebra of invariant vector fields.

1.3.4 Lie algebras

A Lie algebra G is first of all a vector space over R (if G as a vector space is taken over C we talk
of a complexified or complex Lie algebra); let the group operation in G be denoted as +. There
is an additional operation5 [ , ] : G×G → G, called the Lie product or Lie bracket :

∀x, y ∈ G , x, y 7→ [x, y] . (1.3.109)

The Lie product satisfies the following properties.

i) Linearity:
[x, αy + βz] = α [x, y] + β [x, z] , (1.3.110)

where α, β ∈ R (or C for complexified Lie algebras).
ii) Antisymmetry:

[x, y] = − [y, x] . (1.3.111)

iii) Jacobi identity:
[x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0 . (1.3.112)

Notice that i) and ii) imply the linearity also in the first argument and that the Lie product
is not associative. Indeed we have [x, [y, z]] 6= [[x, y] , z], as from the Jacobi identity we get
[x, [y, z]]− [[x, y] , z] = − [y, [z, x]], which is generically non-zero.

The dimension of G as a vector space is also called the dimension or order of the Lie algebra,
and denoted as dimG.

Fixing a basis {ti} of vectors, on which every element of G can be expanded: x = xiti, the
Lie product structure of G is encoded in a set of (dimG)3 constants c k

ij , called the structure
constants of the algebra:

[ti, tj ] = c k
ij tk . (1.3.113)

The basis vectors ti are called the generators of the Lie algebra.

5 The Lie product should not be automatically thought of as a commutator constructed with some other product;
we could have used any other symbol to denote it. In many important cases, though, as we will discuss, the Lie
bracket will indeed be a commutator.
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As a consequence of the properties of the Lie product, the structure constants obey the
following relations.

i) Antisimmetry:

c k
ij = −c k

ji . (1.3.114)

ii) Jacobi identity:

c s
imc

m
jk + c s

jmc
m

ki + c s
kmc

m
ij = 0 . (1.3.115)

Of course, the explicit set of structure constants for a given Lie algebra is unique only up to the
effect of changes of basis. Under a change of basis

ti 7→ t′i = S j
i tj , (1.3.116)

the structure constants change tensorially:

c′ k
ij = S m

i S n
j c

p
mn

(
S−1

) k
p
. (1.3.117)

For instance, the structure constants change sign if we change of sign all the generators (i.e. we
set S j

i = −δ
j
i ). So Lie algebras with opposite structure constants are isomorphic.

For the Lie algebras we can introduce important concepts related to the various ways in
which a Lie algebra, abstractly defined by the Lie product “multiplication table”, i.e. by the
structure constants, can be realized concretely, in parallel with what we did for groups in the
previous Chapter.

Homomorphism Two Lie algebras G and K are homomorphic if there exists an homomorphism
between the two, namely a map φ : G → K that preserves the Lie product:

[φ(x), φ(y)] = φ ([x, y]) . (1.3.118)

Representation A Lie algebra can be realized by a set of square matrices (forming a vector
space), the Lie product being defined as the commutator in the matrix sense. If a Lie algebra G is
homomorphic to some matrix Lie algebra D(G), then D(G) is said to give a matrix representation
of G.

Isomorphism Two Lie algebras between which there exists an invertible homomorphism, i.e.,
an isomorphism, are said to be isomorphic. They correspond to two different realizations of the
same abstract Lie algebra. An isomorphism of G into some matrix Lie algebra D(G) is called a
faithful representation.

Adjoint representation We have seen that, given a Lie algebra G, we can associate to it a set
of structure constants (unique only up to changes of basis). The converse is also true. Indeed,
given a set of n3 constants c k

ij , the conditions Eq. (1.3.114) and Eq. (1.3.115) are necessary and

sufficient for the set of c k
ij to be the structure constant of a Lie algebra. The necessity was

argued before. The sufficience is exhibited by constructing explicitely a matrix Lie algebra with
structure constants c k

ij . Define in fact the n square matrices Ti, with matrix elements

(Ti)
k
j ≡ c k

ij . (1.3.119)
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The matrix commutator of two such matrices can be computed by making use of the antisimmetry
and of the Jacobi identity (do it!):

[Ti, Tj ]
q
p = (Ti)

s
p (Tj)

q
s − (i↔ j) = . . . = −c k

ij (Ti)
q
p . (1.3.120)

Thus, the matrices obtained as real linear combinations of the Ti’s form a Lie algebra of dimension
n, with structure constants −c k

ij (or, equivalently, the matrices −Ti generate and algebra with
structure constants c k

ij ).
The above construction tells us also that, given a Lie algebra G with structure constants

c k
ij , it always possess a faithful representation in terms of dimG × dimG matrices, called the
adjoint representation, generated by the matrices Ti of Eq. (1.3.119).

Examples

• The vector product in R
3. The vector space R

3 becomes a Lie algebra when equipped with the
ordinary vector product. Namely, the Lie product in this example is defined as [~x, ~y] ≡ ~x∧~y.
Linearity and antisymmetry are immediate, and the Jacobi identity is satisfied (show it)
because of the well-known identity

~x ∧ (~y ∧ z) = ~y (~x · z)− ~z (~x · y) (1.3.121)

In an orthonormanl basis {~ei}, we find the structure constants of this algebra to be given by
the Levi-Civita antisymmetric tensor:

~ei ∧ ~ej = εijk ~ek ⇒ c k
ij = εijk , (1.3.122)

where ε123 = 1 and εP (1)P (2)P (3) = (−)σ(P ) for any permutation P ∈ S3 (σ(P ) being 1 if P
is even or -1 if P is odd); all other components of the tensor vanish.

• The Lie Algebra so(3) Consider the set of antisymmetric 3×3 real matrices, which is usually
denoted as so(3). It forms a Lie Algebra, the Lie bracket being defined as the commutator
of the matrix product:

∀m,m ∈ so(3) , [m,n] ≡ mn− nm ∈ so(3) . (1.3.123)

Indeed it is easy to verify that when the Lie bracket is defined as a commutator it satis-
fies automatically antisymmetry and Jacobi properties. Moreover the commutator of two
antisymmetric matrices is still antisymmetric:

[m,n]
T
= (mn− nm)T = nTmT −mTnT = nm−mn = − [m,n] , (1.3.124)

since mT = −m, nT = −m. Matrices m ∈ so(3) depend on 3 real parameters, which for
instance can be taken as its elements in the upper triangular block, mij with j < j. It is
more costumary to relabel the 3 parameters as αi = εijkmjk, namely to set

m(α) =




0 α3 −α2

−α3 0 α1

α2 −α1 0


 = αi Li , (1.3.125)

the generators Li being given by

L1 =



0 0 0
0 0 1
0 −1 0


 , L2 =



0 0 −1
0 0 0
1 0 0


 , L3 =



0 1 0
−1 0 0
0 0 0


 , (1.3.126)
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namely by
(Li)

k
j = εijk . (1.3.127)

The matrix Li generates infinitesimal rotations around the i-th axis (compare with Eq.s
(1.1.11,1.1.12) for the SO(2) case). Notice that the expression Eq. (1.3.127) means that,
according to the definition Eq. (1.3.119), the Li are the generators of the adjoint represen-
tation of the abstract Lie algebra with structure constants c k

ij = εijk (which is for instance

realized also by R
3 with the external product, as we saw in the previous example, or by the

set of antihermitean matrices, su(2), as we will see in next example). We have therefore

[Li, Lj ] = −c k
ij , (1.3.128)

as of course can be checked directly by computing the matrix commutatators.
• The Lie algebra su(2) The set of 2 × 2 antihermitean traceless matrices is usually denoted

as su(2). It is closed under the matrix commutator (the computation is perfectly analogous
to Eq. (1.3.124)), so it forms a Lie algebra. Such matrices depend on 3 real parameters. A
set of three independent such matrices is provided, for instance, by

ti = −
i

2
σi , (i = 1, 2, 3) , (1.3.129)

where the σi are the Pauli matrices. Therefore every matrix u ∈ su(2) can be written as
u = βi ti, with β

i ∈ R. From the well-known products of the Pauli matrices

σiσj = δij + i εijk σk (1.3.130)

follow the commutators
[ti, tj ] = εijk tk . (1.3.131)

The su(2) Lie algebra is thus isomorphic to so(3) and to R
3 with the external product.

1.3.5 The Lie algebra of a Lie group

1.3.5.1 The Lie algebra of vector fields

In the mathematical appendix ?? the concept and main properties of vector fields on a manifold
M are reviewed.

The composition of two vector fields is no longer a vector field. In fact, applying first the
vector field Y then X to a function f gives

X (Y (f)) = Xν∂ν (Y
µ∂µf) = (X

ν∂νY
µ)∂µf +X

νY µ∂νµf . (1.3.132)

The presence of the term with second derivatives of f forbids us to write the result as due to
the application of a new vector field. So the space of vector fields Diff0(M) cannot be given the
structure of an algebra using the composition as the product.

However, Diff0(M) can be given the structure of a Lie algebra, by defining the Lie product
as the “commutator” of compositions:

[X,Y ] ≡ X (Y (f))− Y (X(f)) . (1.3.133)

Indeed, the second derivative term in Eq. (1.3.132) cancel when subtrating the same expression
with X ↔ Y and thus [X,Y ] is again a vector field:

[X,Y ] = (Xν∂νY
µ − Y ν∂νX

µ)∂µ . (1.3.134)
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As an exercise, check that the Lie bracket [X,Y ] as defined in Eq. (1.3.133) satisfies the Jacobi
identities. Thus, to any manifold G is naturally associated a Lie algebra, the Lie algebra Diff0(G)
of the vector fields. This algebra is however infinite-dimensional. However, we have seen that the
group structure of G allows to single out a subclass of vector fields, the (left- or right-)invariant
vector fields

We have recalled in sec. 1.3.2 the mappings which are induced on the vector fields by a
mapping on the manifold. The induced mappings of vector fields Eq. (1.3.57) have the important
properties of preserving the Lie brackets of vector fields:

[X,Y ]
′
= [X ′, Y ′] . (1.3.135)

In other words, the differential mappings dφ are isomorphisms (if φ is invertible, of course) of the
Lie algebra of vector fields, Diff0(M). Indeed, from Eq. (1.3.134)

[X,Y ]
′µ
(x′) =

∂x′µ

∂xρ
(Xν∂νY

ρ − Y ν∂νX
ρ)(x) . (1.3.136)

On the other hand,

[X ′, Y ′]
µ
(x′) = X ′ν(x′)

∂

∂x′ν
Y ′µ(x′)− (X ↔ Y )

= Xρ(x)
∂x′ν

∂xρ
∂

∂x′ν

(
Y σ(x)

∂x′µ

∂xσ

)
− (X ↔ Y )

= Xρ(x)
∂

∂xρ

(
Y σ(x)

∂x′µ

∂xσ

)
− (X ↔ Y )

=

(
Xρ(x)

∂Y σ(x)

∂xρ
− (X ↔ Y )

)
∂x′µ

∂xσ
, (1.3.137)

which coincides with the r.h.s. of Eq. (1.3.136).
Since the induced mappings on vector fields have the property of preserving the Lie bracket,

see Eq. (1.3.135), the subset of left- or right-invariant vector fields, beside a vector space isomor-
phic to the tangent space to the identity Te(G), is also a Lie subalgebra of the Lie algebra of
vector fields. In fact, the Lie bracket of two, say, left-invariant vector fields is again a left-invariant
vector field: upon the left translation by g,

dLg([XL, YL]) = [dLg(XL), dLg(YL)] = [XL, YL] . (1.3.138)

Analogously for right-invariant vector fields.
Thus, we see that the left- or right-invariant vector fields form a Lie algebras of dimension

dimG, that we may call respectively GL,R.
The Lie algebras GR(L) in this basis take the form

[
J̃λ, J̃µ

]
= c

(R) ν
λµ J̃ν .

[Jλ,Jµ] = c
(L) ν
λµ Jν , (1.3.139)

The structure constants can be expressed in terms of the functions ϕµ(α, β) using Eq. (1.3.79),
Eq. (1.3.46) and Eq. (1.3.134). For instance, for the right-invariant vector fields we have

[
J̃λ, J̃ρ

]µ
(β) ∂µ =

(
J̃ ν

λ∂νJ̃ µ
ρ − (λ↔ ρ)

)
(β) ∂µ

=
(
J̃ ν

λ∂νJ̃ µ
ρ − (λ↔ ρ)

)
(J̃−1)τµ J̃ ω

τ∂ω . (1.3.140)
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Comparing with Eq. (1.3.139), we find

c
(R) τ
λµ =

(
J̃ ν

λ∂νJ̃ µ
ρ − (λ↔ ρ)

)
(J̃−1)τµ , (1.3.141)

in agreement with the expression Eq. (??) of the second Lie theorem. Similarly, we can compute
the structure constants for the GL algebra. It can be shown, see later ..., that the two algebras

are isomorphic, and indeed one has simply c
(L) τ
λµ = −c(R) τ

λµ . These expressions must be, in spite
of their apparent dependence on the coordinate β, constants, in force of the above discussion.

1.3.5.2 Invariant vector fields and Lie algebras for Matrix Lie groups

Consider the matrix group GL(n,R), parametrized parametrizing by the n2 entries gij of the
matrix. The left translation h 7→ gh of an element h by an element g is described explicitely by
the matrix product, see Eq. (1.2.28). We have discussed in previous sections how invariant vector
fields on GL(n,R) are determined by tangent vectors to the identity, according to Eq. (1.3.67).
The result, given in Eq. (1.3.78), is that if v (of components vij) is a tangent vector to the
identity, the corresponding left-invariant vector fields reads XL,v(g) = (gv)

ij ∂
∂gij . Computing

the Lie bracket of two invariant vector fields gives then (check it for exercise):

[XL,v, XL,w] (g) = (g [v, w])
ij ∂

∂gij
. (1.3.142)

The Lie algebra GL is thus mapped to the matrix Lie algebra of the components of tangent
vectors v to the identity. The matrices v are unconstrained, and they clearly form a Lie algebra
as the commutator of two matrices is again a matrix. This algebra is named gl(n,R) A basis of
generators Jij for this algebra is naturally given by the matrices

(Jij)lm = δijδjm , (1.3.143)

namely by matrices Jij having the element in the i-th row and j-th column equal to 1, al the
others being zero. These are exactly the infinitesimal generators obtained directly from their
definition Eq. (1.3.41) as derivatives of the group element taken at the origin, see Eq. (1.3.42).
Analogously things work for right-invariant vector fields.

For other matrix groups, the entries of the matrix g give an over-complete parametrization.
The conditions that define the matrix group in question (for instance, the condition of being
orthogonal) correpond to equations on the matrix entries, and the group manifold is embedded

as a hypersurface in the flat R
n2

(or C
n2

) space parametrized by the matrix entries. Nevertheless,
we can use the same scheme as above, and express the tangent vectors and invariant vector fields
in these coordinates: it is like describing the tangent vector fields to a sphere S2 immersed in
R

3 in terms of the cartesian coordinates of the latter. Of course, the components of the tangent
vectors in such a coordinate system cannot be arbitrary (the tangent vectors have after all to be
tangent to the hypersurface!), and one will have to impose the appropriate conditions on them.
Still, the mapping of the Lie algebras GL,R to the matrix Lie algebra of the components of the
tangent vectors to the identity holds true.

1.3.6 Lie groups from Lie algebras

The outshot of all our discussions so far is that a connected Lie group G can be described in terms
of its Lie algebra G, which is the algebra of the infinitesimal generators of G, i.e., the algebra of
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invariant vector fields, via the exponential map:

G = expG . (1.3.144)

Describing Lie group G via the exponential parametrization Eq. (1.3.144) is the continuous anal-
ogous of describing a finite group via a presentation, namely via a set of generators and relations
(see Sec.s ?? and ??).

Any element x ∈ G, a generator, gives rise to a one-parameter subgroup of G, containing
the elements

eαx , α ∈ R , x ∈ G . (1.3.145)

This is analogous to the subgroup {an}, where a is the generator of a finite group. Notice that
this subgroup can be compact or non-compact:

i) if the generator x (which we suppose to be represented as an operator, or a matrix) is
hermitean, then it generates a non-compact subgroup. Heuristically, we can see it because
in the basis of its eigenvectors, x → diag(λi), with λi ∈ R, so that eαx → diag(eαλi), and
shows no periodicity in α;

ii) if the generator x (which we suppose to be represented as an operator, or a matrix) is anti-
hermitean, then it generates a compact subgroup. Heuristically, we can see it because in the
basis of its eigenvectors, x→ diag(iλi), with λi ∈ R, so that eαx → diag(eiαλi), and will be
generically periodic in α.

This kind of properties of the generators are the analogue to the presence or absence of relations
of the form am = e that specify the order of a generator.

If two generators commute in the algebraic sense, the associated one-parameter subgroups
commute in the group-theoretical sense:

eαxeβ y = eβ yeα,x ⇔ [x, y] = 0 , (1.3.146)

as it follows from the Baker-Campbell-Hausdorff formula Eq. (??). If all the generators {xi}
(i = 1, . . . d where d is the dimension of G) commute, then the group is the direct product of the
d abelian one-parameter subgroups In general, the generators {xi} do not commute, and form a
non-trivial Lie algebra:

[xi, xj ] = c k
ij xk . (1.3.147)

These relations are the equivalent of the extra relations that can exist between the generators,
see Eq.s (??,??).

In the same way as a finite group is determined by its presentation in terms of genrators and
relations, the group product in the Lie group G law is completely determined by its Lie algebra

Eq. (1.3.147): for two generic elements of G g = eĝ and h = eĥ, where ĝ = αixi and ĥ = βixi are
two generic elements of G, we have by the BCH formula Eq. (??)

gh = eĝeĥ = eĝ+ĥ+ 1

2 [ĝ,ĥ]+
1

12 ([ĝ,[ĝ,ĥ]]+[[ĝ,ĥ],ĥ])+... , (1.3.148)

where the exponent in the r.h.s. is again a Lie algebra element.

The exponential map allows to associate many properties and structures of a Lie algebra G

to properties and structures of the corresponding Lie groups. We will often utilize this approach
when discussing in Lie algebras in more detail in the next Chapter.
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1.3.7 The “classical” matrix Lie groups and their Lie algebras

A large class of Lie Groups (and basically all of the Lie groups we will consider) can be thought of
as matrix groups, either because they are directly defined in this way or because they possess at
least a faithful finite-dimensional representation; that is, there exists at least an isomorphic map-
ping (the representation being faithful) of the group onto a matrix group. Thus it is particularly
important to discuss these groups and their Lie algebras.

1.3.7.1 The general linear groups, GL(n,R) or GL(n,C)

Consider the multiplicative group of real numbers (R \ {0}, ·) which can also be described as
the group Gl(1) of 1 × 1 invertible matrices. A parametrization of the single matrix element
x ∈ R \ {0} which complies with a),b) above is obviously

x(α) = exp(α) . (1.3.149)

Any neighbourhood of x = 1 is mapped one-to-one by the exponential map in a neighbourhood
of α = 0. The infinitesimal generator is just the number

J =
∂x

∂α

∣∣∣∣
α=0

= 1 . (1.3.150)

Notice the whole of GL(1) decomposes into the component GL(1)0 composed of all x > 0,
containing the identity, which is covered by the above parametrization, and the “disconnected”
component x < 0. The latter is not covered by the exponential parametrization, but all x < 0
can be written as (−1)|x|, with |x| ∈ GL(1)0.

The above can be generalized to GL(n,R) (but everything can be straightforwardly repeated
for GL(n,C)). The component of GL(n,R) connected to the identity, GL(n,R)0 = {M : detM >
0}, can be expressed via the exponential map: from the Lie algebra gl(n,R):

M = em = em
ij Jij . (1.3.151)

Notice that we have detM = exp trm > 0, and the matrix m is unrestricted. The space of
unconstrained matrices form a Lie algebra, called gl(n,R): the commutator of two matrices is
again a matrix.

Choosing as coordinates the entries mij of m, the n2 infinitesimal generators Jij appearing
in Eq. (1.3.151) were already given in Eq. (1.3.143), which we repeat here for convenience:

(Jij)kl = δikδjl . (1.3.152)

The full group GL(n,R) contains two disconnected components (with positive or negative deter-
minant) and is then obtained as the direct product GL(n,R)0⊗Z2, where Z2 acts by M → −M .

1.3.7.2 The special linear groups, SL(n.R) or SL(n.C)

A matrix M ∈ SL(n.R) must have detM = 1. Writing it as M = expm, we see using the
property Eq. (1.3.88) of the matrix exponential function, we must require

trm = 0 . (1.3.153)

Traceless n×n matrices form a Lie algebra (show it as an exercise), which is called sl(n,R). The
algebra is clearly n2−1-dimensional. Different choices of explicit bases of generators are possible;
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it is of course natural to still consider the same Jij as in gl(n,R), Eq. (??), when i 6= j, but the
generators with diagonal entries must be traceless (so there are only n− 1 independent ones).

For instance, a basis of generators for sl(2,R) is given by (the names are traditional)

L0 =

(
1 0
0 −1

)
, L1 =

(
0 1
0 0

)
, L−1 =

(
0 0
1 0

)
. (1.3.154)

The explicit form of the Lie algebra, namely the structure constants, are encoded in the commu-
tators

[L0, L±1] = ±2L±1 , [L1, L−1] = L0 . (1.3.155)

1.3.7.3 The unitary groups U(n)

Writing an unitary matrix U as

U = eu (1.3.156)

requires, considering U close to the identity, i.e., u small, that u be anti-hermitean: indeed,

1 = U †U = (eu)†eu = (1+ u† + . . .)(1+ u+ . . .) = 1+ u† + u+ . . . , (1.3.157)

so that to first order in u we have

u† + u = 0 . (1.3.158)

The anti-hermitean matrices form a Lie algebra: if u, v are antihermitean, their commutator is
anti-hermitean:

[u, v]
†
= (uv − vu)† = (v†u† − u†v†) = vu− uv = − [u, v] . (1.3.159)

Notice also that anti-hermitean n×n matrices depend on n2 real parameters, just as the unitary
ones. In fact, the n diagonal elements of u must be immaginary, and the n(n − 1)/2 complex
upper trangular components, uij with j > i, determines the lower trangular components uij with
j < i, because (u†)ij = u∗ji.

It is then possible to give an explicit real parametrization of u (in terms of suitable com-
binations of a subset of the real and imaginary parts of its matrix elements), i.e., to choose an
explicit basis of generators. We will consider in the sequel some natural choices.

1.3.7.4 The special unitary groups SU(n)

The group of special unitary matrices contains the unitary matrices U with unit determinant. In
the exponential parametrization Eq. (1.3.156) this implies, using the property Eq. (1.3.88) of the
matrix exponential,

tru = 0 . (1.3.160)

The traceless, anti-hermitean matrices form a Lie algebra of real dimension n2−1 (we impose the
single, real, condition Eq. (??) on the n2-dimensional space of anti-hermitean matrices), called
su(n).
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1.3.7.5 The groups U(2) and SU(2)

Consider U = eu ∈ U(2). Imposing u† + u = 0 restricts u so that it can be parametrized by four
real parameters αA (A = 0, 1, 2, 3) as follows:

u(α) =
1

2

(
i(α0 + α3) α2 + iα1

−α2 + iα1 i(α0 − α3)

)
=
i

2

(
α0 1+ αi σ

i
)

(1.3.161)

(the factor 1/2 is just a traditional, inessential, choice). The four generators generators are i
21

and i
2 σ

i, where σi are the Pauli matrices. They form the u(2) Lie algebra, whose only non-trivial
part is the su(2) Lie algebra generated by the Pauli matrices, which we already discussed in sec.
1.3.4, see Eq.s (1.3.129-1.3.131).

One finds then

U(α) = eiα0/2

(
cos

|~α|
2
1+ i sin

|~α|
2
α̂iσ

i

)
, (1.3.162)

where α̂ is the versor of components has components α̂i = αi/|~α|. To see this, note that 1
obviously commutes with αiσ

i, so we can first of all split the exponential according to Eq. (??).
The matrix exponential exp(iαiσ

i/2 can then be directly computed by means of the definition
Eq. (??), since (iαiσ

i/2)2 = −|~α|2/41 and therefore only the two matrix structures iαiσi and 1
appear in the expansion. The matrix within brackets in Eq. (1.3.162) is un fact an SU(2) matrix
(its determinant is 1) while the factor eiα0 is detU . An SU(2) matrix is thus parametrized by
the points of a sphere S3, defined by a versor α̂ and an angle ψ = |~α|, with ψ ∈ [0, 2π]. Indeed
for ψ = 2π we get again, for all values of α̂, a single element, namely −1, of the group, see Fig.
1.8.

PSfrag replacements

0 2π
ψ

S2

S3

Figure 1.8. The group manifold of SU(2). For each value of ψ ∈ [0, 2π] there is an S2 of radius sin ψ

2
;

this defines clearly an S3 (the drawing is, for obvious reasons, represented in one dimension less).

1.3.7.6 The su(3) Lie algebra and the Gell-Mann matrices

Let’s consider the next explicit example of special unitary group, the group SU(3) which, by the
way, is very important in particle Physics: for instance, it is the local symmetry (or “gauge”
symmetry) that rotates the three “colors” of the quarks (the components of protons, neutrons
etc.) and accounts for the strong interactions of these particles.

For 3 × 3 matrices satisfying the anti-hermiticity condition Eq. (1.3.158) and traceless, as
in Eq. (1.3.160), it is traditional (at least for particle Physicists) to choose the following basis of
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8 = 32 − 1 generators:
ta = −

i

2
λa , (a = 1, 2, . . . , 8) , (1.3.163)

where

λ1 =



0 1 0
1 0 0
0 0 0


 , λ2 =



0 −i 0
i 0 0
0 0 0


 , λ3 =



1 0 0
0 −1 0
0 0 0


 ,

λ4 =



0 0 1
0 0 0
1 0 0


 , λ5 =



0 0 −i
0 0 0
i 0 0


 ,

λ6 =



0 0 0
0 0 1
0 1 0


 , λ7 =



0 0 0
0 0 −i
0 i 0


 ,

λ8 =
1√
3



1 0 0
0 1 0
0 0 −2


 (1.3.164)

are known as Gell-Mann matrices, and are the analogue in the su(3) context of the Pauli matrices
for su(2). As an exercise, compute the structure constants of su(3) in this basis. The basis is
evedently such that the generators ti, i = 1, 2, 3, close an su(2) subalgebra, so [ti, tj ] = εijktk.
Find the remaining commutations.

1.3.7.7 The orthogonal and special orthogonal groups O(n) and SO(n)

Parametrize exponentially a real orthogonal matrix:

M = expm . (1.3.165)

The orthogonality condition MTM = 1 turns into the requirement that m be antisymmetric:

m+mT = 0 . (1.3.166)

As it immediate to check (it goes exactly as in Eq. (1.3.159) replacing the hermitean conjugate
with the transpose) the antisymmetric matrices form a Lie algebra called so(n).

The matrixm can be parametrized in terms of n(n−1)/2 parameters, for instance the entries
mij with j > i, i.e. the upper triangular ones. The remaining entries mij with j < iare infact
then simply given by mij = −mji. Thus, we can write

m =
∑

i<j

mijJij (1.3.167)

where the generators Jij (defined for i < j) are given by

(Jij)kl = δikδjl − δjkδil , (1.3.168)

i.e., in matrix notation,

Jij =

i j


0 · · · · · · 0 · · ·
...
. . . 0 1 0

... 0
. . . 0 · · ·

0 −1 0
. . . · · ·

... 0
...

...
. . .




i

j

(1.3.169)
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As we remarked in sec. 1.2.1.1, the linear transformations effected by the matrices Jij on
an n-dimansional space spanned by coordinates xi can equivalently be effected by differential
operators

Jij = xj∂i − xi∂j . (1.3.170)

The structure constants of the so(n) Lie algebra can be extracted by computing the commu-
tators of the Jij generators or those of their differential counterparts Jij (check this explicitely
as an exercise). One gets

[Jij , Jkl] = δilJjk − δikJjl + δjkJil − δjlJik , (1.3.171)

Let us notice that the exponential parametrization Eq. (1.3.165) produces orthogonal ma-
trices with unit determinant, i.e. elements of SO(n). Indeed,

detM = etrm = e0 = 1 . (1.3.172)

The group of ortogonal matrices O(n) consists of twp disconnected components, corresponding to
matrices with determinant ±1. Indeed, any element with determinant −1 cannot be continuosly
reached from the identity, as the determinant should jump from 1 to −1. The exponential
parametrization only covers the component connected to the identity, that is SO(n).

1.3.7.8 (Special) pseudo-orthogonal groups

The pseudo-orthogonal group O(p, q), see sec. ??, contains the real (p+ q)× (p+ q) matrices Λµν
that preserve a metric of signature (p, q), which we may take to be

ηµν = diag(−1, . . . ,−1︸ ︷︷ ︸
p

, 1, . . . , 1︸ ︷︷ ︸
q

) . (1.3.173)

So we must have

ΛρµηρσΛ
σ
ν = ηµν , (1.3.174)

i.e., in matrix notation, ΛT ηΛ = η or

Λ−1 = η−1ΛT η , (1.3.175)

which generalizes the usual orthogonality condition Λ−1 = ΛT of the case p = 0 with euclidean
signature. We adopt the usual convention about raising and lowering indices, and in particular
we write ηµν for the inverse metric.

The determinant of Λ can be ±1. Restricting to the subgroup with unit determinant defines
the SO(p, q) group.

For an element close to the identity, Λ = 1+ λ, Eq. (1.3.175) imposes

(1− λ) + η−1(1+ λT )η ⇒ (λη−1)T + λη−1 = 0 , (1.3.176)

namely that λη−1 be anti-symmetric. This condition defines the Lie algebra so(p, q). Thus a basis
of infinitesimal generators Jρσ is obtained simply multiplying by η a basis for anti-symmetric
(p+ q) matrices, such as the one given in Eq. (1.3.168):

(Jρσ)
µ
ν = (δ

µ
ρδ
τ
σ − δτρδµσ)ητν = δµρησν − δµσηρν . (1.3.177)



Local properties: Lie groups and Lie algebras 32

The commutation relations take the form

[Jµν , Jρσ] = ηµσJνρ − ηµρJνσ + ηνρJµσ − ηνσJµρ , (1.3.178)

generalizing Eq. (1.3.171) for the generators of so(n).
A generic matrix in so(p, q) can be written as

λ(ω) = ωµνJµν , (1.3.179)

and is thus parametrized by the (p+q)(p+q−1)/2 parameters ωµν , which form an antisymmetric
tensor: ωµν = −ωνµ.

The part connected to the identity of the group SO(p, q) is then obtained via the exponential
map:

Λ(ω) = eω
µνJµν . (1.3.180)

1.3.7.9 The group SO(3).

We have already discussed the so(3) Lie algebra of real 3 × 3 anti-symmetric matrices in sec.
1.3.4, Eqs. (1.3.123-1.3.128). We saw this Lie algebra is isomorphic to the su(2) Lie algebra. Let
us just remark here that the traditional choice of generators Li in Eq. (1.3.126) is related to the
general choice Eq. (??) of generators Jij by

Li =
1

2
εijkJjk . (1.3.181)

While the notation Jjk refers to the fact that Jjk generates a rotation along the i− j plane, the
notation Li refers to the fact that Li generates a rotation around the i-th axis. In three dimen-
sions, the two ways of labeling the rotations are possible. According to the choice Eq. (1.3.181)
we parametrize the anti-symmetric matrix m as follows:

m(α) =




0 α3 −α2

−α3 0 α1

α2 −α1 0


 = αi Li . (1.3.182)

Using the fact that the matrix m satisfies the relation6 m3 = −|~α|2m, the matrix exponential of
o gives

M(α) = em(α) = 1+ sin |~α| (α̂iLi) + (1− cos |~α|) (α̂iLi)2 , (1.3.183)

where one has explicitely7

(α̂iLi)jk = α̂i εijk , [(α̂iLi)
2]jk = α̂iα̂lεijmεlmk = α̂jα̂k − δpq . (1.3.184)

Eq. (1.3.183) describes a rotation of an angle ψ = |~α| around an axis individuated by the versor
α̂. Indeed, applying the matrix M(α) to a vector ~x gives a rotated vector of components

[M(α)]ijx
j = [cosψ δij + sinψ α̂

kε i
k j + (1− cosψ α̂iα̂j ]xj , (1.3.185)

where we used Eq. (1.3.184). In vector notation, the above can be written as

~x ′ =M(α)~x = cosψ ~x− sinψ α̂ ∧ ~x+ (1− cosψ)(α̂ · ~x)α̂ . (1.3.186)
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PSfrag replacements
~x

~x ′

~x‖

~x⊥
~x ′⊥

α̂

α̂ ∧ ~x

ψ

ψ

Figure 1.9. The rotation of a vector ~x in terms of an axis, α̂, and an angle, ψ.

This is the correct expression found by geometric considerations. Indeed (see Fig. 1.9), decompose
~x into a parallel and perpendicular part with respect to α̂: ~x = ~x‖ + ~x⊥, with ~x‖ = (~x · α̂)α̂
and ~x⊥ = ~x − (~x · α̂)α̂. A third orthogonal direction laying in the plane normal to α̂ is given
by α̂ ∧ ~x =. A rotation of an angle ψ around the axis α̂ leaves of course ~x‖ unchanged, while
~x ′⊥ = cosψ ~x⊥ + sinψ α̂ ∧ ~x. Altogether we get thus ~x ′ = ~x‖ + ~x ′⊥ = (α̂ · ~x)α̂ + sinψ α̂ ∧ ~x
+cosψ [~x− (α̂ · ~x)α̂], which coincides with Eq. (1.3.186).

PSfrag replacements
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Figure 1.10. The group manifold of S)(3). For each value of ψ ∈ [0, π[ there is an S2 of radius sin ψ

2
;

however at ψ = π we have an S2/Z2 (antipodal points are identified). Altogether this defines an S3/Z2:

comparing with Fig. ?? we see that we have now exactly one representative of that S3 for each pair of

opposite points, which are identified under Z2. (The drawing is, for obvious reasons, represented in one

dimension less).

We see that the exponential parametrization covers the entire SO(3) group, and that the
range of parameters is as follows. The versor α̂ individuates a point on S2, namely individuates

6 This relation arises from the fact that the secular equation det(m − λ1) = 0 reads explicitely λ3 + |~α|2 λ + 0.
We have m = S−1ΛS, where S is the eigenvector matrix and Λ = diag(λ1, λ2, λ3), where λi are the eigenvalues
of m. Then the secular equation implies that Λ3 + ~α|2 Λ = 0, which changing back to the original basis, gives
m3 = −|~α|2m.
7 Take into account the “contraction” of the Levi-Civita tensor εijkε

ipq = (2!)δpq
jk
, where we use the antisym-

metrized δ-symbol δpq
jk

= 1

2
(δpj δ

q

k
− δp

k
δ
q
j ).
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the rotation axis including the direction. The rotation angle then satisfies φ ∈ [0, π], as a rotation
by an angle φ+ π around an oriented axis α̂ is the same as a rotation by φ around the axis −α̂.
Notice that for φ = |~α| = 0 we get the identity element, for φ = π we get group elements
1− (α̂iLi)2 which are parametrized not by α̂, i.e. by an S2, but by α̂ up to its sign, namely by
an S2 with opposite (anti-podal) points identified, i.e. by an S2/Z2. See Fig. 1.10.

So, comparing with section 1.3.7.5, we see that, despite the fact that the Lie algebras su(2)
and so(3) are isomorphic, using the exponential map we obtain two Lie groups, SU(2) and SO(3),
which differ globally as manifolds: while SU(2) is a two-sphere S2, SO(3) is a quotient S2/Z2.

This interesting pattern is in fact general: the Lie groups are determined by their Lie algebras
only locally. We will investigate this fact in the next section.

1.3.7.10 The symplectic groups Sp(2n,R)

In sec.s ?? and ?? we introduced the symplectic groups Sp(2n,R) containing real 2n×2n matrices
A such that they preserve the “symplectic form” Ω, as described in Eq. (??). For elements close
to the identity, A ∼ 1+ a with a small, the condition Eq. (??) implies

(1+ aT )Ω(1 + a) = Ω ⇒ aTΩ+ Ωa = 0 (1.3.187)

that is,
(Ωa)T = Ωa , (1.3.188)

where the last step follows because Ω is anti-symmetric. The 2n× 2n matrices a such that Ωa is
symmetric form the Lie algebra sp(n,R). Check indeed that, if a and b both satisfy Eq. (1.3.188)
then also their commutator does (hint: use the property Ω2 = −1 of the symplectic form).

1.4 Global properties of Lie groups

We have seen in the previous section how the double nature of Lie groups, which are at the
same time differentiable manifolds and groups, allows, at least locally in a neighbourhood of the
identity, to determine the group law for finite elements from the Lie algebra of the infinitesimal
generators via the exponential map.

We have also seen however, comparing the exponentiation of su(2) and so(3), how isomorphic
Lie algebras may give rise to Lie groups which are only locally isomorphic, but differ globally.
This possibility is described precisely in the so-called 3-rd Lie theorem, which we will discuss in
this section.

More in general, in this section we will discuss some of the global properties that Lie groups
may (or may not) possess when they are thought of as topological spaces (in particular, differential
manifolds).

1.4.1 Connectedness

A topological space M is arc-wise connected8 if any two points of M can be connected by
a continuous curve. We will call Lie group also a group G which is a disconnected manifold
composed of a finite set of disconnected components

G = G0 tG1 . . . tGn , (1.4.189)

8 The notion of arc-wise connectedness is stronger (and much more intuitive) than the standard notion of con-
nectedness for a topological space, which sounds as follows: M is connected iffM and the null set 6 0 are the only
subset of M which are at the same time open and closed.
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with G0 being the connected component that contains the identity element of G. The mapping
φ(g(i), h(j)) = g(i)h

−1
(j), with g(i), h(j) ∈ Gi, Gj is of course still required to be analytic in both

arguments, as long as they vary continuously within the connected component they belong to.
Notice that some text-books reserve the name “Lie group” to the component connected to the
identity only.

It is a very important fact that the component connected to the identity G0 is an invariant
subgroup of G. First of all, it is a subgroup. Indeed, if g1, g2 ∈ G0, then this means that
there exist two continuous curves g1(t), g2(t), with t ∈ [0, 1], connecting them to the identity:
g1(0) = g2(0) = e, g1(1) = g1 and g2(1) = x2. Also the curve g3(t) ≡ φ(g1(t), g2(t) is then
continuous (thanks to the properties of the map φ) and connects the element g1g

−1
2 to the identity.

So g1g
−1
2 ∈ G0, ∀ g1, g2 ∈ G0 and G0 is therefore a subgroup. It is furthermore invariant, for if

h ∈ G0, then there is a continuous curve h(t) connecting it to the identity. But then, ∀ g ∈ G,
the path described by g−1h(t)g is continuous (thanks to the continuity of the group product) and
connects g−1hg to the identity, so that g−1hg still belongs to G0.

The fact that a finite-dimensional Lie group consists in general of a finite set of disconnected
components can be (more precisely) stated as follows: the factor group

D0 ≡ G/G0 (1.4.190)

is a finite group. The order |D0| gives the number of disconnected components of G. Every
element g ∈ G can be uniquely written as a product

g = ĝ g̃ , ĝ ∈ D0 , g̃ ∈ G0 . (1.4.191)

Namely, G is a splitting extension of G0 by D0, and the structure of group products is G is
determined from the knowledge of the group product structure of G0, of that of D0, and of the
“adjoint” action of D0 on G0. Indeed

g1g2 = ĝ1g̃1ĝ2g̃2 = ĝ1ĝ2 (ĝ
−1
2 g̃1ĝ2)g̃2 , (1.4.192)

where ĝ1ĝ2 is a product in D0 and (ĝ
−1
2 g̃1ĝ2)g̃2 a product in G0, given the invariance property.

Thus, the crucial point in the study of Lie groups is the study of the connected Lie groups,
as general (disconnected) groups can be constructed as splitting extensions (namely, as direct or
semi-direct products) of the connected ones by finite groups.

Examples

• We have already discussed in sec. 1.3.7.1 how the general linear groups GL(n,R) are not
connected, as elements with negative determinant cannot be continuously reached from those
with positive determinant without passing through the forbidden value zero (i.e. without
leaving the group).
Consider for instance the group GL(1,R, namely R \ {0} with the ordinary multiplication.
The two disconnected components are the positive and negative real axis. The positive
real axis R

+ is the component connected to the identity element 1, and it is an invariant
subgroup. Since every element x of the negative real axis can be written as (−1)|x|, with
|x| ∈ R

+, the factor group is
GL(1)/R+ ∼ Z2 . (1.4.193)

Moreover, GL(1) ∼ Z2 ⊗ R
+ is simply a direct product, as the elements of Z2 have trivial

adjoint action on R
+.
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For higher dimensions, the component connected with the identity GL(n,R)0 is the special
linear group SL(n,R). The elements of the other component can all be written in the form
Mg, where g ∈ SL(n,R) and M is a fixed matrix of determinant −1 and such that M 2 = 1.
So, the factor group is

GL(n,R)/SL(n,R) ∼ Z2 . (1.4.194)

• Similarly to the above example, we have already seen in sec. ?? how the orthogonal groups
O(n) are made of two disconnected components, corresponding to having ±1 determinant.
The component connected to the identity is SO(n), corresponding to determinant +1, which
is an invariant subgroup. The factor group is again

O(n)/SO(n) ∼ Z2 . (1.4.195)

• Consider the group C defined in Eq. (1.2.20). Its group manifold R
2 \R has two disconnected

components, C±, containing the points with a > 0 and a < 0 respectively; see Fig. 1.2. Of
course C+ is the part connected to the identity: (1, 0) ∈ C+. The factor group C/C+ is the
Z2 group generated by the transformation x 7→ −x, namely, in the language of Eq. (??),
by the matrix −σ3; indeed, any matrix in C− can be written as the product of σ3 times a
matrix in C+:

∀ a < 0 ,
(
a b
0 1

)
=

(
−1 0
0 1

)(
−a −b
0 1

)
. (1.4.196)

So we have
C/C+ = Z2 . (1.4.197)

However, notice that C is not the direct product of Z2 and C+. Indeed, the adjoint action of
Z2 on the invariant subgroup C+ is non-trivial: for every transformation Ta,b ∈ C+, we have
(in the matrix language)

(
−1 0
0 1

)(
a b
0 1

)(
−1 0
0 1

)
=

(
a −b
0 1

)
, (1.4.198)

namely, by conjugating with the Z2 generator we get in general a different element of C+.

1.4.2 Compactness of a Lie group

The group manifold of a Lie group can be compact or not. When the manifold can be seen as
an hypersurface embedded in a higher-dimensional flat space (for instance, S2 can be seen as the
surface x2 + y2 + z2 = 1 within R

3, the notion of compactness is simply9 that the immersion of
the manifold stays within a ball B of finite radius.

Examples

- We utilized in sec. ?? as preliminary examples a compact group, SO(2), whose group mani-
fold is the circle S1

- The additive group (R,+) as a manifold is simply the real line R, so it is non-compact.
- The group SO(1, 1) is parametrized as in Eq. (??) by a coordinate ν ∈ R, on which no

periodicity is imposed. So the group-manifold is R, which is non-compact.

9 In general the technical definition of compactness of a topological space is that the accumulation point of any
sub-succession extracted from a Cauchy succession lies within the space itself. When the space is given a metric,
the natural definition of compactness is that the distance within any two points is finite.
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- The group C+ (the part connected to the identity of the group of conformal transformations
of the real line) as a manifold is R× R

+ (see FIg. 1.2, which is non-compact.

We will see later that, at least for an important class of Lie groups, the semisimple ones,
the compactness of the Lie group is determined by an algebric property of the corresponding Lie
algebra.

1.4.3 Simple connectedness and local isomorphisms: the 3rd Lie theorem

A Lie group G is simply-connected iff, as a manifold, its fundamental group is trivial:

π1(G) = {e} , (1.4.199)

namely if all loops drawn on the manifold G are contractible.

Intuitively, this property depends on “large” group transformations, as the loops that are
not contractible cannot be drawn on all neighbourhoods of a point: indeed, any point g ∈ G
must belong to some neighbourhood Ug homeomorphic to an open neighbourhood of R

dimG, in
which no contractible loop can be drawn.

This remarks lead naturally to the concept of local isomorphism between Lie groups. Two
Lie groups G1 and G2 are locally isomorphic if there exists an isomorphic mapping

ω : Ue1 → Ue2 (1.4.200)

between two neighbourhoods of the identity elements e1, e2 of the two groups. This relation is
an equivalence relation.

The 3rd Lie theorem states that the general situation is the following. Within a given class of
locally isomorphic groups, there is a single representative G which is simply-connected, i.e. such
that π1(G) = {e}. Any other group Gi in the same class, that is, any other group Gi which is
locally isomorphic but not isomorphic to G, is as homomorphic image of G by an homomorphism
ωi such that

Di ≡ kerωi (1.4.201)

is a discrete group (and, being the kernel of an homomorphism, is an invariant subgroup of G).
In other words, we have

Gi = G/Di . (1.4.202)

Since G is simply-connected, we have

π1(Gi) = π1 (G/Di) ∼ Di . (1.4.203)

This relation states that the non-trivial closed loops of Gi are exactly those paths that would be
open in the manifold G, and become closed only because of the identification between different
points that correspond to taking the quotient by Di.

The simply connected group G is called the universal cover of the multiply-connected groups
Gi that are locally isomorphic to it. The name refers to the fact that the fundamental group
π1(Gi) can be realized as a group of discrete transformations on G.

In practice, to construct groups locally isomorphic (but not isomorphic) to a simply-connected
Lie group G, one looks for possible discrete invariant subgroups of G, and contructs the factor
groups by these.
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Example Consider again the group (R,+), that we may view as a group of translations Ta
(a ∈ R) acting on the real axis:

x
Ta7−→ x+ a . (1.4.204)

Thsi group is of course simply-connected (the only closed loop drawable on R is a point). The
group (R,+) possesses a discrete subgroup (which is of course invariant, since the group (R,+)
is abelian), namely the subgroup (Z,+) of translations by integers only:

x
Tn7−→ x+ n , n ∈ Z . (1.4.205)

For the factor group we have

(R,+)/(Z,+) ∼ SO(2) ∼ U(1) , (1.4.206)

and as a manifold it is the compact manifold S1. In fact, translations that differ by integers are
to be identified, so that Ta ∼ Ta+1 and all inequivalent translations (the elements of the factor
group) are labeled by a ∈ [0, 1] with periodic conditions, i.e. by points of S1. The composition
law is the periodic sum of parameters. The groups (R,+) and SO(2) are locally isomorphic.

1.4.3.1 Homomorphisms between U(2), SU(2) and SO(3)

Let us consider some homomorphic relations between matrix groups which illustrate some of the
above concepts and, on the other hand, are important in physical applications. Consider an anti-
hermitean traceless 2 × 2 matrix h (as we will see, this is an element of the Lie algebra su(2)).
Any such matrix can be written as

h = ixiσ
i = i

(
x3 x1 − ix2

x1 + ix2 −x3

)
, (1.4.207)

where σi are the Pauli matrices (we will see that σi represent the generators of the su(2) algebra);
indeed one has then automatically h = −h† and trh = 0. The determinant takes the value
−det h =∑i x

2
i .

Given a matrix U ∈ SU(2) we can make it act on h as follows (this is called, as we will see,
the adjoint action of the group element on the Lie algebra):

h : 7→ h′ = U †hU . (1.4.208)

It is immediate to verify that h′ is still anti-hermitean and traceless: indeed, (h′)† = U †h†U
= −U †hU = −h′ and trh′ = tr(U †hU) = trh = 0. Therefore h′ can be expanded on the Pauli
matrices: h′ = ix′iσ

i. Also the determinant is obviously preserved under the adjoint action:
det h′ = det h, so that

∑
i(x

′
i)

2 =
∑

i x
2
i . This means that the parameters x

′
i (parametrizing h

′

are related to the xi parameters defining h by a proper rotation, i.e. by en element Λ(U) ∈ SO(3):

x′i = xj [Λ(U)]
j
i . (1.4.209)

Notice that this definition of Λ(U) is equivalent to the definition

U †σiU = Λ(U)ijσ
j . (1.4.210)

The map ω defined, via Eq. (1.4.210), by

U ∈ SU(2) ω−→ Λ(U) ∈ SO(3) (1.4.211)
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is an homomorphism. Indeed, the adjoint action of U1U2 is represented by xi 7→ Λ(U1U2)
j
i xj ,

but on the other hand we have

U †2U
†
1σ

iU1U2 = [Λ(U1)]
i
jU
†
2σ

jU2 = [Λ(U1)]
i
j [Λ(U2)]

j
kσ

k = [Λ(U1)Λ(U2)]
i
kσ

k . (1.4.212)

Thus, Λ(U1U2) = Λ(U1)Λ(U2). The kernel of this homomorphism is clearly given by

kerω = {1,−1} , (1.4.213)

i.e. by the centre, Z2, of SU(2). The group SO(3) is thus isomorphic to the factor group of SU(2)
by ker ω:

SO(3) ∼= SU(2)/Z2 . (1.4.214)

Indeed a sign change in U cancels in the definition Eq. (1.4.210) of Λ(U). The isomorphism
Eq. (1.4.213) is of great relevance in Physics, as it is intimately related to concept of “spinor”
representations of the rotation group.

Notice that in the above discussion, the fact that det U = 1 does not play any role, only the
unitarity of U mattered. Thus we may repeat the whole construction to obtain an homomorphism

ψ : U ∈ U(2) 7→ Λ(U) ∈ SO(3) . (1.4.215)

In the definition Eq. (1.4.210) of the homomorphic image Λ(U) any phase factor in U does not
matter. Thus,

kerψ = {eiα1 , α ∈ [0, 2π]} , (1.4.216)

namely the kernel is the U(1) centre of U(2), and we have

SO(3) ∼= U(2)/U(1) . (1.4.217)

We have also an homomorphism between U(2) and SU(2) which can be described as follows.
Any matrix U ∈ U(2) can be parametrized as

U = eiα u , (1.4.218)

with u ∈ SU(2) and eiα ∈ U(1)/Z2, namely α is identified with α+ π. If we allowed e
iα ∈ U(1),

i.e. we simply took α to be periodic of period 2π, we would be over-parametrizing U(2), as
eiα (−u) and eiα+πu give the same unitary matrix U . The homomorphism χ : U(2) 7→ SU(2) is
thus simply described by

U = eiα u ∈ U(2) 7→ u ∈ SU(2) . (1.4.219)

The kernel of χ is thus clearly given by

kerχ = {eiα1 , α ∼ α+ π} ∼= U(1)/Z2 . (1.4.220)

We can altogether summarize the homomorphism we have being discussed as follows:

U(2)
χ−→ SU(2) ∼= U(2)/(U(1)/Z2)

ω−→ SO(3) ∼= SU(2)/Z2
∼= (U(2)/(U(1)/Z2))/Z2

∼= U(2)/U(1) .
(1.4.221)

The homomorphism ψ of Eq. (1.4.215) is the composition of χ and ω.


