
Chapter 1

BASICS OF GROUP REPRESENTATIONS

1.1 Group representations

A linear representation of a group G is identified by a module, that is by a couple

(D;V ) , (1.1.1)

where V is a vector space, over a field that for us will always be R or C, called the carrier space,
and D is an homomorphism from G to D(G) ⊂ GL (V ), where GL(V ) is the space of invertible
linear operators on V , see Fig. ??. Thus, we have a is a map

∀g ∈ G 7→ D(g) ∈ GL(V ) , (1.1.2)

with the linear operators

D(g) : v ∈ V 7→ D(g)v ∈ V (1.1.3)

satisfying the properties

D(g1g2) = D(g1)D(g2) ;

D(g−1 = [D(g)]−1 ;

D(e) = 1 . (1.1.4)

The product (and the inverse) on the righ hand sides above are those appropriate for operators:
D(g1)D(g2) corresponds to acting by D(g2) after having appplied D(g1). In the last line, 1 is
the identity operator.

We can consider both finite and infinite-dimensional carrier spaces. In infinite-dimensional
spaces, typically spaces of functions, linear operators will typically be linear differential operators.

Example Consider the infinite-dimensional space of infinitely-derivable functions (“functions of
class C∞”) ψ(x) defined on R. Consider the group of translations by real numbers: x 7→ x + a,
with a ∈ R. This group is evidently isomorphic to R,+. As we discussed in sec ??, these
transformations induce an action D(a) on the functions ψ(x), defined by the requirement that
the transformed function in the translated point x + a equals the old original function in the
point x, namely, that

D(a)ψ(x) = ψ(x− a) . (1.1.5)
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It follows that the translation group admits an infinite-dimensional representation over the space
V of C∞ functions given by the differential operators

D(a) = exp

(

−a d
dx

)

= 1− a d
dx

+
a2

2

d2

dx2
+ . . . . (1.1.6)

In fact, we have

D(a)ψ(x) =

[

1− a d
dx

+
a2

2

d2

dx2
+ . . .

]

ψ(x) = ψ(x)− adψ
dx

(x) +
a2

2

d2ψ

dx2
(x) + . . . = ψ(x− a) .

(1.1.7)

In most of this chapter we will however be concerned with finite-dimensional representations.

1.1.1 Matrix representations

If the space V is finite-dimensional, with, dim V = n (real or complex), linear operators T on V
are equivalently described by the n× n matrices T j

i specifying their action1on a basis ei of V :

ei 7→ T jiej . (1.1.8)

Thus, a finite-dimensional representation (or matrix representation) of dimension n of the group
G is an homomorphism of G into group of n× n matrices [D(g)]ij .

Examples

• Every group G admits the trivial representation, of dimension 1, which associates to every
element the number 1:

∀g ∈ G , D(g) = 1 . (1.1.9)

• The group Zn = {e, a, . . . an−1}, (an = e) has a non-trivial representation of complex dimen-
sion 1 by roots of unity:

D(ak) = e
2πik
n , k = 0, . . . , n− 1 . (1.1.10)

• Consider again the group Z2, realizing this time its generator a geometrically as the rotation
by π in the plane. This group maps the plane R2 into itself. Considering the action on the
(Cartesian) basis vectors e1,2, we find that it is given by the matrices

D(e) =

(

1 0
0 1

)

, D(a) =

(

−1 0
0 −1

)

, (1.1.11)

namely, it furnishes a 2-dimensional representation of Z2.
• The group Z2 is isomorphic to the permutation group S2, where the generator a is realized

as the exchange (12). In sec. ?? we described the permutations in Sn as n × n matrices,
see Eq. (??), namely we described an n× n representation of Sn. In the case of S2 ∼= Z2 we
obtain the following 2-dimensional (real) representation:

D(e) =

(

1 0
0 1

)

, D(a) =

(

0 1
1 0

)

. (1.1.12)

1 We take the convention that the matrix T j
i is the one acting on the basis vector. The action on the column

vector v of the components vi of a vector v = viei = vT e, is via the transpose matrix: vi 7→ vjT ij , i.e. v 7→ TT v.
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• Consider the group D2 (the subgroup of O(2) that leaves invariant a segment in the plane).
Again, consider its action on the basis vectors e1,2 to find a real two-dimensional represen-
tation. Using the notation in sec. ??, see Eq. (??), we find

D(e) =

(

1 0
0 1

)

, D(a) =

(

−1 0
0 −1

)

, D(b) =

(

−1 0
0 1

)

, D(ab) =

(

1 0
0 −1

)

.

(1.1.13)
• Notice that of course it would be sufficient to specify the matrix representing the gener-

ators only (a and b in this case), as then the remaining matrices are determined by the
homomorphic nature of the map: D(ab) = D(a)D(b).

• Consider the group D3, see sec. ?? for notations. Its action on the basis vectors determines
the two-dimensional faithful representation in which the generators a (generating the Z3

subgroup) and b (a reflection) are represented as follows:

D(a) =

(

cos 2π3 sin 2π
3

− sin 2π
3 cos 2π3

)

, D(b) =

(

−1 0
0 1

)

. (1.1.14)

Since D3
∼= S3, Eq. (1.2.106) furnishes also a 2-dimensional representation of the permutation

group S3.
• In fact any dihedral group Dn admits a 2-dimensional representation, the defining represen-

tation by which it is geometrically described as a symmetry group in the plane, in which the
two generators a,b are given by

D(a) =

(

cos 2π
n

sin 2π
n

− sin 2π
n

cos 2π
n

)

, D(b) =

(

−1 0
0 1

)

. (1.1.15)

• As discussed in sec. ??, the continuous group SO(2), the group of proper rotations in two
dimensions, is isomorphically described as the group of orthogonal 2× 2 matrices with unit
determinants. Elements are parametrized by θ ∈ [0, 2π], and they have the 2-dimensional
representation of Eq. (??):

R(θ) =

(

cos θ sin θ
− sin θ cos θ

)

. (1.1.16)

The 2-dimensional representation of O(2) contains the above matrices and their products
with −1. In the previous examples we described 2-dimensional representations of discrete
subgroups of O(2), which were obviously given by discrete subset of the 2-dimensional O(2)
matrices.

• The S3 group, which is isomorphic to D3, can be presented by means of the two generators
a = (123) and b = (13). Using again the representation of Sn by means of n × n matrices
given in Eq. (??), we obtain the following 3-dimensional representation:

D(a) =





0 0 1
1 0 0
0 1 0



 , D(b) =





1 0 0
0 0 1
0 1 0



 . (1.1.17)

1.1.2 Faithful representations

A representation (D,V ) is faithful if D is an isomorphism. Genericallyally, a representation is
not faithful: ker D 6=60, and many elements are mapped into the identity matrix 1. By the first



Group representations 4

isomorphism theorem, see sec. ??, when D is reduced to the factor group G/ker D, it becomes
as isomorphism:

D : G/ker D ←→ D(G) . (1.1.18)

Thus D(G) is a faithful representation of G/ker D.

Example Al the examples of representations given in the previous section 1.1.1 are faithful,
except of course the trivial representation of Eq. (1.1.9). In all cases, there is a distinct matrix
for each group element.

1.1.3 Equivalent representations

The explicit form of the matrices D(g) in a representation D of the group G depends of course
of the choice of a basis in the carrier space V .

Matrix representatives of the same linear operator in different bases are related by a similarity
transformation T ′ = STS−1, where S is the non-singular matrix implementing the basis change:
e′i = S j

i ej .
Two matrix reresentations D′ and D (over the same carrier space) are equivalent if all its

matrices are related by the same change of basis :

∀g ∈ G , D′(g) = SD(g)S−1 . (1.1.19)

Notice that an inner automorphism of G, namely the conjugation by a fixed element h ∈ G,
corresponds in a representation D to the particular change of basis with the matrix S = D(h),
and gives obviously rise to an equivalent representation. Indeed

D(hgh−1) = D(h)D(g)[D(h)]−1 , (1.1.20)

since D is an homomorphism. It is clear that the relevant properties of a representation must
be independent of the explicit choice of basis. Therefore it will be useful to characterize a
representation by means of basis-independent quantities. For instance, we may consider the
traces of the matrices D(g).

1.1.4 Definition of characters

The character χD(g) of an element g ∈ G in the representation D is the trace of its matrix
representative D(g):

χD(g) = trD(g) . (1.1.21)

Characters are clearly independent from the explicit choice of basis. Thus all equivalent repre-
sentations have the same characters. Notice also that, the character χD(g) depends only on the
conjugacy class of g: we say that the characters are class functions. Indeed, for any element
hgh−1 conjugate to g, by taking the trace of Eq. (1.1.20) we have

χD(hgh
−1) = tr

(

D(hgh−1)
)

= tr
(

D(h)D(g)[D(h)]−1
)

= trD(g) = χD(g) . (1.1.22)

Let us notice that the character of the identity element in a representation D is always equal
to the dimension of the representation:

χ(e) = trD(e) = tr1 = dimD . (1.1.23)
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It is clear that we want to describe the representations of a given group up to equivalence.
Moreover, representations of higher dimension can be built in certain elementary ways (in partic-
ular, by direct sums) out of smaller ones. Therefore, the essential task will be the characterization
of those representations that cannot be further decomposed into simpler blocks. This is what we
investigate in the next section.

1.1.5 Invariant subspaces, reducible and irreducible representations

Invariant subspaces A linear subspace W ⊂ V of the carrier space V of a representation D
of a group G is an invariant subspace if it is preserved by the action of all operators of the
representation:

∀g ∈ G , ∀w ∈W , D(g) : w ∈W 7→ D(g)w ∈W . (1.1.24)

If we choose a basis of V adapted to the (orthogonal) decomposition V = W ⊕W⊥, where W⊥

is the (orthogonal) complement of W , all the matrix representatives D(g) must be of block-
triangular form:

∀g ∈ G , D(g) =

(

D1(g) A(g)
0 D2(g)

)

, acting on

(

W⊥

W

)

(1.1.25)

for W to be mapped in W . Both the D1(g) and D2(g) matrices form representations of G.
Indeed, using Eq. (1.1.25),

D(g1)D(g2) =

(

D1(g1)D2(g2) D1(g1)A(g2) +A(g1)D2(g2)
0 D2(g1)D2(g2)

)

. (1.1.26)

Therefore D(g1)D(g2) = D(g1g2) only if both D1 and D2 are homomorphisms: Di(g1)Di(g2) =
Di(g1g2). No particular request arises for the blocks A(g), since no request is made on the
complement space W⊥.

Irreducible representations A representation D is called irreducible if it does not admit any
invariant subspace.

Reducible representations A representation D is reducible if it admits an invariant subspace.
Equivalently, D is reducible if by means of a change of basis every matrix D(g), ∀g ∈ G, can be
put in the block-triangular form of Eq. (1.1.25).

In turn, the representations D1 and D2 of Eq. (1.1.25) could be reducible, and so on, so
that in general reducible representations are equivalente to a representation by block triangular
matrices with many blocks.

Example Referring to sec. ??, consider the subgroup of the modular group M ∼= SL(2,Z)/Z2
generated by the translation T : τ 7→ τ + 1. This Abelian subgroup contains all the translations
by integers n, and is isomorphic to Z. As a subgroup of SL(2,Z) its elements are represented by

D(n) =

(

1 n
0 1

)

. (1.1.27)

This 2-dimensional representation of Z is reducible. On the diagonal appears twice the trivial
representation.
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Completely reducible representations If a representation (D;V ) admits an invariant subspace
W ⊂ V and moreover also the complement W⊥ of W in V is invariant, then in a basis adapted
to the decomposition V =W ⊕W⊥ all the matrices D(g) must be block-diagonal:

D(g) =

(

D1(g) 0

0 D2(g)

)

, acting on

(

W⊥

W

)

, (1.1.28)

with D1 and D2 furnishing two representations of G. We say that the representation D is the
direct sum of the two representations D1, D2 and we write

D = D1 ⊕D2 . (1.1.29)

Indeed, all the reasonings given after Eq. (1.1.25) apply, the only difference being that the upper
block A(g) in Eq. (1.1.25) has to vanisg forW⊥ to be always mapped into itself by these matrices.

In turn, W and W⊥ could be splitted into smaller invariant subspaces. Thus, in general,
for a completely reducible representation the carrier space V decomposes into a direct sum of

invariant subspaces:
V = ⊕µVµ , ∀g ∈ G , ∀µ , D(g) : Vµ → Vµ , (1.1.30)

where the Vµ do not contain any smaller invariant subspace. The representation D is then
equivalent to a representation in which all the matrices D(g) have a block-diagonal form:

∀g ∈ G , D(g) =









D1(g) 0 0 . . .
0 D2(g) 0 . . .
0 0 D3(g) . . .
...

...
...

. . .









, (1.1.31)

namely D decomposes into a direct sum of (irreducible) representations:

D = ⊕µaµDµ , (1.1.32)

where the integer aµ denotes how many times the irreducible representation Dµ appears in the
decomposition.

Examples

• Consider the two-dimensional representation of Z2 given in Eq. (1.1.11). All the matrices
are already in block-diagonal form, and we have thus evidently D = D1 ⊕D1, where D1 is
the 1-dimensional representation of Eq. (1.1.10): D1(e) = 1, D1(a) = −1.

• Consider the 2-dimensional representation of Z2 given in Eq. (1.1.12). It acts on a 2-
dimensional vector space V = R2, with a basis {e1, e2}. It is easy to see that the 1-
dimensional subspace W generated by e+ = (e1 + e2)/

√
2 is invariant. Its orthogonal

complement W⊥, generated by e− = (e1 − e2)/
√
2, is also invariant. Indeed, effecting the

change of basis with the matrix

S =
1√
2

(

1 1
1 −1

)

(1.1.33)

we obtain an equivalent representation D′ in which all the matrices D′(g) = SD(g)S−1 have
been diagonalized:

D′(e) =

(

1 0
0 1

)

, D′(a) =

(

1 0
0 −1

)

. (1.1.34)



Group representations 7

We see that therefore the representation D is completely reducible:

D = D0 ⊕D1 , (1.1.35)

where D0 is the trivial representation and D1 is the representation of Eq. (1.1.10).
• Consider the 3-dimensional representation of S3 described in Eq. (1.1.17). Denoting as {ei},

i = 1, 2, 3 be the basis of the R3 carrier space of the representation, similarly to the previous
example one finds that the subspace generated by e+ = (e1 + e2 + e3)/

√
3 is invariant, and

so is its orthogonal complement. As an exercise, complete the calculation and show that the
decomposition of this representation is

D = D0 +D2 , (1.1.36)

where D0 is the trivial representation and D2 is the 2-dimensional representation of S3
defined in Eq. (1.2.107).

• The 2-dimensional representation Eq. (1.1.16) of SO(2) can be diagonalized by the complex
change of basis

S =
1√
2

(

1 i
1 −i

)

. (1.1.37)

One finds indeed
D′(θ) = SD(θ)S−1 = diag

(

eiθ, e−iθ
)

. (1.1.38)

The 2-dimensional representation D is thus a direct product:

D = D1 ⊕D−1 , where ∀θ , D1(θ) = eiθ , D−1(θ) = e−iθ . (1.1.39)

The representation D1 establishes explicitely the well-known isomorphism between SO(2)
and U(1).

The importance of being irreducible In classifying the representations of a group, the essential
and hard part is to classify the irreducible representations. Using irreducible representations as
building blocks, one can them construct (via direct sums, typically) other larger representations
which are reducible2.

It is therefore important to establish efficient irreducibility criteria which allows to determine
whether a representation is irreducible or not. Very important in this regard are the Schur’s
Lemma and in general the orthogonality properties of the matrix elements of the representation
matrices, that we will discuss later in this chapter.

1.1.6 Construction of representations of transformation groups

Consider a tranformation group G acting on some space V, (typically, finite dimensional):

g ∈ G ; x ∈ V 7→ gx ∈ V . (1.1.40)

As an example, consider for instance of a group of trasformation of our three-dimensional space
R3. Different representations of G arise by considering spaces of functions ψ(x) defined over V
(in the example above, think of spaces of “wave functions” ψ(x), for x ∈ R3), which we regard
as states |ψ〉 in an Hilbert space).

2 This is analogous to the fact, discussed in ??, that in classifying the possible groups the “hard”, essential part
is the classification of simple groups.
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We have already discussed in sec. ?? how the action Eq. (1.1.40) of G on V induces homo-
morphically (see Eq. (??)) an action on the functions by means of linear operators Og : ψ 7→ Ogψ
such that

(Ogψ) (gx) = ψ(x) . (1.1.41)

See also the first example in sec. 1.1. If we are able to single out a finite-dimensional invariant
subspace V of functions, on the functions belonging to this subspace the linear operators Og act
as matrices; then we have constructed a matrix representation of G.

Consider a function ψ(x), generic or with some particular properties, and apply to it all the
elements of G. Not all of the transformed functions Ogψ will be linearly independent; denote as
ψν of them (ν = 1, . . . n) a maximal set of transformed functions which are independent. Take
{ψν} as basis vectors of a n-dimensional subspace V of our function space. This space is invariant
under G, as the transformed functions can be reexpressed in the basis:

∀g ∈ G , Ogψµ = [D(g)] νµ ψν . (1.1.42)

Indeed, suppose that ψµ = Ogµψ, for certain elements gν . Then Ogψµ = Oggνψ, so it is one of
the trasnformed images of ψ, which by hypothesis can be expressed on the {ψµ} independent
functions. In this way we obtain a representation (D,V ) of the group G.

Examples

• Consider the group Z2 realized on R3 as the group of space inversions:

e : x 7→ x , a : x 7→ −x . (1.1.43)

Let us construct some representations of this group by considering different types of functions.

– Start from a generic function ψ1(x). The action of Z2 on the function is defined according
to Eq. (1.1.41), so we have for the generator a,

Oaψ1(x) = ψ(−x) ≡ ψ2(x) ⇒ Oaψ1 = ψ2 . (1.1.44)

The identity e of course leaves the function invariant. So the transformed function
Oaψ1 ≡ ψ2 is linearly independent from ψ1, and ψ1,2 span a two-dimensional invariant
subspace. Indeed, acting on ψ2 with Oa we have (as obvious by the homomorphic nature
of the map)

Oaψ2(x) = ψ2(−x) = ψ1(x) ⇒ Oaψ2 = ψ1 . (1.1.45)

From Eq. (1.1.42) we see that on the space V generated by ψ1, 2 the group of space
inversions Z2 acts via the 2-dimensional representation of Eq. (1.1.12): the generator a
becomes

(

ψ1
ψ2

)

a7→
(

0 1
1 0

)(

ψ1
ψ2

)

= D(a)

(

ψ1
ψ2

)

. (1.1.46)

The identity e is of course represented, as always, by the identity matrix.
– Start from an even function ψ(x) = ψ(−x). We have now

Oaψ(x) = ψ(−x) = ψ(−x) ⇒ Oaψ = ψ . (1.1.47)

The transformed function coincides with the original one, so that ψ spans an unidimen-
sional invariant space which is the carrier space of a trivial representation

D0(e) = 1 , D0(a) = 1 , (1.1.48)
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as it follows from Eq. (1.1.42). In other words, any even function ψ(x) is invariant
under the Z2 group of space inversions and individuates an invariant subspace within
the representation associated to a generic function.

– Start now from an odd function ψ(x) = −ψ(−x). The action of the Z2 generator on
such a function is given by

Oaψ(x) = ψ(−x) = −ψ(−x) ⇒ Oaψ = −ψ . (1.1.49)

Again, the transformed functions are linearly dependent from ψ, so that ψ spans an
unidimensional invariant space. However now Z2 acts on this space by the non-trivial
representation of Eq. (1.1.10):

D1(e) = 1 , D1(a) = −1 . (1.1.50)

In other words, any odd function ψ(x) transforms non-trivially under space-inversions,
but still forms a “singlet”.

We have thus retrieved the decomposition of the two-dimensional representationD of Eq. (1.1.46)
associated to a generic function into a direct sum:

D = D0 ⊕D1 , (1.1.51)

namely the same decomposition we discussed in Eq.s (1.1.33,1.1.35). The decomposition
corresponds to the existence of invariant subspaces corresponding to functions with definite

symmetry properties under the Z2 action, namely to even or odd functions. Although the
example is quite simple, this is the general pattern.

• Consider the group of discrete translations T (n), n ∈ Z, of the real axis:

T (n) : x ∈ R 7→ (x+ n) ∈ R . (1.1.52)

This group is clearly isomorphic to Z, with T (n)↔ n.

– If we start from a generic complex function ψ0(x) and act with the translation group Z
we obtain infinite independent functions:

(Onψ0) (x+ n) = ψ0(x) ⇒ Onψ0 = ψn , such that ψn(x) = ψ0(x− n) . (1.1.53)

We obtain then an infinite-dimensional representation of Z, in which the generator 1
(i.e. the translation by 1) is represented as a “cyclic permutation of infinite order”:

D(1) =















. . .
. . .

...
...

...
...

. . . 0 1 0 . . . . . .

. . . . . . 0 1 0 . . .

. . . . . . . . . 0 1 0
...

...
...

...
. . .

. . .















; (1.1.54)

comparing it with the N × N representation of a cyclic permutation (12 . . . N) ∈ SN
according to Eq. (??) we see indeed that we would retrieve Eq. (1.1.54) for N → ∞.
Indeed, Z is also often referred to as the infinite cyclic group.

– If we start from a periodic function ψ(x):

ψ(x+ n) = ψ(x) , (1.1.55)
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all transformed functions coincide with the original one: Onψ = ψ , and we get the
trivial uni-dimensional representation of Z.

– We can more generally consider “quasi-periodic” functions, i.e. functions which are
periodic up to a phase:

ψ(x+ n) = e−iθnψ(x) . (1.1.56)

Such functions are of the form ψ(x) = ψP (x)e
−iθx, where ψP is a periodic function. The

transformed functions Onψ are still all linearly dependent, so we obtain uni-dimensional
representations. In fact we obtain the unitary representations of Z, labeled by the angle
θ, described before in Eq. (1.1.67):

Onψ = Dθ(n)ψ = einθψ . (1.1.57)

1.1.7 Irreducible representations of the symmetry group and energy eigenstates

We have introduced in sec. ?? the symmetry group of a quantum mechanicsl system. It is the
group G of operators Og on the Hilbert space, i.e. on the wave-functions psi(x): ψ 7→ Ogψ, that
leave the Hamiltonian operator H(x) invariant:

OgHO
−1
g = H . (1.1.58)

Consider a maximal set of linearly independent eigenfunctions ψn (n = 1, . . . N) associated to a
single energy level ε, possibly degenerated if N > 1:

Hψn = εψn . (1.1.59)

An extremely important result for quantum mechanics is that the energy eigefunctions ψn form
a basis for an irreducible representation of the symmetry group G.

Indeed, on the one hand
OgHψn = εOgψn ; (1.1.60)

on the other hand
OgHψn = OgHO

−1
g Ogψn = HOgψn, (1.1.61)

for every g ∈ G. Comparing Eq.s (1.1.60,1.1.61) we see that Ogψn is still an energy eigenfunction
with energy ε, so by hypothesis it can be expanded in the basis {ψn}. Thus we have

Ogψn = ψm[D(g)]mn . (1.1.62)

Examples

• Consider a one-dimensional quantum system with a symmetric potential. It enjoys a Z2

reflection symmetry x 7→ −x under which the Hamiltonian is invariant. It follows that
energy eigenfunctions ψ(x) must transform in an irreducible representation of this group.
We have already encountered in the first example in sec. 1.1.6 two irreducible representations,
D0 and D1 of Z2 corresponding to even and odd functions. Let us anticipate a result that
we will find in a while, namely that these are the only irrepses. It follows that every energy
eigenfunction ψ(x) must have a definite parity, i.e. in must be either even or odd. Think for
instance of the infinite well with its cos and sin eigenfunctions.

• Consider an particle in a uni-dimensional periodic potential (modelling e.g. an electron in a
crystal)....

• In a quantum mechanical symmetry with rotational invariance ....
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1.1.8 Unitary representations

Suppose that on the carrier space V of a representation (D,V ) is a scalar product is defined,

∀v,y ∈ V , (v,y) ∈ C , (1.1.63)

with the property of being (anti)-linear in the second (first) argument, and of providing a positive
norm (v,v) ≥ 0. This is the case usually of interest in physics, as V is a finite-dimensional space
or an infinite-dimensional Hilbert space of some quantum system.

The representation is unitary if every operator D(g) is unitary with respect to te scalar
product, namely if

∀g ∈ G ,∀v,y ∈ V , (D(g)v, D(g)y) = (D(g)†D(g)v,y) = (v,y) = , (1.1.64)

where in the second step we used the definition of the hermitian conjugate operator D(g)†, so
that the requirement of unitarity becomes that

∀g ∈ G , D(g)†D(g) = 1 . (1.1.65)

For V finite-dimensional, in a basis adapted to the scalar product, namely in a basis {ei} such
that (e,ej) = δij , the request Eq. (1.1.64) becomes simply that all the matrices D(g) be unitary.
Thus, a matrix representation is unitary iff it is equivalent to a representation made entirely of
unitary matrices.

Examples

• The group SO(2) ∼= U(1) = {eiθ}, parametrized by θ ∈ [0, 2π], admits an infinite series of
1-dimensional unitary representations Dn, for n ∈ Z, given by

Dn(θ) = einθ . (1.1.66)

It is immediate to see that these are representations: Dn(θ1)Dn(θ2) = Dn(θ1+ θ2) and that
they are faithful. Moreover, a complex number, i.e. a 1 × 1 matrix, is unitary if it is of
unit modulus. In Eq. (1.1.66), n is a representation label, while θ parametrizes the group
element.

• The group Z admits a continuous series of 1-dimensional unitary representations Dθ, with
θ ∈ [0, 2π], given by

Dθ(n) = einθ , (1.1.67)

where θ labels the representation, while n is the group element of Z.

1.1.8.1 Unitary representations and reducibility

If unitary representation is reducible, then it is completely reducible. This is immediately seen in
the case of finite-dimensional representations: if D is reducible then every D(g) it is equivalent
to a block-triangular matrix as in Eq. (1.1.26). Such matrices cannot be equivalent to unitary
matrices unless the block A(g) vanishes, in which case D is completely reducible. As an exercise,
formalize better the proof and extend it to the infinite-dimensional case.

1.1.9 Induced representations

Conversely, a representation D(G/H) of the factor group of G by a normal subgroup H, gives
automatically also a representation of G, called an induced representation, such that D(hg) =
D(g), ∀g ∈ G, h ∈ H (namely, all cosets are mapped in the same matrix).
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Examples

• The symmetric group S3 admits the normal subgroup A3 = {e, (123), (132)} ∼= Z3. The
factor group S3/A3 contains the classes [e] = A3 end [(12)] = {(12), (13), (23)}. We have
S3/A3 ∼= Z2, so the factor groups admits the 1-dimensional representation of Eq. (1.1.10),
namely D([e]) = 1 , D([(12)]) = −1. This representation induces a 1-dimensional represen-
tation of S3. given by

D(e) = D ((123)) = D ((132)) = 1 ,

D ((12)) = D ((13)) = D ((23)) = −1 . (1.1.68)

• The above discussion generalizes to the case of Sn. Since Sn/An ∼= Z2, the representation
of Z2 as roots of unity induces the non-trivial representation of Sn in which we assign 1 to
even and −1 to odd permutations:

D(P ) = (−1)σ(P ) , (1.1.69)

where σ(P ) is the sign of the permutation.

1.2 Important properties of group representations

Bla bla ...

1.2.1 Unitarity of the representations of finite groups

Every representation (D,V ) of a finite group G is equivalent to a unitary representation.
The proof of this very important result goes schematically as follows. Using the inner product

(v,y) defined on the carrier space V , one can define a new scalar product by “averaging” over
the group action:

(v,y)G ≡
1

|G|
∑

g∈G

(D(g)v, D(g)y) . (1.2.70)

It is possible that this new inner product satisfies all the properties required of a inner prod-
uct, namely (anti)-linearity and positivity, given that the original inner product does (check it
explicitely as an exercise). The representation D preserves the inner product (, )G as, ∀h ∈
G , ∀v,y ∈ V ,

(D(h)v, D(h)y)G =
1

|G|
∑

g∈G

(D(g)D(h)v, D(g)D(h)y) =

1

|G|
∑

g∈G

(D(gh)v, D(gh)y) =
1

|G|
∑

g∈G

(D(g)v, D(gh)y) = (v,y)G . (1.2.71)

We have used the fact that D is an homomorphism and the invariance property of the finite sum
over the elements of the group:

∑

g∈G

f(gh) =
∑

gh∈G

f(gh) =
∑

g∈G

f(g) . (1.2.72)

Indeed, we have the right-invariance property
∑

gh∈G =
∑

g∈G because as multiplying on the
right every element of g ∈ G by a fixed h one obtains again all the elements of G (this is the
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property of the rows of the multiplication table of G). Of course, an analogous left-invariace
property holds as well.

It is now sufficient to change in V from the basis {ei} adapted to the original scalar product:
(ei, ej) = δij , to a basis {fi} such that (fi, fj)G = δij . If S is the change of basis matrix, fi = S j

i fj ,
the equivalent representation D′ given by the matrices D′(g) = SD(g)S−1 is unitary with respect
to the original scalar product, as it is easy to show starting from the fact that (Sv, Sy)G = (v,y).

We will see later, in sec. ??, that the unitarity of irreducible representations can be estab-
lished, under certain assumptions, also for Lie groups.

Corollary A corollary of the above property is that all representations of finite groups are either
irreducible or fully reducible. Indeed all representations are unitary, but we have seen in sec
1.1.8.1 that a unitary representation, if reducible, is fully reducible.

1.2.2 Schur’s Lemma

1.2.2.1 First Schur’s lemma

If D and D′ are two irreducible representations of a group G and we have

D′(g)A = AD(g) , ∀g ∈ G (1.2.73)

for some operator A (called an “inter-twiner”), then there are only two possibilities:

(i) A = 0;
(ii) dimG = dimG′ and G and G′ are equivalent. A is then the change of basis expliciting their

equivalence.

Hint of a proof For a proof, see e.g. Hammermesh, sec 3.14. We give here only some brief
indications. Suppose that dimG > dimG′, and let {ψi} be a set of basis vectors for the carrier
space og D. If Eq. (1.2.73) holds for A 6= 0, it means that D admits an invariant subspace of
dimension dimG′, whose basis vectors φm are expressed by φm = A i

mψi in terms of the basis of

D. Indeed, under any group action, we have Aψ
g7→ AD(g)ψ, but since Aψ span an invariant

subspace, we also have Aψ
g7→ D′(g)Aψ. Irreducible representations admit only trivial invariant

subspaces: the null space {~0}, corresponding to the case 1), or the entire space, corresponding to
the case 2).

1.2.2.2 Schur’s lemma

Let D be an irreducible representation of a group G. A matrix A such that it commutes with all

the representatives D(g) of the elements of G can only be proportional to the identity matrix:

AD(g) = D(g)A , ∀g ∈ G ⇒ A ∝ 1 . (1.2.74)

Hint of a proof Consider the eigenvalue equation for A, Aψ = λψ. Since A commutes with
D(g), every eigenvector of A is also an eigenvector of D(g), for all g ∈ G. That is, an eigenspace
of A is an invariant subspace of the representation D. D being irreducible, the only invariant
subspaces are the trivial ones, i.e. the null space or the entire space, in which case A has a single
eigenvalue, so that Eq. (1.2.74) follows.
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1.2.2.3 Schur’s lemma as an irreducibility criterion

Schur’s lemma gives a very useful irreducibility criterion. Given a representation D of dimension
d , we take a generic d × d matrix A and impose that it should commute with all the group
representatives D(g). If we find that this requirement implies that A is proportional to 1, then
D is irreducible.

1.2.3 Orthogonality property of matrix elements

Let us denote, here and in the following, by Dµ the various irreducible representations of a group
G, and by dµ their dimensions.

There is a very important orthogonality relation between the matrix elements of group rep-
resetatives in irreducible representations, namely:

1

|G|
∑

g∈G

[Dµ(g)]
i
j [Dµ(g

−1]kl =
1

dµ
δµν δ

i
l δ
k
j . (1.2.75)

If the representation is unitary, this can be written as

1

|G|
∑

g∈G

[Dµ(g)]
i
j [Dµ(g)

†]kl =
1

dµ
δµν δ

i
l δ
k
j . (1.2.76)

Hint of a proof For a proof of the orthogonality relation Eq. (1.2.75) see [Wu-ki-tung?] [put the
following in the “technical appendix?]. The proof is based on Schur’s lemma Eq. (1.2.74). One
considers first the case µ = ν. It is not difficult to show that the matrix

A =
∑

g∈G

Dµ(g)BDµ(g
−1) (1.2.77)

obtained by summing over al “conjugates” of any given matrix B satisfies

Dµ(g)A = ADµ(g) , ∀g ∈ G . (1.2.78)

This is shown by making use of the invariance property Eq. (1.2.72) of the sum over group
elements. Schur’s lemma appplied to Eq. (1.2.80) implies that A = λ1. Choosing B as a matrix
with a single element, say Blm different from zero, so as to reconstruct in Eq. (1.2.79) the l.h.s.
of the orthogonality relation Eq. (1.2.75), and tracing one finds that the corresponding eigenvalue
of A is δlm|G|/dµ. Thus one obtains Eq. (1.2.75) in the case µ = ν. In the case µ 6= ν, one can
show (again using only the invariance property of the sum over group elements) that

A =
∑

g∈G

Dµ(g)BDν(g
−1) (1.2.79)

with B generic satisfies

Dµ(g)A = ADν(g) , ∀g ∈ G . (1.2.80)

From the first Schur’s lemma, Eq. (1.2.73), it follows that A = 0. Choosing B as above,
Eq. (1.2.79) reduces thus to the case µ 6= ν of the orthogonality relation Eq. (1.2.75).
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An important consequence The matrix elements [Dµ(g)]
i
j at fixed µ, i, j can be seen as entries

of a |G|-dimensional vector (indicized by g ∈ G). Eq. (1.2.75) says that the
∑

µ(dµ)
2 such

vectors (recall that i, j = 1, . . . , dµ) are mutually orthogonal. The maximal number of mutually
orthogonal vectors in a |G|-dimensional space is |G|, so we must have

∑

µ

d2µ ≤ |G| . (1.2.81)

We will see in the sequel that Eq. (1.2.81) actually holds with the equality sign.

1.2.4 Orthogonality properties of characters

By tracing the orthogonality relation Eq. (1.2.75) for matrix elements one obtains the following
orthogonality relation for characters. We denote by χµ(g) the character of the element g in the
irrep Dµ, and we have then

1

|G|
∑

g∈G

χµ(g)χν(g−1) = δµν . (1.2.82)

For unitary representation, the above can be written as

1

|G|
∑

g∈G

χµ(g)χν(g)∗ = δµν . (1.2.83)

Characters depend only on the conjugacy classses. We will denote by χµi the character in
the irrep Dµ of elements belonging to the conjucgacy class Ci. We will also indicate as ni the
number of elements in the conjugacy class Ci. Furthermore, let us denote by r the number of
irrepses (i.e., we have µ = 1, . . . , r) and by k the number of conjugacy classes (i.e., we have
i = 1, . . . , k). The orthogonality of characters can be rewritten as follows (we consider the case
of unitary representations, Eq. (1.2.83))

1

|G|
∑

i

ni χ
µ
i (χ

ν
i )
∗ = δµν . (1.2.84)

We can view
√
niχ

µ
i as a set of r vectors labeled by µ, living in a k-dimensional space. The

relation Eq. (1.2.84) states that these r vectors are mutually orthogonal, so r must not exceed
the dimensionality k of the space:

r ≤ k , (1.2.85)

i.e., the number of irreducible representations is not bigger than the number of conjugacy classes.
We will see in the following that actually Eq. (1.2.85) holds with the equality sign.

1.2.5 Characters and the decomposistion of representations

A generic, fully reducible, representationD of a group G decomposes as a direct sum of irreducible
representations as in Eq. (??)

D = ⊕µaµDµ . (1.2.86)

The characters χ(g) of D are then simply expressed in terms of the characters χµ(g) of the
irreducible representations Dµ. Indeed, the characters do not depend on the choice of basis, so
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we can always put the matrices D(g) in the block-diagonal form of Eq. (1.1.31). By taking the
trace, we get then

χ(g) =
∑

µ

aµχ
µ(g) , (1.2.87)

or equivalently, labeling the characters with the conjugacy classes label m as in sec. ??,

χm =
∑

µ

aµχ
µ
m . (1.2.88)

Notice that in the literature the term “character” is often reserved to characters χµm in irreducible

representations. The characters χm in a reducible representation being instead referred to as
compound characters.

Using the orthogonality relation Eq. (??) we can extract from Eq. (1.2.88) an expression in
terms of characters for the multeplicity aµ of the irrep Dµ in the decomposition of D. Indeed,
multiplying Eq. (1.2.88) by (χµm)∗ and summing over the conjigacy classes with weight Nm (the
number of element in the class) we obtain

∑

m

Nm(χµm)∗χm =
∑

ν

aν
∑

m

Nm(χµm)∗χνm = |G|aµ , (1.2.89)

so that

aµ =
1

|G|
∑

m

Nm(χµm)∗χm . (1.2.90)

An irreducibility criterion Let us start again from Eq. (1.2.88). Let us multiply by the conjugate
equation and sum over the classes with weight Nm, getting

∑

µ

Nm(χm)∗χm =
∑

µ,ν

aµaν
∑

m

Nm(χµm)∗χνm (1.2.91)

and thus, using agin the orthogonality of irreducible characters,

∑

µ

Nm(χm)∗χm = |G|
∑

µ

a2µ . (1.2.92)

If the representation D is irreducible, namely is equivalent to some Dµ for a certain µ, then only
that specifc aµ = 1, all the others being zero. Thus,

D is irreducible⇔
∑

µ

Nm(χm)∗χm = |G| . (1.2.93)

This is a very useful irreducibility criterion.

1.2.6 The regular representation

The regular representation R of a finite group G is a faithful representation of dimension |G|.
Its matrices R(g) are exactly the |G| × |G| matrix representatives (defined via Eq. (??)) of the
regular permutations of S|G| that we encountered n the discussion of Cayley’s theorem in sec ??,
and that describe the rows of the multiplication table of the group G. These matrices contain a
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signle 1 is each row and column, other elements bein zero. Moreover, while R(e) = 1, all other
matrices have no non-zero entry on the diagonal. Explicitely, we have

[R(gj)]
i
k = δik ⇔ gjgi = gk . (1.2.94)

Notice that the regular representation acts on a vector space obtained formally by taking as basis
the group elements themselves.

In the regular representation, all matrices except R(e) = 1 have vanishing diagonals, so

χ(e) = |G| ;
χ(gi) = 0 if gi 6= e . (1.2.95)

Let us consider the decomposition of the regular representation into irreducible representa-
tions,

R = ⊕µaµDµ , (1.2.96)

implying for the characters that

χm =
∑

µ

aµχ
µ
m . (1.2.97)

The general expression Eq. (1.2.90) of the multiplicities aµ simplifies in the case of the regular
representation because of the properties Eq. (1.2.95):

aµ =
1

|G|
∑

m

Nm(χµm)∗χm =
1

|G|N0(χ
µ
0 )
∗χ0 =

1

|G|dµ |G| = dµ . (1.2.98)

Indeed only the characters of the identity class (which we conventionally label by m = 0) con-
tribute to the sum; mooreover the characters of the identity, see Eq. (1.1.23), alway give the
dimension of the representation:

χ0 = |G| , χµ0 = dµ . (1.2.99)

On the other hand, Eq. (1.1.4)), for the conjugacy class of the identity gives

χ0 =
∑

µ

aµχ
µ
0 ⇒ |G| =

∑

µ

aµdµ . (1.2.100)

Comparing Eq. (1.2.98) and Eq. (1.2.100) we find that

|G| =
∑

µ

d2µ . (1.2.101)

So the inequality Eq. (??) we derived in sec. ?? is in fact an equality, giving a very important
constraint on the irreducible representations and their dimensions.

For instance, for an Abelian group G, since all irreducible representations have dimension
1, as we saw in sec. 1.2.2, the regular representation contains exactly once every irreducible
representation:

R = ⊕µDµ . (1.2.102)

Therefore, it is possible by a change of basis to diagonalize the regular representation matrices;
the |G| eigenvalues of each R(g) will give the representatives in the G irreducible of the element
g. Moreover we have from Eq. (1.2.101) that

|G| =
∑

µ

= number of irrepses (G Abelian) . (1.2.103)
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Example The regular representation of the cyclic group Zn is the n×n representation obtained
if Zn is realized as the subgroup of cyclic permutations in Sn, and the permutations are seen
as matrices according to Eq. (??); see for instance Eq. (1.1.12) for the Z2 case and Eq. (1.1.17)
for the Z3 case. Indeed the regular representation of the generator a is given, according to
Eq. (1.2.94), as follows:

aai = ai+1 (with an = a0 ≡ e) ⇒ [R(a)]ij = δi+1,j , (1.2.104)

namely (NB E” AL CONTRARIO!!!)

R(a) =















0 0 . . . . . . 1
1 0 . . . . . . 0

0 1 . . . . . .
...

...
...

. . . . . .
...

...
...

... 1 0















. (1.2.105)

Diagonalizing R(a) we obtain all irreducible representatives of the generator a. It is elementary
to find the eigenvalues:

det (R(a)− λ1) = 0 ⇒ λ = exp

(

2πiµ

n

)

, (µ = 0, . . . n− 1) . (1.2.106)

The representative of the powers of a are of course the powers of the representatives of a, so alto-
gether we can explcitely describe all the irreducible representations of Zn (and their characters,
which coincide with the 1× 1 matrix elements) :

Dµ(a
m) = χµm = exp

(

2πiµm

n

)

, (µ,m = 0, . . . n− 1) . (1.2.107)

1.2.7 The group algebra

...

1.2.7.1 Left ideals and projection operators

...

1.2.7.2 Idempotents

...

1.2.8 Completeness relations

Beside the orthogonality relations between characters for different irreducible representations, the
characters satisfy also “completeness” relations, namely orthogonality relations between charac-
ters of different conjugacy classes. We do not prove such relations, for a proof see, e.g., Hamer-
mesh, chap. ? or Wu-Ki-Tung, ?. The proof requires the introduction of some new concepts, as
the group algebra or the algebra of the conjugacy classes, and makes use also of the properties of
the regular representation. [maybe add it to the technical appendix in future?]
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The completeness relation for characters reads (for unitary representations)

1

|G|
∑

µ

χµi (χ
µ
j )
∗ =

1

ni
δij . (1.2.108)

We can view χµi as a set of k vectors labeled by i (k being the number of conjugacy classes)
living in a r-dimensional space. Eq. (1.2.108) states that these vectors are mutually orthogonal.
Therefore their number, k, must not exceed the dimensionaly r of the space:

k ≤ r , (1.2.109)

namely the number of conjugacy classes is not bigger than the number of irrepses. Since from
the orthogonality of characters we had already proved in Eq. (1.2.85) that r ≤ k, we conclude
that actually

k = r , (1.2.110)

namely, for a discrete group, the number of irreducible representations and of conjugacy classes
coincides.

The completeness relation can be extended to compact Lie groups, in which case it reads

∑

µ

χµ(g)χµj (g
′)∗ = δG(g, g

′) , (1.2.111)

where δG(g, g
′)is the conjigation-invariant delta-function on the group.

Example: Fourier basis Let us consider the Lie group SO(2) ∼ U(1). Its irreducible represen-
tations were given in Eq. (1.1.67). They are labeled by an integer that we now call µ ∈ Z, and
they are all uni-dimensional, and we have

Dµ(θ) = χµ(θ) = eiµ θ . (1.2.112)

The orthogonality and completeness relations Eq. (1.3.207) and Eq. (1.2.111) become explicitely

1

2π

∫

dθ χµ(θ) (χν(θ))
∗
=

1

2π

∫

dθ eiµθe−iνθ = δµν ,

∑

µ

χµ(θ) (χµ(θ′))
∗
=
∑

µ

eiµθe−iµθ
′

= δP(θ − θ′) , (1.2.113)

where δP is the periodic delta-function. Thus, the characters of U(1) are nothing else than the
basis functions of the Fourier expansion, an the orthogonality and completeness relations for these
characters are nothing else but the usual orthogonality and completeness of the Fourier basis.

1.2.9 The character table and its properties

...

Example: S3 ...
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1.2.10 Irreducible vectors and projection operators

The elements of the carrier space V of an irreducible representation D of a group G are called
irreducible vectors transforming in the representation D. Suppose that a set of dµ vectors3

belonging to V
|µ, i〉 , (µ = 1, . . . dµ) (1.2.114)

form a basis for (one of the aµ copies of) the irreducible representation Dµ contained in D,
namely are a set of irreducible vectors for Dµ. This means that for every operator D(g) of the
representation D we have

D(g)|µ, i〉 = |µ, j〉[Dµ(g)]
j
i . (1.2.115)

An important result is that, as a consequence of the orthogonality of the matrix elements of
irreducible representations, two sets of irreducible vectors in V for inequivalent representations
are mutually orthogonal :

〈ν, j|µ, i〉 = 0 if µ 6= ν . (1.2.116)

Indeed we have, using the unitarity of the representation D to insert an identity operator written
in the form

1 =
1

G

∑

g∈G

D†(g)D(g) , (1.2.117)

we have

〈ν, j|µ, i〉 = 1

G

∑

g∈G

〈ν, j|µ, iD†(g)D(g)|µ, i〉

=
1

G

∑

g∈G

[D†ν(g)]
j
k[Dµ(g)]

l
i〈ν, k|µ, l〉 =

1

dµ
δµνδij〈ν, k|µ, k〉 , (1.2.118)

where we used Eq. (1.2.115) and the orthogonality property Eq. (??).
When instead µ = ν, there are two possibilities:

i) The subspaces generated by the two sets of irreducible vectors may not overlap, so that they
are orthogonal. This means that in the decomposition of D the irrep Dµ appears more that
once (i.e., α > 1) and the two bases are acted by two different copies of Dµ.

ii) If the two subspaces overlap, they are acted upon by the same copy of Dµ, and they are
related by a univaty basis transformation.

We well from now adopt the following notation:

|µ, α, i〉 , α = 1, . . . aµ , i = 1, . . . dµ , (1.2.119)

for sets of irreducible vectors for the α-th copy of the irrep Dµ inside D = ⊕aµDµ.
We would like to be able to find out explicitely in V sets of irreducible vectors for the

irreducible components of D, thus singling out explicitely the invariant subspaces in V . In other
words, we woud like to be able to project explicitely the vectors |x〉 in V onto the subspaces Vµ.
To this purpose, consider the operators

P jµi =
dµ
|G|

∑

g∈G

[D−1µ (g)]jiD(g) , (1.2.120)

3 The Dirac notation by bra and kets is quite handy (and familiar expecially in applications to Quantum mechan-
ics), so we will often use it in the following.
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with i, j = 1, . . . dµ. For any fixed value of j, if we apply the above operators to any vector

|x〉 ∈ V we obtain a set of dµ vectors (labeled by i)

P jµi|x〉 (1.2.121)

which transform in the irreducible representation Dµ. Indeed, applying any h ∈ G to any of the
above vectors we find, by using Eq. (1.2.120),

D(h)P jµi|x〉 =
dµ
|G|

∑

g∈G

[D−1µ (g)]jiD(h)D(g)|x〉 = dµ
|G|

∑

hg∈G

[D−1µ (g)]jiD(hg)|x〉

=
dµ
|G|

∑

hg∈G

[D−1µ (gh)]jk[D(h)]kiD(hg)|x〉 = P jµi|x〉[D(h)]ki . (1.2.122)

We have used the homomorphic properties of D and Dµ, and the invariance of the sum over
group elements, see sec. 1.2.1:

∑

g∈G =
∑

hg∈G. The discussion generalizes thus, as we argued

in sec. 1.3.2, to compact Lie groups as well. One can see that the vectors P jµi|x〉 are mutually
orthogonal, but not normalized.

Example Reconsider once more the 2-dimensional representation of Z2 of Eq. (1.1.12). It de-
composes into irrepses as in Eq. (1.1.35), and we understood this decomposition in the first
example of sec. 1.1.6 as due to the existence of invariant subspaces corresponding to definite
symmetry requisites (in that example, being an even or an odd function). Now we could rephrase
the procedure as follows. Sart from any state |ψ〉 ∈ V , where V is the 2-dimensional carrier space
of D. Vectors spanning the invariant subspaces for the trivial representation Dµ |mu = 0, 1) are
obtained by applying the operators Eq. (1.2.120), namely (all indices i, j have anly 1 value so
can be omitted)

P0 =
1

2
((D(e) +D(a)) =

1

2

(

1 1
1 1

)

,

P1 =
1

2
((D(e)−D(a)) =

1

2

(

1 −1
−1 1

)

, (1.2.123)

where the explicit matrices D(g) were given in Eq. (1.1.12). Applying these operators, for in-

stance, to the basis vector
(

|ψ〉1=
10

)

we get

P0|ψ1〉 =
1

2
(|ψ1〉+ |ψ2〉) ,

P1|ψ1〉 =
1

2
(|ψ1〉 − |ψ2〉) . (1.2.124)

The operators P jµi can be thought of as generalized projection operators. Their on an irre-
ducible basis is the following:

P jµi|ν, α, k〉 = δµνδjk|ν, α, i〉 . (1.2.125)

Prove this as an exercise, using the orthogonality property Eq. (??).
Since P jµi|x〉 is, for any |x〉, an irreducible set, applying Eq. (1.2.125) to it we obtain

P jµiP
l
νk = δµνδjkP

l
µi (1.2.126)
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Inverting the definition Eq. (1.2.120) of the P ’s, one finds that the operators D(g) of the
representation D can be decomposed on the operators P jµi, the coefficients being the matrix
elements of the irrepses:

∀g ∈ G , D(g) =
∑

µ,i,j

[Dµ(g)]
i
j P

j
µi . (1.2.127)

Out of the P jµi we can construct projection operators

Pµi ≡ P j=iµi ,

Pµ ≡
∑

i

Pµi , (1.2.128)

which satisfy ...

1.2.11 Irreducible representations of Sn and Young tableaux

...

1.2.12 Direct product of representations and its decomposition

...

1.2.13 Irreducible tensor operators and Wigner-Eckhart theorem

...

1.3 Representations of Lie groups

...
Can be obtained starting from the representations of the corresponding Lie algebrae; we will

pursue this approach in the next Chapter.
Also tensor methods ...

1.3.1 Introductory examples

Let us consider the simplest Lie groups, namely SO(2) and (R,+), both uni-dimensional and
abelian (i.e., with the same, trivial Lie algebra). The group manifold of SO(2) is the circle S1,
so it is a compact group, while that of (R,+) is obviously R, so we have a non-compact group.

Let us now consider the irreducible representations, starting from the rotation group. In any
representation Dµ, we must have

D(θ2)D(θ1) = D(θ2 + θ1) ,

D(θ + 2π) = D(θ) , (1.3.129)

the first requirement sbeing simply the homomorphicity property, the second stemming from the
global requirement Eq. (??). It is easy to see that we can repeat for any representation exactly
the same analysis in terms of infinitesimal generators we did above, so that in the end one can
write

Dµ(θ) = ei θ Jµ , (1.3.130)
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having denoted as Jµ the infinitesimal rotation generator in the representation Dµ. If the repre-
sentations Dµ have to be unitary (which is the only possibility since this group is a compact Lie
group, see sec. 1.3.2), it follows from Eq. (1.3.130) that Jµ has to be an Hermitean operator.

Since the groups is Abelian, all its irreducible representations have dimension 1. The Her-
mitean operator Jµ is therefore a real number µ. Let us denote by |µ〉 the single basis vector, so
that we can write

J |µ〉 = µ|µ〉 (1.3.131)

to express the fact that the irrepDµ is precisely that irrep in which the abstract generator J of the
group is represented by the number µ. It follows then from Eq. (1.3.130) that the representative
af a generic element in the irrep Dµ is given by

Dµ(θ) = ei θ µ . (1.3.132)

However, we still have to impose the periodicity condition on θ (the second line of Eq. (1.3.129)).
This condition reads

Dµ(θ + 2π) = ei (θ+2π)µ = ei θ µ = Dµ(θ) , (1.3.133)

from which it follows that
µ ≡ m ∈ Z , (1.3.134)

i.e., that the angular momentum is quantized in any unitary irreducible representation of the
rotation group SO(2):

J |m〉 = m|m〉 , m ∈ Z . (1.3.135)

If we realize the group as a group of transformations ϕθ on the space S1, see Eq. (??), we
search (irreducible, unitary) representations of the group as particular subspaces of the space of
functions over S1. Since the action D(θ′) of teh group element ϕθ′ on a function ψ is defined as
usual by the requirement that

D(θ′)ψ(θ) = ψ(−θ′ + θ) , (1.3.136)

by considering an infinitesimal element D(dθ) = 1+ i dθ J we find

(1+ i dθ J)ψ(θ) = ψ(θ)− dθ dψ(θ)
dθ

, (1.3.137)

so that on functions ψ(θ) the infinitesimal generator si realized as

J = i∂θ . (1.3.138)

An irrep Dm acts on a space spanned by a function ψm(θ) characterized (see Eq. (??)) by

Jψm(θ) = mψm(θ) ⇔ i∂θψm(θ) = mψm(θ) , (m ∈ Z) , (1.3.139)

where we used Eq. (??). Eq. ??, with the condition that ψm(0) = 1, gives immediately

ψm(θ) = e−imθ . (1.3.140)

We may also consider the irreducible representations Dm as being obtained by the action of
the rotation group on some invariant 1-dimensional subspace of the space of functions ψ(r, θ) on
the two-dimensional plane. Here x =

(

x1

x2

)

and we introduced polar coordinates by x1 = r cos θ

and x2 = r sin θ. Since rotations R(θ) leave the radial distance invariant, we recover again a
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description in which these trasnformations act (for each fixed radius r) on an S1 parametrized
by an angle θ. We have

(1+ i dθ J)ψ (x) = ψ
(

R−1(dθ)x
)

= ψ (r, θ − dθ) = ψ(r, θ)− dθ dψ(θ)
dθ

, (1.3.141)

so that4

J = i∂θ = −i(x1∂2 − x2∂1) . (1.3.142)

Thus, J is nothing else but the angular momentum operator for rotations around an axis orthog-
onal to the x1, x2 plane. The condition Eq. (1.3.131) translates then, using the explicit expression
Eq. (1.3.142) of the infinitesimal generator of functions, into the differential equation

i ∂θψ(r, θ) = mψ(r, θ) , (1.3.143)

with the general solution
ψ(r, θ) = ϕ(r) e−imθ . (1.3.144)

A far as irreducible representations are concerned, we arrive, in exactly the same way as in
the SO(2) case, to the conclusion that in any irreducible representation Dp we have

Dp(x) = ei xP (1.3.145)

with P being represented as an Hermitean operator if we require that the representation be
unitary. We will therefore label by |p〉 the basis vector of an irreducible representation Dp where
P has real eigenvalue p:

P |p〉 = p|p〉 p ∈ R . (1.3.146)

Differently from rotations, no periodicity has to be imposed on x, so that no quantization arises
on the representation label p.

1.3.2 The Haar measure

A crucial role in many properties of finite group representations is played by the invariance,
Eq. (1.2.72), of the sum over group elements under left or right group multiplication. For Lie
groups, the sum over group elements must be replaced by integration over the group manifold. It is
extremely important to find an integration measure that is invariant under group multiplication.
It turns out that this is possible; let us discuss some points of the construction of the invariant
measure for a Lie group.

Let us use for the integration over a Lie group G of dimension d the notation

∫

G

Dg ≡
∫

G

ddαµ(α) , (1.3.147)

where the σ are explicit coordinates on G, and µ(α) a measure function.

4 Notice that also the generator J of Eq. (??) acting matricially on
(

x1
x2

)

can be expressed as a differential operator

i(x1∂2 − x2∂1). Indeed

i(x1∂2 − x2∂1)

(

x1

x2

)

= i

(

−x2

x1

)

= −i

(

0 1
−1 0

)(

x1

x2

)

.



Representations of Lie groups 25

The measure is left-invariant (and we denote it as DLg), or right-invariant (let it be DRg)
when

∫

G

DLg f(g) =

∫

G

DLg f(hg) ⇔ DLg = DL(hg) ;

∫

G

DRg f(g) =

∫

G

DRg f(gh) ⇔ DRg = DR(hg) . (1.3.148)

In terms of the measure density µL,R(α), the above invariance requrement reads

µL(α)d
dα = µL(ϕ(β, α))d

dϕ ,

µR(α)d
dα = µR(ϕ(α, β))d

dϕ , (1.3.149)

where {α} are the coordinates of the group element g, {β} those of h and ϕ : G×G→ G is the
bi-continuous, differentiable map which represents the group product, see sec. ??. Thus ϕµ(β, α)
are the coordinates of hg, and ϕµ(α, β) those of gh. Eq. (1.3.149) requires that

µL(α)

µL(ϕ(β, α))
= det

(

∂ϕ(β, α)

∂α

)

, (1.3.150)

where on the r.h.s appears the Jacobian determinant of the transformation from α to ϕ. Mutatis
mutandis, the same holds for the right-invariant measure:

µR(α)

µR(ϕ(α, β))
= det

(

∂ϕµ(α, β)

∂αν

)

. (1.3.151)

A general solution of the conditions Eq. (1.3.150) or Eq. (1.3.151) can be obtained by ex-
pressing µ(α) in terms of the particular constant value it assumes at the origin α = 0, by setting

µL(α) = µL(0)

[

det

(

∂ϕ(α, β)

∂β

)∣

∣

∣

∣

β=0

]−1

,

µR(α) = µR(0)

[

det

(

∂ϕ(β, α)

∂β

)∣

∣

∣

∣

β=0

]−1

. (1.3.152)

The constants µL,R(0) can be adjusted so that the volume of the group G computed with the
invariant metric, if it turns out to be finite, is normalized to 1.

1.3.2.1 Some examples

It is clear that the simplest solution to the condition Eq. (1.3.150) is obtained when the coor-
dinates ϕµ(β, α) are linear functions of the coordinates α. Such a situation is encountered, for
instance, for the SO(2) group described in sec. ??, and again in sec. 1.3.1; see Eq. (??):

ϕ(θ1, θ2) = θ1 + θ2 . (1.3.153)

When ϕµ(β, α) is linear in α, the Jacobian is trivial and a trivial constant measure µ(α) = const is
an invariant measure. In the SO(2) example, we obtain a measure both left- and right-invariant,
by setting simply5, for g = exp(θJ),

Dg =
dθ

2π
, (1.3.154)

5 The constant 1/2π is chosen so that the volume of the group computed with the invariant measure is normalized
to
∫

Dg = 1.
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so that, if h = exp(θ′J),

D(hg) =
d(θ′ + θ)

2π
= Dg . (1.3.155)

If we realize isomorphically the rotation group as U(1), i.e., if we use the irreducible representation
where J = i, the group elements are simply given by the uni-modular numbers g = eiθ and the
product law is simply the usual product. We could use directly g as coordinate, in which case
the invariant measure is

Dg =
1

2πi

dg

g
, (1.3.156)

which agrees with Eq. (1.3.154) under the change of variable g = eiθ. Indeed,

D(hg) =
1

2πi

d(hg)

hg
=

1

2πi

hdg

hg
=

1

2πi

dg

g
=

1

2πi

dg

g
. (1.3.157)

The U(1) group is locally isomorphic to the group GL(1,R), i.e. R\{0} with the usual prod-
uct. An invariant measure on GL(1,R) is given, following the same reasoning as in Eq. (1.3.157),
by

Dg =
dg

g
, (1.3.158)

which can be written simply as dx in terms of the exponential parametrization g = ex. We did
not include any normalization factor in Eq. (1.3.158) since the invariant volume of the group is
infinite (the group is non-compact).

The measure Eq. (1.3.158) generalizes to the matrix groups GL(n,R), parametrized by the
entries gij of the matrices g ∈ GL(n,R). Since the product law is realized as in Eq. (??), we have
the Jacobian matrix for left translations

∂(himg
m
j

∂gpq
= himδ

m
pδ
q
j = hipδ

q
j (1.3.159)

and the Jacobian determinant

det
(ij)(pq)

∂(himg
m
j

∂gpq
= det

(ij)(pq)
(hipδ

q
j) = det

ip
hdet
jq

1 = deth , (1.3.160)

where we indicated explicitely the matrix indices over which the determinants are to be under-
stood, where unclear. The same Jacobian would be found for right translations. The invariant
measure is therefore given by

Dg =

∏

i,j dg
i
j

det g
, (1.3.161)

so that indeed we have (for left translations, for instance)

D(hg) =

∏

i,j dhg
i
j

det(hg)
=

deth
∏

i,j dg
i
j

dethdet g
= Dg . (1.3.162)

For the special linear groups Sl(n,R), the n2 entries gij of the matrices give an over-
parametrization, as the constraint det g = 1 must hold (so that the actual dimension of the
group is n2 − 1). Nevertheless, in the coordinates gij the invariant measure would simply the
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trivial one,
∏

i,j dg
i
j , since the determinant in Eq. (1.3.161) is one. We can therefore write the

measure as
Dg = δ(det g − 1)

∏

i,j

dgij , (1.3.163)

from which the actual expression in terms of n2 − 1 parameters can be obtained by expressing,
for instance, one of the entries in terms of the remaining ones, or by other convenient changes of
variables.

1.3.2.2 Invariant measure for SU(2), first way.

A reasoning similar to the one used above for SL(n,R) can help to establish the invariant measure
for the SU(2) group. Recall (see Eq. (??)) that the special unitary 2 × 2 matrices g can be
parametrized in terms of 4 real parameters xa (a = 0, 1, 2, 3), as

g = x01+ ixiσi , (1.3.164)

with the constraint
∑

a

(xa)
2 = 1 (1.3.165)

corresponding to the requirement that det g = 1. A group translation (e.g., a left one) g → hg
gives a matrix parametrized by some new numbers x′a, depending linearly on the xa (similarly to
Eq. (1.3.159)) and subject to the constraint that

∑

a(x
′
a)
2 = 1. Since the norm of the vector xa

is preserved, the linear transformation must actually be an orthogonal transformation:

(x′)a = Labx
b , detL = 1 , (1.3.166)

whose Jacobian determinant is 1. The invariant measure on the group manifold, which according
to Eq. (1.3.165) is evidently the three-sphere S3 of unit radius, can be simply written, in the
coordinates xa of the R4 space in which S3 is embedded, as

Dg = δ(
∑

a

(xa)
2 − 1)

∏

a

dxa . (1.3.167)

Namely, the sphere has the natural measure induced by its immersion in R4. By changing to
suitable polar coordinates in R4, the constraint can be explicitely solved and the measure easily
written down. In particular, let us consider the parametrization suggested by the exponentiation
of the su(2) Lie algebra, Eq. (??), which we reopeat here for convenience:

g = cos
ψ

2
1+ i sin

ψ

2
α̂iσi . (1.3.168)

where ψ ∈ [0, 2π] and the versor α̂ individuates a point on S2 and can be therefore parametrized
by the usual polar angles θ ∈ [0, π] and φ ∈ [0, 2π] in R3:

α̂i = (sin θ cosφ, sin θ sinφ, cos θ) . (1.3.169)

Comparing with Eq. (1.3.164), we see that the exponential parametrization Eq. (1.3.168) corre-
sponds to the following choice of polar coordinates:

x0 = r cos
ψ

2
,
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x1 = r sin
ψ

2
sin θ cosφ ,

x2 = r sin
ψ

2
sin θ sinφ ,

x3 = r sin
ψ

2
cos θ . (1.3.170)

Of course, in these coordinates the sphere constraint Eq. (1.3.165) corresponds simply to r = 1.
By straightforward computation (do it as an exercise) the Jacobian determinant of the above
coordinate change is given by

∣

∣

∣

∣

∂(x0, x1, x2, x3)

∂(r, ψ, θ, φ)

∣

∣

∣

∣

= r3
1

2
sin2

ψ

2
sin θ . (1.3.171)

The invariant measure for SU(2) in the parametrization Eq. (1.3.168) is thus given by

Dg =
1

2π2
sin2

ψ

2
d
ψ

2
sin θdθ dφ =

1

2π2
sin2

ψ

2
d
ψ

2
dΩ2 , (1.3.172)

where dΩ2 is the usual volume element for the sphere S2. The constant in front has been chosen
so that the volume is normalized to 16:

∫

SU(2)

Dg =
1

2π2

∫ 2π

0

sin2
ψ

2
d
ψ

2

∫ π

0

sin θdθ

∫ 2π

0

dφ = 1 . (1.3.173)

1.3.2.3 A general expression in Lie-algebraic terms

We have discussed in sec. ?? the adjoint action of the elements of a Lie group G over its Lie
algebra G. Let’s parametrize the elements of a Lie group G via the exponential map:

g(α) = eα
aJa , (a = 1, . . . ,dimG) , (1.3.174)

in terms of a basis of generators Ja. Let us consider the expression

g−1(α)
∂g(α)

∂αa
. (1.3.175)

By direct computation (do it as an exercise) one can show that

g−1(α)
∂g(α)

∂αa
=

(

Ja +
1

2!
[Ja, α · J ] +

1

3!
[[Ja, α · J ] , α · J ] + . . .

)

, (1.3.176)

i.e., it belongs to the Lie algebra G. It can be therefore expanded on the basis the generators
{J}, defining

g−1(α)
∂g(α)

∂αa
≡ [A(α)] ba (α) Jb . (1.3.177)

The expression
µ(α) = detA(α) , (1.3.178)

6 In general, the volume of the unit Sn sphere embedded into Rn+1 is given by 2π
n+1

2 /Γ(n+1

2
. Prove this formula

for exercise (Hint: write a gaussian integral in polar coordinates:
∫

dn+1xe−x
2
=
∫∞
0

rndrdΩn, where dΩn is the
volume element for Sn, and evaluate the two sides.
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where A is the matrix of components A b
a defined in Eq. (1.3.177), has the right properties to

represent a left-invariant measure on the group G. Let us first notice that this measure does not
depend on the explicit coordinate choice. Changing variables to any other local coordinates {β},
we have

[A(β)] ba Jb = g−1
∂g

∂βa
= g−1

∂g

∂αc
∂αc

∂βb
=
∂αc

∂βb
[A(α)] bc Jb , (1.3.179)

i.e., we have, in matrix notation,

A(β) = ∂α

∂β
A(α) . (1.3.180)

Defining µ(β) = detA(β) in accordance with Eq. (??), gives thus

µ(β) = det

(

∂α

∂β

)

µ(α) , (1.3.181)

so that the volume element is indeed invariant:

µ(β)ddβ = µ(α) det

(

∂α

∂β

)

det

(

∂β

∂α

)

ddα = µ(α)ddα , (1.3.182)

having taken into account the Jacobian determinant. Now, having chosen local coordinates α at
the point g, and for a fixed h ∈ G, let us define local coordinates at the left-tranlated point hg
by declaring

(hg)(α) = h g(α) . (1.3.183)

With this choice of coordinates, we have

(hg)−1
∂

∂αa
(hg) = g−1h−1h

∂g

∂αa
= g−1

∂g

∂αa
. (1.3.184)

It follows then from the definition Eq. (1.3.178) that

µhg(α) = µg(α) , (1.3.185)

where we denoted explicitely the point to which the measure is referred. We have shown above
that the measure µhg(α)d

dα does not depend explicit on a specific choice of coordinates, such as
Eq. (1.3.183). Therefore we have shown that the measure Dg = µg(α)d

dα is left-invariant:

D(hg) = Dg . (1.3.186)

Similarly, we can define a right-invariant measure by choosing

µ̃(α) = det Ã(α) , (1.3.187)

where the matrix A(α) is defined by

∂g(α)

∂αa
g−1(α) ≡ [Ã(α)] ba (α) Jb . (1.3.188)

Indeed, one can show that ∂g(α)
∂αa

g−1(α) belongs to the Lie algebra, analogously to what we did

in Eq. (1.3.176) for g−1(α)∂g(α)
∂αa

.
The expression of the invariant measures Eq. (1.3.178), Eq. (1.3.187) given in this section

must agree with the expressions given in Eq. (1.3.152). Let us show this explicitely, as a sort of
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exercise focusing, for instance, on the left-invariant measure. Using the exponential parametriza-
tion of Eq. (1.3.174), the function ϕ(β, α) that describes the group product is implicitely defined
by

eβ·Jeα·J = eϕ(β,α)·J . (1.3.189)

Notice that ϕ(β, α = 0) = β. Let us consider the derivative w.r.t. αa, evaluated at α = 0, of this
relation. From the r.h.s., we have

∂eϕ·J

∂αa

∣

∣

∣

∣

α=0

=
∂ϕc

∂αa

∣

∣

∣

∣

α=0

∂eϕ·J

∂ϕc

∣

∣

∣

∣

α=0

. (1.3.190)

Using Eq. (??), we rewrite this as follows:

∂eϕ·J

∂αa

∣

∣

∣

∣

α=0

=
∂ϕc

∂αa

∣

∣

∣

∣

α=0

(

eϕ·J [A(ϕ)] bc Jb
)∣

∣

α=0
=

∂ϕc

∂αa

∣

∣

∣

∣

α=0

eβ·J [A(β)] bc Jb . (1.3.191)

From the l.h.s. of Eq. (1.3.189) we get instead

∂(eβ·Jeα·J )

∂αa

∣

∣

∣

∣

α=0

= eβ·J
∂(eα·J )

∂αa

∣

∣

∣

∣

α=0

= eβ·J
(

eα·JJa
)∣

∣

α=0
, (1.3.192)

where we have used the fact that ∂eα·J/∂αa = Ja, as it follows from Eq. (1.3.176), which is nothing
else than the deinition of infinitesimal generators. Comparing Eq. (1.3.191) and Eq. (1.3.192) we
see that

∂ϕc(β, α)

∂αa

∣

∣

∣

∣

α=0

[A(β)] bc = δ ba , (1.3.193)

so that, in matrix notation,
∂ϕ(β, α)

∂α

∣

∣

∣

∣

α=0

= [A(β)]−1 . (1.3.194)

Therefore, the expressions Eq. (1.3.178) and Eq. (1.3.152) of the invariant measure coincide:

µL(β) = detA(β) =
[

det

(

∂ϕ(β, α)

∂α

)∣

∣

∣

∣

α=0

]−1

. (1.3.195)

Haar measure for compact Lie groups It is possible to proof that, for a compact Lie group, the
left- and right-invariant measures defined above coincide (see [?] for the proof):

DLg = DRg ≡ Dg , (1.3.196)

and this measure Dg, enjoying both left- and right-invariance, is called theHaar measure on the
group. The volume of the group G computed with the Haar measure is finite:

Vol(G) =

∫

G

Dg <∞ . (1.3.197)

The integration over a compact Lie group with the Haar measure has essentially the same prop-
erties as the discrete sum over the elements of a finite group. Thus, many results about repre-
sentation theory which we will derive for finite groups extend naturally to compact Lie groups
upon replacing all sums over group elements with invariant integrations.

In particular, all representations of a compact Lie group are unitary and, if reducible, fully
reducible.
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1.3.2.4 Invariant measure for SU(2), second way.

Let us apply the recipe given in the previous subsection to the group SU(2). Let us choose the
generators

Ji =
i

2
σi , (1.3.198)

where σi are the Pauli matrices. A generic group element g can be parametrized as

g(α) = eα
iJi = e

i
2
αiσi = cos

|~α|
2
1+ i cos

|~α|
2
α̂iσi , (1.3.199)

see Eq. (??) in sec. ??, where α̂i = αi/|~α|. We can therefore compute explicitely7

∂g(α)

∂αi
= −1

2
sin
|~α|
2
α̂i1+

i

2
cos
|~α|
2
α̂iα̂jσj + i sin

|~α|
2

δij − α̂iα̂j
|~α| σj , (1.3.200)

finding, after some algebra,

g−1(α)
∂g(α)

∂αi
=

(

α̂iα̂j +
sin |~α|
|~α|

(

δij − α̂iα̂j
)

− 2
sin2 |~α|2
|~α| εijkα̂k

)

i

2
σj . (1.3.201)

We see that indeed g−1 ∂g
∂αi

belongs to the Lie algebra, as it can be expanded on the generators

Ji =
i
2σi. According to the definition Eq. (1.3.177), we have

A j
i =

αiαj

|~α|2 +
sin |~α|
|~α|

(

δij − αiαj

|~α|2
)

− 2
sin2 |~α|2
|~α|2 εijkαk . (1.3.202)

By direct computation, one finds

detA = 4
sin2 |~α|2
|~α|2 . (1.3.203)

We can therefore write the left-invariant measure on SU(2) in terms of the coordinates αi as

Dg ∝ sin2 |~α|2
|~α|2 dα1dα2dα3 . (1.3.204)

Changing to polar coordinates in the α space, and calling then ψ = |~α| as in sec. 1.3.2.4 above,
we have

Dg ∝ sin2 |~α|2
|~α|2 |~α|

2d|~α|dΩ2 = sin2
ψ

2
dψdΩ , (1.3.205)

in agreement with the measure we found in Eq. (1.3.172). . . .

1.3.3 Orthogonality properties

The proof of the orthogonality properties of matrix elements of irreducible group representations
established in sec. ?? extends to the case of Lie groups for which we can find an invariant
measure. If we label by Dµ the irreducible representations of the Lie group G, we will have

∫

Dg [Dµ(g)]
i
j [Dµ(g

−1]kl =
1

dµ
δµν δ

i
l δ
k
j . (1.3.206)

7 Recall that |~α| =
√
∑

i(α
i)2, so that ∂i|~α| = αi/|~α| = α̂i and ∂iα̂

j = ∂i(α
i/|~α|) = . . . = (δji − α̂iα̂j)/|~α|.
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Similarly, also the characters χµ(g) in the irreducible representations are orthogonal with
respect to the Haar measure:

∫

Dgχµ(g)χν(g)∗ = δµν . (1.3.207)

1.3.4 Multi-valued representations

Consider a non-simply connected group Ĝ, so that its fundamental group Π1(Ĝ) is a non-trivial
group. We can can construct multi-valued representations of this group, as follows. If D is a
representation of Ĝ, we obtain a multi-valued representation DΓ of Ĝ by associating to every
ĝ ∈ Ĝ several images:

DΓ : ĝ ∈ Ĝ 7→ D(ĝ)Γ(γ) , ∀γ ∈ Π1(Ĝ) , (1.3.208)

where Γ is a representation of Π1(Ĝ). The idea is that one requires only that DΓ is an homo-
morphism for small group elements, i.e. elements close to the identity. Consider now a loop
γ(t) based in an element ĝ ∈ Ĝ. We assign continously to every element γ(t) on the path a
representative DΓ(γ(t)). Given the continuity of the product law on Ĝ, it follows that DΓ(γ(t))
changes smoothly under continuous deformations of the path γ, so it can depend at most on the
homotopy class of γ. If γ is trivial, we have DΓ(γ(1)) = DΓ(γ(0)) = DΓ(ĝ). If γ is non-trivial,
then we may have different images for ĝ = γ(0) = γ(1):

DΓ(γ(1)) = Γ(γ)DΓ(γ(0)) 6= DΓ(γ(0)) . (1.3.209)

It is clear that this behaviour is consistent only if it respects the product of loops, namely if it
respects the group product in Π1(Ĝ). Thus we obtain Eq. (1.3.208).

As we discussed above, the non-simply-connected group Ĝ can in fact be seen as the factor
group G/D, where the discrete group D is isomorphic to Π1(Ĝ). The multi-valued representations
DΓ of Ĝ, see Eq. (1.3.208), are ordinary representations of the cover group G. Indeed, consider
a representation D of G. If in this representation the subgroup D is mapped to the identity,
D(D) = D(e) = 1, the representation D descends naturally to a representation of the factor
group Ĝ = G/D. It corresponds in Eq. (1.3.208) to the case where Γ is the trivial representation
of Π1(Ĝ). Otherwise, it induces a multi-valued representation of Ĝ. Writing an element g ∈ G
as g = ĝγ, with ĝ ∈ Ĝ and γ ∈ D, we have

D(g) = D(ĝ)D(γ) . (1.3.210)

From the point of view of the group Ĝ, D assigns to a given element ĝ ∈ Ĝ a number of different
images:

D : ∈̂Ĝ 7→ D(ĝ)D(γ) , ∀γ ∈ D , (1.3.211)

and we retrieve Eq. (1.3.208). The multi-valued representations still respect the Ĝ product, up
to the ambiguity inherent to the definition Eq. (1.3.211): one has (check the steps for exercise)

D(ĝ1)D(γ1)D(ĝ2)D(γ2) = D(ĝ1ĝ2)D(ĝ−12 γ1ĝ2 γ2) (1.3.212)

(recall that D is a normal subgroup so ĝ−12 γ1ĝ2 ∈ D).

Example: multi-valued representations of SO(2). We have seen in Eq. (??) that the multiply-
connected group SO(2), can be seen as the quotient of (R,+) by Z. Indeed we have Π1(SO(2)) =
Z. In this framework, SO(2) is naturally parametrized by a = θ/2π ∈ [0, 1] (with periodic
identification). Multi-valued representations of SO(2)
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1.3.5 Tensor methods: irreducible representations of GL(n,R)

...

1.3.6 Representations of the SU(2) and SO(3) groups

1.3.6.1 Finite-dimensional representations of the su(2) algebra

Let us use combine the generators Ji =
i
2σi into the Cartan basis:

H = iJ3 =
1

2

(

1 0
0 −1

)

,

J± = i(J1 ± iJ2) , (1.3.213)

so that J+ and J− are respectively the raising and lowering operators

J+ =

(

0 1
0 0

)

, J− =

(

0 0
1 0

)

. (1.3.214)

The commutation relations are

[H, J±] = ± J± ,

[J+, J−] = 2H . (1.3.215)

Let us notice that the quadratic Casimir operator reads

C = 2H2 + J+J− + J−J+ (1.3.216)

and can be rewritten, using the algebra Eq. (1.3.215), as either

C = 2H(H + 1) + 2J−J+ (1.3.217)

or
C = 2H(H − 1) + 2J+J− . (1.3.218)

In any irreducible representation of this algebra, the eigenvalue c of the Casimir is fixed.
Within the representation, we can label the states by means of the eigenvalue of the H generator:
we denote thus the states as

|c;m〉 , (1.3.219)

such that
H|c;m〉 = m|c;m〉 , C|c;m〉 = c|c;m〉 . (1.3.220)

Let us suppose that these states are normalized to 1:

〈c,m|c,m′〉 = δm,m′ . (1.3.221)

The raising and lowering operators do indeed raise and lower the H-eigenvalue:

HJ±|c;m〉 = ([H, J±] + J±H) |c;m〉 = (±J± + J±m) |c;m〉 = (m± 1)J±|c;m〉 , (1.3.222)

so that
J±|c;m〉 ∝ |c;m± 1〉 . (1.3.223)
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The proportionality constant is fixed by the normalization requirement Eq. (1.3.221). The squared
norm of J±|c;m〉 is given by

〈c;m|J∓J±|c;m〉 = 〈c;m|C/2−H(H ± 1)|c;m〉 = (c/2−m(m± 1)) , (1.3.224)

where we used the relations (1.3.217),(1.3.218). Thus we have

J±|c;m〉 =
√

c/2−m(m± 1)|c;m± 1〉 . (1.3.225)

Looking for a finite-dimensional representation, we have to assume that there exist a state
(the highest state) |c; j〉 that is annihilated by the raising operator, otherwise we would have an
infinity of states of increasing H-eigenvalue. We require thus that

J+|c; j〉 = 0 (1.3.226)

for some appropriate value j. Using Eq. (1.3.217), this requirement fixes the Casimir eigenvalue
in terms of j:

C|c; j〉 = 2 (H(H + 1) + J−J+) |c; j〉 = 2j(j + 1)|c; j〉 ⇒ c = 2j(j + 1) . (1.3.227)

At this point, we should label the states as |2j(j + 1);m〉; for ease of use, let us simplify the
notation as follows:

|2j(j + 1);m〉 → |j;m〉 . (1.3.228)

The eigenvalues of H within the representation have also to be bounded from below, other-
wise we would get an infinity of states. Thus, after having applied k times the lowering operator
J−, to the highest state |j; j〉 we must find a lowest state |j; j − k〉 such that

J−|j; j − k〉 = 0 . (1.3.229)

The norm of the state J−|j; j − k〉 which, according to Eq. (1.3.224) is given by

〈j; j − k|J+J−|j; j − k〉 = j(j + 1)− (j − k)(j − k − 1) = (2j − k)(k + 1) (1.3.230)

must therefore vanish, which requires
j = k/2 . (1.3.231)

Thus, irreducible representations of su(2) are characterized by a semi-integer spin j. The irrep
Dj of spin j, in which the Casimir takes the value 2j(j + 1), has dimension

dimDj = 2j + 1 . (1.3.232)

Indeed, it is spanned by the 2j + 1 states of definite H-eigenvalue m

|j;m〉 , m = j, j − 1, j − 2, . . . ,−j + 1,−j . (1.3.233)

The matrix elements of the generators in the representation of spin j are given, according
to the above eq.s (1.3.220) and (1.3.225), by

[Dj(H)]
mm′

= 〈j;m|H|j;m′〉 = m′〈j;m|j;m′〉 = m′ δm,m′ ,

[D(J−)]mm′ = 〈j;m|J−|j;m′〉 = Nm′〈j;m|j;m′〉 = Nm′ δm,m′−1 ,

[Dj(J+)]mm′ = 〈j;m|J+|j;m′〉 = Nm′+1〈j;m|j;m′〉 = Nm′+1 δm,m′+1 , (1.3.234)
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where
Nm =

√

j(j + 1)−m(m− 1) =
√

(j +m+ 1)(j −m) . (1.3.235)

For the basis Ji of generators, inverting the change Eq. (1.3.213) to the Cartan basis, we
have

[Dj(J3)]mm′ = = −im′ δm,m′ ,

[D(J1)]mm′ = − i

2
(Nm′+1 δm,m′+1 +Nm′ δm,m′−1) ,

[D(J2)]mm′ =
1

2
(−Nm′+1 δm,m′+1 +Nm′ δm,m′−1) . (1.3.236)

As an example, let us check that for j = 1/2 we retrieve the fundamental bi-dimensional
representation of su(2), in which the generators are given by Ji =

i
2σi. The casimir is 2j(j+1) =

3/2. From Eq. (1.3.235), we find

N 1
2
=

√

3

4
− 1

2

(

1

2
− 1

)

= 1 ,

N− 1
2
= 0 . (1.3.237)

Notice that, according to Eq. (1.3.235), N−j = 0 in the irrep of any spin j. Collecting in matrix
notation the matrix elements (with m = 1/2,−1/2 corresponding to the first, second row, and
m′ = 1/2,−1/2 to the first, second column) given in Eq. (1.3.236), we find

D 1
2
(J3) = − i

(

1
2 0
0 − 1

2

)

= − i

2
σ3 ,

D 1
2
(J1) = −

i

2

(

0 1
1 0

)

= − i

2
σ1 ,

D 1
2
(J2) =

1

2

(

0 −1
1 0

)

= − i

2
σ2 . (1.3.238)

The next example is provided by the j = 1 representation, which is 3-dimensional. The
Casimir is 2j(j + 1) = 4. The non-zero coefficients Nm =

√

2−m(m− 1) are

N1 =
√
2 , N0 =

√
2 . (1.3.239)

The matrices cooresponding to the matrix elements Eq. (1.3.236), again with the convention that
rows are labeled by decreasing m and coumns by decreasing m′, are then the following:

D1(J3) = − i





1 0 0
0 0 0
0 0 −1



 ,

D1(J1) = −
i

2





0 N1 0
N1 0 N0

0 N0 0



 = − i√
2





0 1 0
1 0 1
0 1 0



 ,

D1(J2) =
1

2





0 −N1 0
N1 0 −N0

0 N0 0



 =
1√
2





0 −1 0
1 0 −1
0 1 0



 . (1.3.240)
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These matrices are equivalent to the usual so(3) generators Li given in Eq.s (??,??). As we
remarked after the afore-mentioned eq.s, these generate the adjoint representation of su(2), since
(Li)

k
j = c k

ij = εijk, in accordance with the definition Eq. (??) of the adjoint generators.
The similarity transformation from the Li to the D1(Ji) is the one that diagonalizes L3 and

reorders its eigenvalues ±i, 0 as in D1(J3) above
8.

1.3.6.2 Finite-dimensional representations of the SU(2) group

As we discussed in general, the irreducible group representations are obtained by exponentiating
the irreducible representations of the Lie algebra. The finite-dimensional SU(2) irrepses Dj are
therefore labeled by a semi-integer spin j, have dimension 2j + 1 and are given by

Dj(g = eα
iJi) = exp

(

αiDj(Ji)
)

, (1.3.243)

where Dj(Ji) are the Lie algebra generators is the irrep of spin j described in the previous section
1.3.6.1, see Eq. (1.3.236).

The matrix exponential in the r.h.s. of Eq. (1.3.243) is defined as a power series; it is not
immediate to resum explicitely this series and get explicit expressions, but some results can be
achieved.

First of all, consider the j = 1/2 case, which is nothing else than the defining (or fundamental
representation in which the Lie algebra elements are antihermitean, traceless matrices and the
Lie group elements are unitary, unimodular matrices. In this case we already carried out several
times the exponentiation (see, e.g., Eq. (1.3.168)): choosing Ji = − i

2σi, we have

g(α) ≡ exp
(

αiJi
)

= cos |α|1− i sin |α|α̂iσi , (1.3.244)

which we can write, passing to coordinates ψ = |α| and to polar coordinates (θ, φ) for the versor
α̂, as in Eq. (1.3.169), as

g(ψ, θ, φ) =

(

cos ψ2 − i sin ψ
2 cos θ −i sin ψ

2 sin θe−iφ

−i sin ψ
2 sin θeiφ cos ψ2 + i sin ψ

2 cos θ

)

. (1.3.245)

The direct exponentiation of the j = 1 Lie algebra element αiD1(Ji) (corresponding,as we
just saw, to the adjoint representation of su(2) and to the fundamental representation of so(3)),
was carried out in sec. (??), eq.s (??-??).

Non-canonical parametrizations. Euler angles For higher j representations, the direct exponen-
tiation of a generic Lie algebra element αiDj(Ji) becomes involved. It is convenient to make use
of non-canonical parametrizations of the group elements (see [?], chap. 5, sec. VI for several

8 Note however that in Eq. (??) we had chosen the Li to satisfy the algebra [Li, Lj ] = −εijk, while in this section
we chose [Ji, Jj ] = εijk. The similarity can only be to a set of generators satifying exactly the same algebra, for
instance D1(J1),−D1(J2),D1(J3), so we may take explicitely

T−1L1,3T = D1(J1,3) , T−1L2T = −D1(J2) , (1.3.241)

where

T =







− 1√
2

0 1√
2

i√
2

0 i√
2

0 1 0






. (1.3.242)
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examples of such parametrizations) . For instance, a generic element of the group SU(2) can be
parametrized as follows:

g(α, β, γ) = eγJ3eβJ2eαJ3 . (1.3.246)

If Ji are geometrically interpreted as the so(3) generators9, namely the generators of rotations in
the 3-dimensional Euclidean space, the above parametrization corresponds to the parametrization
of a generic rotatation by means of Euler angles. More on this later.

Utilizing the Cmpbell-Hausdorff formulae, one finds indeed (check the first terms for exercise)

eγJ3eβJ2eαJ3 = e[
1
2
(α−γ)+β+...]J1+(β+...)J2+(α+γ+...)J3 = eα

i(α,β,γ)Ji . (1.3.247)

The three independent functions αi(αβγ), connecting the canonical parametrization of a generic
group element to its Euler angles parametrization, are in principle completely determined by
the direct application of Cambell-Hausdorff relations, and depend thus only on the commutation
relations of the generators. They are the same in whatever representation.

This being the case, to derive the explicit relation between the two parametrizations it is
convenient to work in the fundamentale j = 1/2 representation, where the exponentials both
in the canonical and the Euler-angles expression of a group element are easily worked out. In
the canonical parametrization we obtained, using the coordinates ψ, θ, φ, Eq. (1.3.245). For the
parametrization in Eq. (1.3.246) we have obviously

eαJ3 = e−
i
2
ασ3 =

(

e−i
α
2 0

0 ei
α
2

)

, (1.3.248)

and similarly for eγJ3 . We also have (it is just a particular case of Eq. (1.3.244))

eβJ2 =

(

cos β2 − sin β
2

sin β
2 cos β2

)

. (1.3.249)

Altogether we find (check it)

eγJ3eβJ2eαJ3 =

(

cos β2 e
−iα+γ

2 − sin β
2 e
−iα−γ

2

sin β
2 e

iα−γ
2 cos β2 e

iα+γ
2

)

. (1.3.250)

Comparing with the real and imaginary parts of the matrix elements in Eq. (1.3.245), one obtains
following relations:

φ =
π − α+ γ

2
,

sin
ψ

2
sin θ = sin

β

2

cos
ψ

2
= cos

β

2
cos

α+ γ

2
,

sin
ψ

2
cos θ = cos

β

2
sin

α+ γ

2
(1.3.251)

(the last three relations are not independent: the square of the second second is obtained by
summeing the squares of the third and fourth ones). The analyitic relation between the two

9 That happens, as explained above, in the representation of spin j = 1.
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parametrizations can then be described, for instance, as follows:

φ =
π − α+ γ

2
,

cos
ψ

2
= cos

β

2
cos

α+ γ

2
,

tan θ = tan
β

2

1

sin α+γ
2

. (1.3.252)

Using the non-canonical parametrization Eq. (??), the matrix representative of a group
element g(α, β, γ) in a representation of spin j is given by

Dj(α, β, γ) = Dj(e
γJ3)Dj(e

βJ2)Dj(e
αJ3) = eγDj(J3)eβDj(J2)eαDj(J3) . (1.3.253)

Using the fact that J3 = −iH is represented diagonally, see Eq. (1.3.236), can write the matrix
elements of Dj(α, β, γ) as

[Dj(α, β, γ)]mm′ = e−iγmd(β)jm,m′e
−iαm′ , (1.3.254)

where

d(β)jm,m′ ≡ 〈j;m|eβJ2 |j;m′〉 . (1.3.255)

The functions d(β)jmm′ can be determined by showing that they satisfy the following two
differential recursion relations:

[

sinβ
∂

∂β
+ (m− cosβm′)

]

d(β)jm,m′ = − sinβNm′+1d(β)
j
m,m′+1 ,

[

sinβ
∂

∂β
+−(m− cosβm′)

]

d(β)jm,m′ = sinβNm′d(β)
j
m,m′−1 . (1.3.256)

These relations can bederived as follows. On the one hand, we have

〈j;m|J3eβJ2 |j;m′〉 = −imd(β)jm,m′ . (1.3.257)

On the other hand, since

J3e
βJ2 = eβJ2e−βJ2J3e

βJ2 = eβJ2 (cosβJ3 − sinβJ1) (1.3.258)

(which is easily verified by direct computation, and corresponds to the fact that the generators
Ji behave as vectors under rotations), we have

〈j;m|J3eβJ2 |j;m′〉 = 〈j;m|eβJ2 (cosβJ3 − sinβJ1) |j;m′〉
= − im cosβd(β)jm,m′ + i sinβ〈j;m|eβJ2 (±J2 + J±) |j;m′〉

= − im cosβd(β)jm,m′ ± i sinβ
∂

∂β
d(β)jm,m′ + i sinβ〈j;m|eβJ2J±|j;m′〉 .

(1.3.259)

In the second step, we reexpressed J − 1 in terms of J2 and J+ or J−, using Eq. (1.3.213). From
Eq. (1.3.259), the relations Eq. (1.3.256) follow straightforwardly.
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Out of two recursive relations in Eq. (1.3.256) it is possible to derive a second-order differ-
ential equation obeyed by the d(β)jm,m′ functions (see [?], sec. 8.5):
[

1

sinβ

d

dβ
sinβ

d

dβ
− 1

sin2(β)

(

(m′)2 +m2 − 2mm′ cosβ
)

+ j(j + 1)

]

d(β)jm,m′ = 0 . (1.3.260)

This allows to relate the d(β)jm,m′ to the Jacobi polynomials Pα,βl (x), by comparing Eq. (1.3.260)
with the hypergeometric differential equation satisfied by the latter, see e.g. [?], eq. 8.964. One
gets (see [?], sec. 8.5)

d(β)jm,m′ =

√

(j +m)!(j −m)!

(j +m′)!(j −m′)!

(

cos
β

2

)m+m′ (

sin
β

2

)m−m′

Pm−m
′,m+m′

j−m (cosβ) . (1.3.261)

Specializing to the case m′ = 0 (which implies that j has to be integer: let us denote it as l
to remark this fact), we have

d(β)lm,0 =

√

(l +m)!(l −m!

l!

1

2m
(sinβ)mPm,ml−m (cosβ) . (1.3.262)

Eq. 8.961.4 of [?] states that

Pm,ml−m (x) = 2m
l!

(l +m)!

dm

dxm
P 0,0
l (x) , (1.3.263)

and moreover, see 8.962.2 of [?], P 0,0
l (x) are just the Legendre polynomials: P 0,0

l (x) = Pl(x).
Thus Eq. (1.3.264) is rewritten as

d(β)lm,0 =

√

(l −m)!

(l +m)!
(sinβ)m

dm

d cosβm
Pl(β) =

√

(l −m)!

(l +m)!
Pml (β) , (1.3.264)

where Pml (β) ≡ (sinβ)m dm

d cos βmPl(β) are the so-called associated Legendre functions.

Consider the matrix elements of the group representatives [Dl(α, β, γ)]m0. Using Eq. (1.3.254)
and Eq. (1.3.264) we can relate them to spherical harmonic functions Y m

l :

[Dl(α, β, γ)]m0 = e−imαd(β)lm,0 =

√

(l −m)!

(l +m)!
e−imαPml (β) =

√

4π

2l + 1
(−1)mNlme−imαPml (β)

=

√

4π

2l + 1
Y ml (β, π − α) , (1.3.265)

where Nlm = (−1)m
√

2l+1
4π

(l−m)!
(l+m)! is the usual normalization factor of the spherical harmonic

functions
Y ml (θ, φ) ≡ Nlmeimφ Pml (cos θ) . (1.3.266)

1.3.6.3 Irreducible representations of SU(2) by tensor methods

1.3.6.4 Finite-dimensional representations of the SO(3) group

As we discussed in sec.s ?? and ??, the Lie algebra of three-dimensional rotation group SO(3) is
isomorphic to that of SU(2), and the two groups are thus locally isomorphic. However, globally
they differ, and SO(3) = SU(2)/Z2.

...
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Spinors The rotation group in three dimensions, SO(3), is non simply-connected. We explicitely
showed indeed, in Sec. ??, that SO(3) = SU(2)/Z2. The group SU(2) is simply connected: as
a manifold it is S3, so it is the covering group of SO(3), which as a manifold is S3/Z2, and
has Π1(S

3/Z2) = Z2. Faithful representations of SU(2), for instance the fundamental 2 × 2 on
which SU(2) acts naturally, constitute doubly valued representations of SO(3). The elements of
the carries spaces of such doubly-valued representations, i.e., the objects transforming in such
representations, are called spinors. The electron wave function has a spinorial nature.

1.3.7 Representations of Euclidean and Poincaré groups

Let us consider now the Euclidean groups Eucld = O(d)sRd, namely the isometry group of d-
dimensional flat space Rd, as well as their generalization to spaces with Minkowskian signature,
O(p, q)sRp+q, a particular case of which is the Poincaré group O(1, 3)sR4.

These group are semi-direct products of (pseudo)-rotation groups with translation groups.
The translation group form an invariant subgroup, so these groups are not simple; since the
invariant translation subgroup is also Abelian, they are not semi-simple either.

These (pseudo)-Euclidean groups are obviously of great relevance in Physics. It is there-
fore important to understand their irreducible representations. Being Lie groups, it is clear that
we can proceed by studying the representations of the associated Lie algebrae, and then expo-
nentiate. However, we will here pursue first the possibility, offered by the semi-direct product
structure of the (pseudo)-Euclidean groups, to build their irreducible representations starting
from representations of “smaller groups” related to the factor group w.r.t. the invariant transla-
tion group, namely to the rotations. This goes under the name of induced representation method,
as it generalizes the induced representations discussed in sec. 1.1.9.

We proceed by studying first the simplest example of ISO(2) = SO(2)sR2 (for simplicity,
we leave out the inversions, i.e. we consider the component of Eucl2 connected to the identity).
Then we consider ISO(3) = SO(3)sR3, which displays already the general structure of all ISO(d)
groups. Finally, we move to the restricted Poincaré group ISO(1, 3) = SO(1, 3)sR4, which follows
a pattern similar to that of Euclidean groups, but where the Minkowskian signature implies several
important differences.

1.3.7.1 Representations of ISO(2)

Let us recall the Lie algebra of ISO(2). Using as much as possible the conventions and notations
of sec.s ?? and 1.3.1. Let us denote by P = (P1, P2) the generators of R2, and by J the generator
of SO(2). The Lie algebra is summarized in the commutation relations

[P1, P2] = 0 ,

[J, Pi] = iεijPj . (1.3.267)

The first relation simply states that the translation subgroup is abelian, while the second implies
that it is an invariant subgroup, and that the generators P transform under the rotation subgroup
as a two-dimensional vector. Recalling that the finite group elements (translations and rotations)
are given by

T (b) = eib·P , R(θ) = eiθJ , (1.3.268)

we can infer from the infinitesimal commutations Eq. (1.3.267) the “adjoint” action Eq. (??) of
the rotations on the translations. Indeed, we have (using the properties of the exponential map)

R(θ)T (b)R−1(θ) = eiθJeib·Pe−iθJ = exp
(

i eiθJ (b ·P)e−iθJ
)

. (1.3.269)
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Moreover, (using a matrix notation where ε is the matrix of components εij , and satisfies thus
ε2 = −1)

eiθJPe−iθJ = P+ iθ [J,P] +
(iθ)2

2!
[J, [J,P]] +

(iθ)3

3!
[J, [J, [J,P]]] . . .

= P− θεP+
θ2

2!
ε2P− θ3

3!
ε3P+ . . .

=

(

(1− θ2

2!
+ . . .)1− (θ − θ3

3!
+ . . .)ε

)

P = (cos θ1− sin θε))P

= R−1(θ)P . (1.3.270)

Inserting Eq. (??) into Eq. (1.3.269), and taking into account the orthogonality of he matrix
R(θ), we find

R(θ)T (b)R−1(θ) = exp
(

ib · R−1(θ)P
)

= exp (i(R(θ)b ·P) = T (R(θ)b) , (1.3.271)

in accordance with Eq. (??).
The ISO(2) group admits a quadratic Casimir, given by

P 2 = P ·P = P 2
1 + P 2

2 . (1.3.272)

This is a Casimir operator because, beside commuting, obviously, with the Abelian generators
Pi, it commutes also with the rotation generator J (check it starting from Eq. (1.3.267)) since
rotation preserve the norm of vectors.

As we discussed in sec. 1.1.9, any representation10 Dm of the factor group SO(2) =
ISO(2)/R2 induces a representation of the full ISO(2) group, by declaring that, for a generic
element T (b)R(θ) we have

Dm(T (b)R(θ)) = Dm(R(θ)) , (1.3.273)

i.e., we represent trivially the translations.
What happens if we start with a non-trivial representation of the translation group? Recall

that the group R2 is abelian, its irrepses are uni-dimensional and are labeled by the eigenvalues
p of the generators P on the state vector11:

P|p〉 = p|p〉 . (1.3.275)

As the momentum p is not invariant under rotations, it cannot be constant for all the states
in a representation of ISO(2). Its norm p2 = p · p however, being the eigenvalue of the Casimir
operator P 2, will be the same for all states. We fix therefore p2 6= 0 and start from a reference,
standard momentum p0, for instance p0 = (p, 0) and denote the corresponding state vector as
|p2;p0〉.
10Let us recall that the irreducible representations Dm of SO(2) are uni-dimensional, and we have Dm(θ) =
exp(imθ), with m ∈ Z if the representation must be single-valued. On the state vector |m〉corresponding to the
representation Dm the generator J satisfies J |m〉 = m|m〉.
11Representing the generators P as the differential operator −i ∂

∂x
on R2, the state vector of this representation

is identified with the plane wave of momentum p:

|p〉 ↔ eip·x . (1.3.274)
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Previously, we considered the particular situation p2 = 0, in which case p0 = 0 is invariant
under the entire SO(2). Then, every representation of SO(2) induces a representation of the full
group.

For a non-zero p2, we must begin by investigating whether a subgroup of rotations leaves p0
invariant. Such a subgroup would be called the little group of p0 and would play the same role
that SO(2) plays in the p0 = 0 case: every irrep of the little group would induce a representation
of the full group.

In this respect, ISO(2) is peculiar: for p0 6= 0 the little group is trivial, as no two-dimensional
rotation leaves the vector p0 invariant; this is not the case for higher-dimensional Euclidean
groups. Since the little group is trivial, it has only the trivial representation, and we can forget
about it.

We can instead start acting on |p2;p0〉 with the rotations: the set of states

|p2;p〉 = R(θ)|p2;p0〉 (1.3.276)

span by construction an irreducible invariant space for the group ISO(2), namely form the
basis for an irreducible representation. Notice that the momentum p of the rotated state
R(θ)|p2;p0〉 is just the rotated momentum of components pi = (R(θ))ijpj , justifying the no-
tation in Eq. (1.3.276). Indeed, we have

PR(θ)|p2;p0〉 = R(θ)R−1(θ)PR(θ)|p2;p0〉 = R(θ)R(θ)P|p2;p0〉 = pR(θ)|p2;p0〉 . (1.3.277)

The representation of the group elenments on the states |p2;p〉 is simply described as follows.
For translations,

T (b)P|p2;p〉 = eib·p|p2;p〉 . (1.3.278)

As far as rotations are concerned, we have

R(φ)|p2;p〉 = |p2; p̃〉 , (1.3.279)

where p̃ is the rotated momentum
p̃i = (R(φ))ijpj . (1.3.280)

1.3.7.2 Representations of ISO(3): helicity and the little group.

In the case of ISO(3) = SO(3)sR3, the Lie algebra reads

[Pi, Pj ] = 0 ,

[Ji, Pj ] = iεijkPk ,

[Ji, Jj ] = iεijkJk . (1.3.281)

The first line states that the translations are commutative, the second line that P behaves as a
tri-vector under the rotations, an the third line is the well-known so(3) rotation algebra. There
are two quadratic Casimir operators, namely

P 2 = P ·P , J ·P . (1.3.282)

The operator P 2 commutes with all generators exactly for the same reasons as in the two-
dimensonal case (see the discussion after Eq. (1.3.272) above). The operator J · P is clearly
invariant under rotations (it is a scalar) and commutes with P because

[

JiP
i, P j

]

=
[

Ji, P
j
]

P i = iεijkP
kP i = 0 . (1.3.283)
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To find the irreducible representations of this group, we start again from a representation of
the translation group, labeled by a tri-momentum. Between all the momenta corresponding to
the same eigenvalue p2 of the Casimir operator P ·P, let us select a standard momentum

p0 = (0, 0, p) . (1.3.284)

If p2 = 0 (i.e., translations are trivially represented), any representation Dj of SO(3) induces
a representation of ISO(3), as discussed in sec. 1.1.9: given a generic element of ISO(3) written as
the product of a translation and a rotation T (b)R({α}),where {α} are three parameters specifying
the rotation12, we set

Dj (b, {α}) = Dj ({α}) (1.3.285)

and we obtain an irreducible representation.
If p2 6= 0, the standard momentum p0, whose only non-zero component is p3 = p, is left

invariant by the rotations around the 3-rd axis, i.e. those generated by J3, as it is clear from
the algebra Eq. (1.3.281) and from geometric intuition. These rotation form an SO(2) subgroup,
which constitutes the little group of p0. It is clear that the subspace corresponding to p0 is in prin-
ciple degenerate: we still have to specify the value of J3, i.e. we have to specify a representation
of the little group. This representation will induce a representation of the full group.

We select therefore an irreducible representation of the little group SO(2) labeled by m ∈ Z.
The state vector of this representation can be labeled in terms of the eigenvalues {p2,mp;p0} of
the Casimirs and of the maximal commuting set of operators given by P, and satisfies

P|p2,m;p0〉 = p0|p2,m;p0〉 ,
J3|p2,m;p0〉 = m|p2,m;p0〉 . (1.3.286)

The value of the two Casimirs on this state is indeed

P 2|p2,m;p0〉 = p2|p2,m;p0〉 ,
J ·P|p2,m;p0〉 = mp|p2,m;p0〉 . (1.3.287)

The proportionality constant m = (mp)/p between the eigenvalues of the two Casimir operators
is called helicity, and is the same for every state in the irreducible representation of ISO(3) we
are constructing.

By acting on the reference state |p2,m;p0〉 with rotations outside the little group we con-
struct all the states |p2,m;p〉 spanning an irreducible invariant subspace for the full ISO(3)
group:

|p2,m;p〉 ≡ R(α1, α2, 0)|p2,m;p0〉 , (1.3.288)

where pi = (R(α1, α2, 0))ijpj0.
How are the elements of ISO(3) represented on these states? The translation generators are

obvious:

T (b)|p2,m;p〉 = eib·p|p2,m;p〉 . (1.3.289)

For rotations we have instead

R(β1, β2, β3)|p2,m;p〉 = eimβ̃
3 |p2,m; p̃〉 , (1.3.290)

12We use the “exponential” parametrization as in sec. ??, so that R(α1, α2, α3) is a rotation of an angle |α|
around an axis individuated by the versor α̂.
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PSfrag replacements

p

p0

p̃

R(α1, α2, 0)

R(α̃1, α̃2, 0)

R(β1, β2, β3)

Figure 1.1. The transformation R(α̃1, α̃2, 0)−1R(β1, β2, β3)R(α1, α2, 0) is in the litle group of p0.

where p̃ = R(β1, β2, β3)p is the rotated momentum, and the parameter β̃3 is determined as
follows. Both p and p̃ can be obtained from the standard momentum p0 by rotations outside
the little group:

p = R(α1, α2, 0)p0 ,
p̃ = R(α̃1, α̃2, 0)p0 . (1.3.291)

It is then clear (see Fig. 1.1) that the product R(α̃1, α̃2, 0)−1R(β1, β2, β3)R(α1, α2, 0) is in
the little group, as it leaves p0 invariant, so we have

R(α̃1, α̃2, 0)−1R(β1, β2, β3)R(α1, α2, 0) = R(0, 0, β̃3) (1.3.292)

for a parameter β̃3 which is in fact determined from Eq. (1.3.292) itself.

1.3.7.3 Representations of ISO(1, 3)

The Lie algebra of ISO(1, 3) is described by

[Pµ, Pν ] = 0 ,

[Jµν , Pρ] = i((ηµρPν − ηνρPµ) ,
[Jµν , Jρσ] = ηµσJνρ − ηµρJνσ + ηνρJµσ − ηνσJµρ . (1.3.293)

The second line states that Pµ behaves as a four-vector, the third is the so(1, 3) Lie algebra of
Eq. (??). A Casimir operator is clearly provided by

P 2 = ηµνPµPν = −P 2
0 + P 2

1 + P 2
2 + P 2

3 . (1.3.294)

A second Casimir operator can be easily constructed if we can form with the generators a second
four-vector Wµ that commutes with P µ: in this case,

W 2 = ηµνWµWν (1.3.295)

is certainly a Casimir operator, as it is invariant under the (pseudo)-rotations and commutes
with the translations. Such a vector indeed exists, and is called the Pauli-Lubanski vector. It is
given by

Wµ =
1

2
εµνρσJνρPσ . (1.3.296)
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This vector is obviously orthogonal to the momentum generator:

WµPµ =
1

2
εµνρσJνρPσPµ = 0 (1.3.297)

because of the antisymmetry of the ε-symbol. For the same reason we find, using the algebra
Eq. (1.3.293), that W µ is translationally invariant:

[Pτ ,W
µ] =

1

2
εµνρσ [Pτ , Jνρ]Pσ =

i

2
εµνρσ (ηρτPν − ηντPρ)Pσ = 0 . (1.3.298)

ThatWµ behaves as a four-vector is clear by its definition Eq. (1.3.296) in terms of contractions of
vectors and tensors; in any case, one can check as an exercise, using the Lie algebra Eq. (1.3.293),
that

[Jµν ,Wρ] = i (ηµρWν − ηνρWµ) . (1.3.299)

Finally, one can prove from the definition Eq. (1.3.296) (do it for exercise) that

[Wµ,W ν ] = iεµνρσWρPσ . (1.3.300)

We will now discuss the unitary irreducible representations of ISO(1, 3), utilizing, as we did
for the Euclidean groups, the method of induced representations. In doing so, it will become
clear that the basis states of irreducible representations of the Poincaré group are physically
interpreted as the quantum states of elementary particles.

We consider start from representations of the translation subgroup, i.e. from states of def-
inite quadri-momentum. Differently from the Euclidean case, the Casimir operator P 2 is not
semipositive definite, so we have more case to consider, according to the norm p2 of the momen-
tum:

(i) p2 = 0 which implies p = 0, i.e. null momentum;
(ii) p2 < 0, in which case one talks of time-like momentum;
(iii) p2 = 0, but p 6= 0, in which case one talks of light-like momentum;
(iv) p2 > 0, i.e. space-like momentum.

Let us now consider the various cases.

Null momentum In this case the translation subgroup is trivialy represented and, as described in
sec. 1.1.9, every unitary irreducible D(Λ) representation of the factor group SO(1, 3) induces an
unitary irreducible representation of ISO(1, 3) in which every element TΛ (T being a tanslation,
Λ a pseudo-rotation) is represented by

D(TΛ) = D(Λ) . (1.3.301)

Recall that the unitary irreducible representations of the non-compact factor group SO(1, 3) are
infinite-dimensional. The case of null momentum is not particularly relevant in Physics.

Time-like momentum In the case p2 = −M2 < 0, we can choose a reference momentum of the
form

p̂µ = (M,0) . (1.3.302)

Physically, this corresponds to a state at rest with rest energy, i.e. mass M .
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On a state correponding to the reference momentum p̂µ, the Pauli-Lubanski vectorW µ takes
the following expression (we use the convention that i, j, . . . = 1, 2, 3, and that ε0123 = ε123):

W 0 =
1

2
ε0ijkJij p̂k = 0 ,

W i = − 1

2

(

2εi0jkJ0ip̂k + εijk0Jjkp̂0
)

= −1

2
εijkJjkM = −MJ i , (1.3.303)

where we introduced the usual notation J i = 1
2ε
ijkJjk, see Eq. (??), for the generators of the

SO(3) subgroup of spatial rotations. The Casimir operator W 2 takes thus the value

W 2 =M2J2 , (1.3.304)

where J2 = J iJi is the Casimir of the SO(3) subgroup.
The SO(3) subgroup generated by J i, on the other hand, is precisely the little group, i.e.

the subgroup of the factor group SO(1, 3) that leaves pµ invariant. The space individuated by p̂µ

is in principle degenerated, and organized in representations of the little group. Every unitary
irreducible representation Dj of SO(3) (where j ∈ Z+ 1

2 is the spin) induces then a representation
of ISO(1, 3). We start from the the basis states

| −M2, j; p̂µ,m〉 (1.3.305)

individuated, beside the standard momentum p̂µ = (M,0) corresponding to the casimir p2 =
−M2, by the eigenvalue j(j + 1) of the SO(3) Casimir J2 and by the 3-rd component m of the
spin. Notice that, as it follows from Eq. (1.3.304), j(j + 1) is also (1/M 2 times) the value of
the Casimir operator W 2, and thus is constant within the representation of ISO(1, 3) we are
constructing. For shortness, since they are constant in the representation we’re seeking to build,
we will drop the labels −M 2 and j from the states of Eq. (1.3.305) in the sequel.

Summarizing, we have

P 2|p̂µ,m〉 = −M2|p̂µ,m〉 ,
W 2|p̂µ,m〉 =M2J2|p̂µ,m〉 =M2j(j + 1)|p̂µ,m〉 ,
Pµ|p̂µ,m〉 = p̂µ|p̂µ,m〉 = (M,0)|p̂µ,m〉 ,
J3|p̂µ,m〉 = m|p̂µ,m〉 , (m = −j, . . . , j) . (1.3.306)

Acting on these states with transformations of SO(1, 3) outside the little group SO(3) we con-
struct the full irreducible invariant subspace corresponding to the representation induced by the
representation of spin j of the little group: we set

|pµ,m〉 = K(pµ)|p̂µ,m〉 , (1.3.307)

where the momentum pµ is a generic momentum with norm p2 = −M2, obtained by the action
of the Lorentz matrix (K(pµ))µν on the reference momentum p̂µ, namely pµ = (K(pµ))µν p̂ν . The
transformation K(pµ) = K(ν, α1, α2) depends in fact from 3 parameters (6 are the parameters of
SO(1, 3) but 3 pertain to the little group) and is obtained by first boosting by a parameter ν in,
say, the 3-d spatial direction, and then rotating the resulting 3-momentum in a generic spatial
direction by a rotation around an axis in the 1− 2 plane:

p̂µ = (M,0)
L3(ν)−→ (M cosh ν, 0, 0,M sinh ν)

R(α1,α2,0)−→ pµ = (M cosh ν,p) , (1.3.308)
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with pi =M sinh ν (R(α1, α2, 0))i3.
On the states |pµ,m〉 of our representation, the translations are obviously represented simply

by

T (b)|pµ,m〉 = eib
µpµ |pµ,m〉 . (1.3.309)

For a generic Lorentz transformations Λ, we have

Λ|pµ,m〉 = [Dj (R(Λ, p))]
m

m′
|p̃µ,m〉 , (1.3.310)

where

p̃µ = Λµνp
ν (1.3.311)

and the SO(3) rotation R(Λ, p) is the little group element determined, similarly to the case of
ISO(3) described in Fig. 1.1, by

R(Λ, p) = K−1(p̃)ΛK(p) , (1.3.312)

where K(p), defined in Eq.s 1.3.307-1.3.308, maps the rest frame momentum p̂µ = (M,0) to the
momentum pµ. Notice that the state label m in |pµ,m〉 can be interpreted as the eigenvalue
of the operator J · P/|mathbfp, which is the rotation leaving invariant p; in the intermediate
situation of Eq. (1.3.308) in which p is along the 3-rd axis, it is the eigenvalue of J3.

Physically, an irreducible unitary representation of the ISO(1, 3) Poincaré group, character-
ized by Casimirs P 2 = −M2 and W 2 = M2j(j + 1), corresponds to a particle of rest mass M
and spin j.

What happens if, instead of the group ISO(1, 3) we consider the full Poincaré group O(1, 3)sT4?
In this case, one must take into account the discrete transformations contained in O(1, 3) as op-
posed to SO(1, 3), in particular the space inversion S = diag(1,−1 − 1 − 1). We do not discuss
the details here (see for instance [?], Chapter 11), but the space invariance Is changes sign to the
spatial momentum p and, since S2 = 1, it may have eigenvalues ηs = ±1.

The action of Is on the states |pµ,m〉 = |(p0,p),m〉 of a representation of spin j of ISO(1, 3),
see Eq.s ??-1.3.307, turns out to be13

Is|(p0,p),m〉 = ηse
∓iπj |(p0,−p),−m〉 . (1.3.313)

Recall indeed (see the discussion after Eq. (??)) that the helicity m is the eigenvalue of J ·P/|p|;
since P chenges sign under Is, while J is invariant, m changes sign. Notice that for integer spin,
we can write simply

Is|(p0,p),m〉 = ηs(−1)j |(p0,−p),−m〉 . (1.3.314)

Since in every representation of spin j both the eigenvalues m and −m appear, the space
spanned by the states |(p0,p),m〉 is invariant the action of Is, and thus under the full Poincaré
group. Thus, every irrep of ISO(1, 3) labeled by the mass M and the spin j, and spanned by the
states |pµ,m〉 leads to two irrepses of the Poincaré group, further distinguished by thei parity
ηs = ±1 under space inversions, and spanned by the states

|pµ,m, ηs〉 . (1.3.315)

13The phase e∓iπj has the upper (lower) sign when the azimuthal angle of p is less (more) that π; see [?], sec.
11.3.2 for a discussion)
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Light-like momentum Physically, when p2 = 0, p0 = |p|, so the velocity |p|/p0 is fixed to be
1 (or c, if we kept track of dimensional factors); this cannot be changed by a Lorentz rotation.
So particles with such momenta, such as photons, always travel at the speed of light, and these
momenta are aclled light-like.

In the class of light-like momenta we can pick up a standard momentum, for instance

p̂µ = (1, 0, 0, 1) . (1.3.316)

Usin the definition Eq. (1.3.296), we see that fixing the momentum to this p̂µ the componens of
the Pauli-Lubanski vector take the following values:

W 0 =
1

2
ε0ij3Jij p̂3 = J12 = J3 ,

W 3 =
1

2
ε3ij0Jij p̂0 = J12 = J3 ,

W 1 =
1

2

(

ε1ij0Jij p̂0 + ε1µν3p̂3
)

= J23 + J20 = J1 + L2 ,

W 2 =
1

2

(

ε2ij0Jij p̂0 + ε2µν3p̂3
)

= J31 − J10 = J1 − L2 , (1.3.317)

(recall that p̂3 = p̂3 = 1, but p̂0 = −p̂0 = −1), where we use the notation of sec. ?? for rotations
and Lorentz boosts. As we saw in the case of time-like momenta, the independent components
of the Pauli-Lubanski vector evaluated on p̂µ generate the little group of p̂µ. The Lie algebra of
the independent components W 1,W 2, J3 is easily foudn to be

[

W 1,W 2
]

= 0 ,
[

J3,Wi

]

= iεijW
j , (i, j = 1, 2) . (1.3.318)

This is isomorphic to the ISO(2) algebra, see Eq. (1.3.267) with W i taking the place of P i and
J3 that of J .

We have discussed the representations of ISO(2) in sec. 1.3.7.1. They are labeled by the
eigenvalue w2 of the Casimir operator W 2 = (W 1)2+(W 2)2, and we must distinguish two cases.
If w0 = 0, the representations are uni-dimensional and are induced from that of the factor group
SO(2) generated by J3 and labeled by its eigenvalue m; the state vector can be denoted as
|w2 = 0;m〉 or simply as |m〉. If w2 > 0, there’s no little group, and the states are obtained by
acting on a reference vector |w2;w〉 with SO(2) rotations.

As usual, we can build an irreducible representation of ISO(1, 3), we can start from anyy of
the irreducible representations of the little group ISO(2). However, it turns out that only the
representations constructed out of the little group representations with w2 = 0 are realized in
Nature as elementary particles, so we will discuss in some detail only these.

Let us start therefore from the state

|p2 = 0, w2 = 0; p̂µ,m〉 , (1.3.319)

which for simplicity (since the Casimirs are invariant within the representation) we well denote
in the sequel as |p̂µ,m〉. This state satisfies

P 2|p̂µ,m〉 =W 2|p̂µ,m〉 = 0 ,

Pµ|p̂µ,m〉 = p̂µ|p̂µ,m〉 = (1, 0, 0, 1)|p̂µ,m〉 ,
J3|p̂µ,m〉 = m|p̂µ,m〉 . (1.3.320)
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Transformations K(p) outside the little group modify the reference momentum p̂µ into a generic
light-like momentum pµ (such that p2 = 0), and reconstruct the full set of basis vectors |pµ,m〉
of an irreducible representation of ISO(1, 3):

|pµ,m〉 = K(p)|p̂µ,m〉 . (1.3.321)

Such a transformation consists in general of a Lorentz boost in the 3-rd direction, followed by a
rotation in the plane 1− 2:

p̂µ = (1, 0, 0, 1) =
L3(ν)−→ (eν , 0, 0, eν)

R(α1,α2,0)−→ pµ = (eν ,p) , (1.3.322)

with pi = eν (R(α1, α2, 0))i3, so that |p|2 = eν . On the generic state |pµ,m〉 of our irreducible
representation, the translations are simply represented as follows:

T (b)|pµ,m〉 = eib
µpµ |pµ,m〉 . (1.3.323)

For a Lorentz rotation Λ, we have

Λ|pµ,m〉 = eimα
3 |pµ,m〉 , (1.3.324)

where
p̃µ = Λµνp

ν (1.3.325)

and the α3 = α3(Λ, p) specifies the rotation angle around the 3-rd axis for the little group element
R(0, 0, α3) = exp(iα3J3) determined, similarly to the case of ISO(3) described in Fig. 1.1, and
to the case of time-like momenta discussed in Eq. (1.3.312), by

R(0, 0, α3) = K−1(p̃)ΛK(p) . (1.3.326)

The irreducible representations of ISO(1, 3) corresponding to P 2 = W 2 = 0 and labeled by
m corrispond, in physical terms, to elementary massless particles of helicity m. In nature, only
cases with m integer (corresponding to single-valued representations of the SO(2) little group) or
to m half-integer (corresponding to doubly-valued reps. of SO(2)) are realized (m = ±1: photon,
. . . ; m = ±1/2: neutrino).

Notice the difference between the helicity m of massless particles and the spin j, with third
componentm, of massive particles. Massless states with a given helicity are not mixed by continu-
ous Poincaré representations, i.e. representations in ISO(1, 3), see Eq. (1.3.324): they correspond
to a specific irreducible representations. Massive states with different 3-rd component m of the
spin are instead rotated into each other within a representation of spin j, see Eq. (1.3.311).

Let us now consider the full Poincaré group, i.e., let us include the effect of space inversions.
In the light-like case, space inversion acts on the states |pµ,m〉 = |(p0,p),m〉 of Eq. (1.3.321)
changing sign to both p and the helicity m = J · p/|p|:

Is|(p0,p),m〉 = ηse
∓iπ|m||(p0,−p),−m〉 . (1.3.327)

Fixing ηs = 1, we see...

Space-like momentum ... hysically not so relevant (tachyons), pseudo-orthogonal little groups
-¿ infinite-dimensiona reps ...


