
Holographic non-perturbative corrections
to gauge couplings

Marco Billò
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Motivations

I Consider a gauge/gravity set-up. How do the non-perturbative
corrections to the gauge coupling arise on the gravity side?

I We focus on an explicit example which corresponds to Sen’s
local limit of F-theory. We investigate thus the microscopic
origin of the n.p. corrections geometrically encoded in
F-theory.

I In this example, the gauge/gravity relation explains an
intriguing relation between the exact gauge coupling and the
dynamics of the flavour sector, that might generalize to other
cases.

I Based mostly on M.B., Frau, Giacone, Lerda, arXiv:1105.1869.
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Local type I’ model

I We consider 4 D7 branes at an O7
plane in flat space.

I Local limit near an O7 plane of Type
I’, the T-dual of type I on a T2.
Type I’ has 4 O7 fixed planes and 16
D7 branes.

D7 branes

O7 plane

Cz

I Consider the D7/D7 open string sector.
I The massless d.o.f. describe a 8d gauge theory.
I Orientifold projection → SO(8) group.
I Massless d.o.f. form a chiral superfield: (8 θ’s)

M = m + θψ +
1

2
θγµνθFµν + · · ·

in the adjoint of SO(8).
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Gauge theory on a D3 probe

I Add a D3-brane (plus its image).

I We get an Sp(1)∼ SU(2), N = 2
theory with Nf = 4 hypers from the
D3/D7 strings, with flavor group
SO(8) and vanishing β-function.

Banks et al., 1996

Cz

D3 brane

I Placing the D3 in z (and its image in −z) ⇔ giving a v.e.v.

φcl = (a,−a) , a = z/(2πα′)

to the SU(2) complex adjoint scalar: Cz ⇔ Coulomb branch.

I Displacing the D7’s in zi (i = 1, . . . , 4) ⇔ giving a v.e.v.

mcl = (m1,m2, . . . ,−m1, . . .) , mi = zi/(2πα′)

to the SO(8) complex adjoint scalar.
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Parameters and coupling of the gauge theory

I For the gauge theory on the D3, the v.e.v.’s mi are the masses
of the hypers.

I From the D3-brane effective action, one sees that the rôle of
the complexified gauge coupling is played by the dilaton-axion

τ ≡ C0 + ie−φ

from the closed string sector.

I This gives a gauge/gravity relation:
the effective coupling τ(a) is the
dilaton-axion background τ(z)
produced by the D7/O7 system.

I We now focus on the latter.
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Dilaton-axion background

I Closed string massless d.o.f. of the can be organized in a
chiral scalar superfield: Schwarz 1983, Howe-West 1983, de Haro et al. 2002

T = τ + θλ+ · · ·+ 2θ8
(
∂4τ̄ + · · ·

)
where the ... terms contain the other d.o.f..

I D7’s and O7 couple to it: δ-function
sources for τ , localized in Cz .

as expl. in T. Weigand’s review

I Stems from the one-point coupling to τ
of their boundary (or crosscap) state.

τ

I The perturbative profile corresponding to displaced D7’s is

2πi τcl(z) = 2πi τ0 +
4∑

i=1

[
log

z − zi
z

+ log
z + zi
z

]
.

It matches the 1-loop running of the dual gauge coupling.
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Perturbative behaviour and beyond

I This background is näıvely (i.e., perturbatively) singular but
can be promoted to a non-singular F-theory background, as
done by Sen long ago using gauge/gravity:

I the exact F-theory background must correspond to the exact
effective gauge coupling of the SU(2), Nf = 4 theory.

Sen, 1996; Banks et al., 1996

I We’ll show explicitly that, on the gravity side, this arises by
taking into account non-perturbative D-instanton corrections.

I To do so, we start by writing the perturbative profile,
expanded for large z , in terms of the v.e.v of the D7 adjoint
scalar m:

2πi τcl(z) = 2πi τ0 −
∞∑
`=1

(2πα′)2`

2`

trm2`
cl

z2`
,

where mi = zi/(2πα′).
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Equations of motion

I This profile solves the e.o.m. �τ = Jcl δ
2(z) with

Jcl = −2i
∞∑
`=1

(2πα′)2` trm2`
cl

(2`)!

∂2`

∂z2`
.

I The Laplacian arises from the bulk kinetic Lagrangian.

I Jcl arises from interactions on the D7
world-volume between the
dilaton-axion field and the SO(8)
adjoint scalar m that reduce to

Ssource ∼ −
∫

d8x Jcl τ̄

when the scalar is frozen to its v.e.v..
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8d prepotential and source terms

I Such interaction terms on the D7’s can be written as

Spert =
1

(2π)4

∫
d8x d8θ Fpert(M,T )

using the open and closed superfields

M ∼ m + · · · , T∼ τ + · · ·+ 2θ8∂4τ̄ + · · · .

I The prepotential Fpert contains an infinite series of terms:

Fpert(M,T ) = 2πi
∑
`

(2πα′)2`−4

(2`)!
trM2` ∂2`−4 T .

I Comparing with the definition of the source action for the
axio-dilaton we have [trust the constants...]

Jcl = −(2πα′)4

2π

δFpert
δ(θ8τ̄)

∣∣∣
T=τ0,M=mcl

≡ −(2πα′)4

2π
δ̄Fpert .
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Non-perturbative corrections to the source
I The complete, non-perturbative source terms for the

axio-dilaton are obtained by taking into account the
D-instanton corrections to the 8d prepotential:

F (M,T ) = Fpert(M,T ) + Fnon−pert(M,T ) .

I Then we have

J = −(2πα′)4

2π
δ̄F

and solving the e.o.m. with the complete source we get the
exact τ profile .

−→

D-instantons

ττcl

D7 branes
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D-instanton moduli

I The moduli M(k) (k is the instanton
#) are the d.o.f. of the open strings
with at least one boundary on a
D-instanton.

I The moduli action describes the interactions of the moduli,
and is computed by string diagrams. One has

Sinst(M(k),M,T ) = S(M(k)) + S(M(k),M) + S(M(k),T ) .

I S(M(k)): pure moduli action ⇒ measure on M(k) .
I S(M(k),M): mixed moduli-gauge fields action .
I S(M(k),T ): mixed moduli-gravity fields action .
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Non-perturbative prepotential

I The non-perturbative effective action on the D7’s is obtained
as an integral over the D-instanton moduli space:

Snp =
∑
k

∫
dM(k)e

−Sinst(M(k),M,T ) =

∫
d8x d8θ Fnp(M,T )

so that the non-perturbative prepotential is

Fnp(M,T ) =
∑
k

∫
dM̂(k)e

−Sinst(M(k),M,T ) .

I We need the explicit form of the moduli action. We focus here
on its most relevant part for our goal, namely S(M(k),T ).
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Mixed moduli-gravity action

I To obtain S(M(k),T ) we compute mixed open/closed disk
diagrams with moduli and bulk fields.

I Simplest diagrams yield the “classical” instanton action
supersimmetrized by insertions of θ moduli:

τ

θ

θ

θ τ̄

θ

θ

θ

θ

θ

−2πi k τ → −2πi k T = −2πi k (τ + . . .+ θ8p̄4τ̄) .
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Mixed moduli-gravity action (II)

I Other mixed diagrams involve the bosonic moduli χ
(akin to the positions of the D(-1)’s transverse to the D7, but
with anti-symmetric CP indices due to the orientifold).

χ

χ

χ τ

χ
I Exactly computable:

−2πi
∞∑
`=1

(2πα′)2`

(2`)!
tr(χ2`) p̄2` τ .

I Susy-completed by extra
θ-insertions

I Altogether, the mixed moduli-gravity action is

S(M(k),T ) = −2πi
∞∑
`=0

(2πα′)2`

(2`)!
tr(χ2`) p̄2` T .
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Explicit computation: overview

I The integration over the moduli space at generic k requires
localization techniques.

Nekrasov, 2002; Flume+Poghossian, 2002; Bruzzo et al, 2003; ...

I A susy charge preserved by the D7/D(-1) system is selected as
scalar BRST charge Q.

I The moduli organize in BRST doublets (”topological twist”).
I The moduli action is BRST-exact: the integral reduces to the

evaluation of determinants around the fixed points of Q.
I To have isolated fixed points, the moduli action is deformed by

suitable parameters (to be removed at the end). In our set-up,
such parameters arise from a particular RR background.

M.B., Ferro, Frau, Gallot, Lerda and Pesando, 2009

I The concepts and basic techniques to study the coupling of
D-instantons to closed string fields were studied long ago.

Green-Gutperle, 1997-1999

Localization techniques allow now to carry out the
computation even when all instanton numbers contribute.
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Ingredients of the result

I Setting q = exp(2πiτ0), one writes Fnp =
∑∞

k=1 q
k Fk .

I The instanton-induced source is given by

Jnp = −(2πα′)4

2π
δ̄Fnp = −(2πα′)4

2π

∞∑
k=1

qk δ̄Fk ,

where

δ̄ ? =
δ ?

δ(θ8τ̄)

∣∣∣
T=τ0,M=mcl

.

I The localization procedure expresses Fk ’s in terms of the
(deformed) instanton partition functions at number k ,

Zk =

∫
dM(k) e

−Sinst(M(k),M,T ) .

I The variations δ̄Fk can thus be expressed in terms of δ̄Zk .
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(deformed) instanton partition functions at number k ,

Zk =

∫
dM(k) e

−Sinst(M(k),M,T ) .

I The variations δ̄Fk can thus be expressed in terms of δ̄Zk .
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Ingredients of the result (II)

I Recall the explicit form of the the moduli action:

Sinst = −2πi k τ + · · · − 4πi
∞∑
`=0

(2πα′)2`

(2`)!
tr(χ2`) p̄2`+4 θ8τ̄ + · · · .

I It follows that

δ̄Zk = 4πi
∞∑
`=0

(2πα′)2` p̄2`+4 Z
(2`)
k ,

where we introduced the ”correlators” of χ moduli in the
instanton matrix theory

Z
(2`)
k =

1

(2`)!

∫
dM(k) tr(χ2`) e−Sinst

∣∣∣
T=τ0 ,M=mcl

.



The chiral ring on the D7 branes

I The same χ-correlators Z
(2`)
k appear in the computation of

the D-instanton contributions to a different class observables
in the D7-brane world-volume theory.

I These are the protected correlators 〈trmJ〉, that form the 8d
chiral ring. They receive non-perturbative corrections that can

be expressed by localization techniques in terms of the Z
(J)
k .

Fucito, Morales, Poghossian, 2009

I In fact one finds a very strict relation between the δ̄ variation
of the prepotential and the non-perturbative chiral ring:

δ̄Fk = 4πi
∞∑
`=0

(2πα′)2` p̄2`+4 (−1)`

(2`+ 4)!
〈trm2`+4〉k .

M.B., Frau, Giacone, Lerda, 2011

proved at all orders in Fucito, Morales, Pacifici, 2011
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The non-perturbative axio-dilaton profile

I Altogether, we have obtained

Jnp = − (2πα′)4

2π

∞∑
k=1

qk δ̄Fk = −2i
∞∑
`=1

(−1)`
(2πα′)2` 〈trm2`〉np

(2`)!
p̄2` ,

where 〈trm2`〉n.p. =
∑

k q
k 〈trm2`〉k .

I Solving the field equation � τnp = Jnp δ
2(z) we get then the

non-perturbative axio-dilaton profile:

2πi τnp(z) = −
∞∑
`=1

(2πα′)2`

2`

〈trm2`〉np
z2`

.
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The complete τ profile

Let us summarize our findings.

I At the perturbative level we had

2πi τcl(z) = 2πi τ0 −
∞∑
`=1

(2πα′)2`

2`

trm2`
cl

z2`
.

I The quantities trm2`
cl of the D7 theory source the axio-dilaton.

The source, however, is non-perturbatively corrected.

I The exact result is thus obtained by replacing classical v.e.v.’s
with quantum correlators in the D7-brane theory:

2πi τ(z) = 2πi τ0 −
∞∑
`=1

(2πα′)2`

2`

〈trm2`〉
z2`

.
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Gauge/gravity relation

I Chiral ring elements 〈trm2`〉 are computable via localization.

I If we parametrize the transverse directions with a = z/(2πα′),
all α′ dependences are reabsorbed.



Gauge/gravity relation

I Chiral ring elements 〈trm2`〉 are computable via localization.

I If we parametrize the transverse directions with a = z/(2πα′),
all α′ dependences are reabsorbed.

I We get explicitly

2πiτ = 2πiτ0 −
1

a2

∑
i

m2
i

+
1

a4

[
−1

2

∑
i

m4
i + 48mq + 24

∑
i<j

m2
i m

2
j q

2 + 192mq3 +. . .

]

+
1

a6

−1

3

∑
i

m6
i − 240

∑
i<j<k

m2
i m

2
j m

2
k q

2 − 1280m
∑
i

m2
i q

3 + . . .


+

1

a8

[
−1

4

∑
i

m8
i + 840 (m)2 q2 + 4480m

∑
i<j

m2
i m

2
j q

3 + . . .

]
+ . . . .



Gauge/gravity relation

I Chiral ring elements 〈trm2`〉 are computable via localization.

I If we parametrize the transverse directions with a = z/(2πα′),
all α′ dependences are reabsorbed.

I By direct comparison with the large-a
expansion of τ from the SW curve we
check explicitly that

τ(z)⇔ τ(a) ,

where τ(a) is the exact low-energy
effective coupling of the SU(2),
Nf = 4 gauge theory on a D3 probe,
as expected.

τ

z = 2πα′a



Non-perturbative gauge/gravity relation: recap

I The exact effective coupling τ(a) is encoded in the SW curve.
Seiberg and Witten, 1994

Its large-a expansion is microscopically due to instanton
contributions to the 4d prepotential. These are reproduced by
D(-1) effects in our Type I’ set-up. M.B, Gallot, Lerda, Pesando 2010.

I We showed how, in the gravity dual approach, the large-z
expansion of the field τ(z) emitted by the D7/O7 system is
corrected by D-instanton effects that modify its source terms.

−→

D-instantons

ττcl

D7 branes

I The gravity result agrees with the gauge one.
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An intriguing relation

I By studying its dual gravitational description in the type I’
set-up we established a relation between

I the 4d SU(2), Nf = 4 gauge theory (realized on the D3);
I the 8d theory (realized on the D7’s) which gauges its SO(8)

flavor symmetry.
Already noticed in M.B, Gallot, Lerda, Pesando 2010

I This relation can be summarized as follows:

τ(a) = τ0 +
1

2πi
〈log det

(
1− m

a

)
〉 ,

where the expectation value on the r.h.s. is in the flavour
theory.

I It would be nice to find other examples where the exact gauge
coupling of a theory can be determined in terms of some
subsector of it, or to its flavour sector.
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A corollary

I Reconsider the 4d/8d relation described above, expanded or
large a:

τ(a) = τ0 −
1

2πi

∞∑
`=1

1

2`

〈trm2`〉
a2`

.

I It is possible, developing recursion relations akin to Matone’s
relation in this set-up, to extract from the Seiberg-Witten
curve the exact expression to all orders in q of any given
coefficient of the expansion of τ in powers of 1/a.

M. B., Frau, Gallot, Lerda, arXiv:1107.3691

I This amounts to finding the exact expression of the 8d chiral
ring, previously computed to the first orders in its q expansion.

Fucito, Morales, Poghossian, 2009
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