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Disclaimer

» This talk builds over a vast literature - some scattered references are
given in the slides
» | apologize for missing ones...
» The results presented here come mostly from
» M. Billo, M. Frau, F. Fucito, A. Lerda, F. Morales and R.
Poghossyan, “Stringy instanton corrections to A/ = 2 gauge
couplings”, to appear on JHEP, arXiv:1002.4322 [hep-th]
» Previous computation in an eigth-dimensional setting:
» M. Billo, L. Ferro, M. Frau, L. Gallot, A. Lerda and |. Pesando,
“Exotic instanton counting and heterotic/type I' duality,” JHEP
0907 (2009) 092, arXiv:0905.4586 [hep-th]
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D-brane worlds

» SM-like sector from open strings on
stacks of D(34p) branes wrapped
on some internal p-cycles C,

» Gravitational sector from closed
strings in the bulk

Y6
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D-brane worlds

Y6

» SM-like sector from open strings on
stacks of D(34p) branes wrapped

on some internal p-cycles C, g
» Gravitational sector from closed (ﬁ

strings in the bulk G

RL:3

» Gauge and gravitational couplings depend on different volumes
(expressed in units of va'):

1y~ g2 IV(Ye) s gym ~ &/ V(Cp)

> String mass scale o' can be much lower than 4-d Mp,
Arkani-Hamed et al., '98
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D-brane worlds

\G
» SM-like sector from open strings on i
stacks of D(34p) branes wrapped e x
on some internal p-cycles C, Q)
» Gravitational sector from closed ([
strings in the bulk Tamilies o%a/r:s

» Gauge groups from multiple branes, bifundamental chiral matter
from “twisted” strings, replicas from multiple intersections
see, e.g., [Uranga, 2003, Kiritsis, 2004, Lust, 2004, Blumenhagen et al., 2005]
» (String) topology of the internal space 4 choice of branes (subject
to tadpole cancellation): a rich model building scenario (using
intersecting/magnetized branes of various dimensions)
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Perturbative effects

of extra-dimension

» The higher-dimensional, stringy origin of a given D-brane world
model bears also on the quantum properties of its low-energy
effective action

» Perturbative corrections are affected by
the extra states in the theory, resulting
in threshold corrections

Kaluza-Riej

run in the loop
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Perturbative effects

of extra-dimension

» The higher-dimensional, stringy origin of a given D-brane world
model bears also on the quantum properties of its low-energy
effective action

» Perturbative corrections are affected by
the extra states in the theory, resulting
in threshold corrections

Kaluza-Riej

run in the loop

» Also non-perturbative corrections can be influenced
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Non-perturbative corrections

Gauge instantons & D-brane instantons

» Non-perturbative sectors: partially
wrapped E(uclidean)-branes

» Pointlike in R>3: instanton
configurations
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Non-perturbative corrections

Gauge instantons & D-brane instantons

» Non-perturbative sectors: partially R1:3

wrapped E(uclidean)-branes
» Pointlike in R>3: instanton g

configurations

» E-branes identical to a given D-brane stack in the internal directions:
instantons for that gauge theory

» ADHM from strings attached to the instantonic branes
Witten, 1995; Douglas, 1995-1996;

> non-trivial instanton profile of the gauge field
Billo et al, 2001

> Rules and techniques to embed the instanton calculus in string
theory have been constructed
Polchinksi, 1994; Green-Gutperle, 2000, ...; Turin/Rome/Miinich/UPenn/Madrid,...
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More non-perturbative corrections

“Stringy” or “exotic” instantons

» E-branes wrapped on a different RY3

internal cycle C), yield exotic
(a.k.a. stringy) non-perturbative ,

corrections

_ 8n%
» Ordinary gauge instanton effects suppressed by e &
an2 V(CL)

_8m~ P
» Exotic instanton effects suppressed by e #w

V(Cp)

> they would be ordinary instanton for the gauge theory of branes
wrapped on C,,
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More non-perturbative corrections

“Stringy” or “exotic” instantons

» E-branes wrapped on a different RY3

internal cycle C), yield exotic
(a.k.a. stringy) non-perturbative ,

corrections

» Exotic instantons may lead to interactions that would be
perturbatively forbidden in these models

» Such effects could be of great phenomenological relevance (Neutrino
Majorana masses, Yukawas in certain GUT models,. . .)
Blumenhagen et al '06; Ibanez and Uranga, '06; Haack et al, '06; Blumenhagen et al, 2008;
» Need to understand their status in the gauge theory and to
construct precise rules for the “exotic” instanton calculus
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Computing stringy instanton corrections

» Stringy computational techniques for ordinary instantonic branes
reproduce gauge theory instanton calculus

» Same kind of techniques techniques should extend to exotic
instantonic branes, even if these conf.s have no field theory
analogues

» Our strategy to test this assumption: select a set-up such that

> exotic instantonic branes can contribute to the gauge effective action
(not killed by fermionic zero-modes)

> there are couplings to which all instanton numbers contribute (as it
happens for ordinary gauge instantons in A" = 2 SYM)

> the theory possesses a computable heterotic dual, so that the results
of the exotic calculus can be tested against it

Cz.
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A 4-dimensional example

» We start from Type I', namely type IIB on a two-torus 7, modded
out by

Q=w(-1)"h
w = w.s. parity, F; = left-moving fermion #, l, = inversion on 75
» A D7/D(-1) system in this theory provides an example of exotic
corrections to an 8d gauge theory Bilo et al, 2000
» We compactify it on 74/Z;
> Can be seen as the BS-GP model sianchi-sagnotti 1991; Gimon-Polchinski, 1996
compactified on 7, and T-dualized
» The 4d gauge theory we will consider is a conformal A/ = 2 theory,

but it exhibits a series of exotic non-perturbative corrections to its
quadratic prepotential
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The set-up

Ta

,,,,,,,,,,,,,,,,,,,,

,,,,,,,,,,,,,,,,,,,,

& -

» In Type I, Q has 4 fixed points on 75, where 4 O7 planes are located
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The set-up

Ta
03
://

K it g oo fposssssag O

» Take an orbifold of 74 by 7Z, generated by g
» There are 64 O3 planes fixed by Qg

Cz.
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The set-up

Ta T2

» (Local) tadpole cancellation requires 4 D7's at each O7 f.p.

» The action of (2 and (2g on the C.P. factors implies that the gauge
group on the D7 is U(4)— SO(8) for each stack

» The gauge theory is compactified on 74, so it is 4-dimensional with a
gauge coupling

b= 4m Vol(Ta)
2= 5~
gym gs

Cz.
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The set-up

Ta T2

D3 3 Fdcus on a O73fixed point

» Tadpole cancellation also requires 8 dynamical D3's, to be
distributed in the various fixed points.

> Place 4 half-D3's at 4 distinct 7, fixed points on top of the chosen
D7 stack

Cz.
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The set-up

Ta T2

Fdcus on a O7fixed point

B— &—

» The U(4) N = 2 gauge theory on the D7 world-volume contains

> adjoint vector mult. 4+ 2 antisymm hypers (from D7/D7 strings)
> 4 fundamental hypers (from D7/D3 strings)

» The theory is conformal: for the SU(4) part,
by x4 — m with m fundam. hypers

Cz.
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Effective action on the D7

» With N > 1 susy, the quadratic effective action in the gauge fields

involves holomorphic couplings f.; (functions of the “moduli” scalar
fields):

2= / d*x {(Re f)anF, F* + i(Im fapF, " Fo}

nv
» In terms of the N' = 2 multiplet encoding our U(4) gauge d.o.f:
®(x,0) = &(x) + 0%Na(x) + (0470) Flu(x)

we will have, distinguishing the two colour structures,

S= /d4xd4€ {f Trd? + f/(Trd)*} + cc

Cz.
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Perturbative results

> In accordance with the general structure of holomorphic couplings
derived from string computations ok 1901; de wit et al, 1005 We find tree level
terms, one-loop threshold corrections and non-perturbative terms

single trace:  Ref =1t, + f,p ,
double trace:  Ref’ = —4|n(U)|* + fop

» One loop diagrams:

OO0

» Threshold correction |n(U)|* from
F 2
70 = (TET) massless states winding on 7>

» U is the complex structure of 75

A
INFN
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Non-perturbative corrections

from D-instantons

> In this set-up there are BPS sectors including D(-1)’s or E3 branes
along 74/7Z;
» We focus on the D-instanton contributions eiio et a1 2010.
» Work in progress on the E3 sectors
» The D(-1)'s correspond to exotic instantons w.r.t. to the D7 gauge
theory. Corrections weighted by

82 k

2wk — _ Lo}
e kSp(-1) ~ e~ s~ e &'l ~ e 2rk et

_8n2k
which is not the usual gauge istanton factor e &wm
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Effective action from D-instantons

D7-branes

» Open strings with at least one end
on a D(-1) carry no momentum:
they are moduli rather than
dynamical fields.

» Effective interactions between gauge fields (encoded in ®) can be
mediated by D-instanton moduli through mixed disks

{\\/ §V—>7

F F N /

= = = e
V”\l ‘/\"1

connected by integration over the instanton moduli My
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Effective action from D-instantons

D7-branes

» Open strings with at least one end
on a D(-1) carry no momentum:
they are moduli rather than
dynamical fields.

» We must sum over D(-1) conf.s and instanton # k and compute

Z Z e27ri‘rk/dM(k) efs(/\/l(k).CD)

conf.s k

> 2miTk is the classical value of the instanton action
> S(My), ®) arises from (mixed) disk diagrams describing interactions
of the moduli among themselves and with the gauge fields

» From this we should extract the n.p. effective action in the form

J

Snp.(®) = / d*x d*0 F, . (9)
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D-instanton configurations

Ta T2

» There are different configurations of D(-1)'s, which have different
spectra of moduli excitations from mixed strings

» The D(-1)/D7 mixed moduli are always present (only fermionic:
typical of exotic instantons)

> In certain configurations (a) also D(-1)/D3 mixed moduli are present

Cz.
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D-instanton configurations

Ta T2

> There are also configurations (b) where no D(-1)/D3 are present:
the ground states are massive, since the D(-1) and the D3 are

separated in the internal space

Cz.
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From BPS to BRS

» We face a very complicated matrix integral:

> the moduli spectrum contains bosonic and fermionic moduli with
different transformation properties under the Chan-Paton groups

U(k) x U(4) x U(m)

pertaining to strings ending on D(1), D7, D3
> The moduli action S04 contains many moduli interactions

Cz.
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From BPS to BRS

» We face a very complicated matrix integral:

> the moduli spectrum contains bosonic and fermionic moduli with
different transformation properties under the Chan-Paton groups

U(k) x U(4) x U(m)
pertaining to strings ending on D(1), D7, D3
> The moduli action S04 contains many moduli interactions

» However, our brane system is BPS; there are susy transformations
among the moduli leaving S,,,,4 invariant
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From BPS to BRS

» We face a very complicated matrix integral:

> the moduli spectrum contains bosonic and fermionic moduli with
different transformation properties under the Chan-Paton groups

U(k) x U(4) x U(m)
pertaining to strings ending on D(1), D7, D3
> The moduli action S04 contains many moduli interactions

» However, our brane system is BPS; there are susy transformations
among the moduli leaving S,,,,4 invariant
» Select a particular component of the susy charge as a BRS charge @

> The “Lorentz’ symmetry SO(4) x SO(4) is restricted to the SU(2)
subgroup that leaves @ invariant
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From BPS to BRS

» We face a very complicated matrix integral:

> the moduli spectrum contains bosonic and fermionic moduli with
different transformation properties under the Chan-Paton groups

U(k) x U(4) x U(m)

pertaining to strings ending on D(1), D7, D3
> The moduli action S04 contains many moduli interactions
» However, our brane system is BPS; there are susy transformations
among the moduli leaving S,,,,4 invariant
» Select a particular component of the susy charge as a BRS charge @
> The “Lorentz’ symmetry SO(4) x SO(4) is restricted to the SU(2)
subgroup that leaves @ invariant

» This leads to an equivariant cohomological BRST structure and
(upon suitable deformations) to the localization of the moduli
integrals

» Same type of techniques used by Nekrasov to check SW prepotential
with instanton calculus nekrasov, 2002

Cz.
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BRS structure: spectrum

Spectrum: (m = 1 for conf.s of type (a), m = 0 for type (b))

[ sector [ (Mo, Mi1) [ U(k)x U(4) x Um) | SU@2)* ]

D(-1)/D(-1) (Be, My) (adj, 1,1) (2,1,2)
(Bjs M;) (,1,1) + hee. (1,2,2)

(N3, Das) (5,1,1) +h.c. (2,2,1)

(Nm, dm) adj, 1,1) (1,1,3)

(xsm) gadj,l,l) (1,1,1)

X adj, 1,1) (1,1,1)

D(-1)/D7 (', h) (0,0,1) + he. 1,1,1)
D(-1)/D3 (Wa, prar) gﬂli; +he (1,1,2)
(13, hy) [1,1,00) + hc. (1,2,1)

» B, ~ positions of the D(-1)'s in spacetime; M, superpartner

» Component along the identity ~ Goldstone modes of broken
(super)-translations ~ supercoordinates (x, 0).

Cz.
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BRS structure: spectrum

Spectrum: (m = 1 for conf.s of type (a), m = 0 for type (b))

[ sector | (Mo, Mi) [ U(k) x U@) x U(m) | SU(2)°
D(-1)/D(-1) (Be, M) (adj, 1,1) (2,1,2)
(B;, M;) (,1,1) + hec. (1,2,2)

(Nas, D) (H1.1) +he (2,2,1)

(Nim, dm) Eadj,l,l (1,1,3)

(%) adj, 1,1 (1,1,1)

X adj, 1,1 (1,1,1)

D(-1)/D7 (', 1) (0,0,1) + hec (1,1,1)
D(-1)/D3 (War, ) gm,l,ﬁg +hec (1,1,2)
(;Lé,hé) 1,1,J) + h.c. (1,2,1)

> (B;,M;) ~ posn.s of the D(-1)'s in 74/7Z>

Cz.
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BRS structure: spectrum

Spectrum: (m = 1 for conf.s of type (a), m = 0 for type (b))

[ sector | (Mo, Mi) [ U(k) x U@) x U(m) | SU(2)°

D(-1)/D(-1) (Be, My) (adj,1,1) (2,1,2)
(B;, M) (r,1,1) + he (1,2,2)

(Nas, D) (H1.1) +he (2,2,1)

(Nm, dm) (adj,1,1) (1,1,3)

(x,m) (adj,1,1) (1,1,1)

X (adj, 1,1) (1,1,1)

D(-1)/D7 (', 1) (0,0,1) + hec (1,1,1)
D(-1)/D3 (War, ) gm,l,ﬁg +hec (1,1,2)
(;Lé,hé) 1,1,) + h.c. (1,2,1)

> X\, \ ~ posn.son />

>  has a particular réle and does not belong to a BRS doublet

Cz.
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BRS structure: spectrum

Spectrum: (m = 1 for conf.s of type (a), m = 0 for type (b))

[ sector [ (Mo, Mi) | U(k)x UM4) x U(m) | SU2) |

D(-1)/D(-1) (Bg, My) (adj,1,1) (2,1,2)
(B, My) (C3,1,1) + he. (1,2,2)

(Nas, D) (H1.1) +he (2,2,1)

(Nim, dm) Eadj,l,l (1,1,3)

(%n) adj, 1,1 (1,1,1)

% adj, 1,1 (1,1,1)

D(-1)/D7 (w', 1) (0,0,1) + hec (1,1,1)
D(-1)/D3 (War, ) gm,l,ﬁg +hec (1,1,2)
(;Lé,hé) 1,1,J) + h.c. (1,2,1)

» D(-1)/D7 moduli 1/ fermionic only: typical of exotic instantons
(0 are auxiliary)

Cz.
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BRS structure: spectrum

Spectrum: (m = 1 for conf.s of type (a), m = 0 for type (b))

[ sector | (Mo, Mi) [ U(k)x U@) x U(m) | SU(2)°
D(-1)/D(-1) (Be, M) (adj,1,1) (2,1,2)
(B, M;) (C13,1,1) + hee. 1,2,2)

(Nas, D) (H1.1) +he (2,2,1)

(Nm, dm) adj, 1,1 (1,1,3)

(%n) Eadj,l,l (1,1,1)

% adj, 1,1 (1,1,1)

D(-1)/D7 (', 1) (0,0,1) + hec (1,1,1)
D(-1)/D3 (War, ) gm,l,ﬁg +hec (1,1,2)
(;Lé,hé) 1,1,J) + h.c. (1,2,1)

> All moduli (except x) organize into BRS doublets (Mg, M;)

Cz.
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BRS structure: transformations

» The moduli doublets are connected by BRS transformations
QMo = M,
such that Q is equivariantly closed:

Q°Mo = Ty ()Mo + Tug) ()Mo + Tymy ()Mo + Ty ()Mo

where
> Tyuy(x) = inf.mal U(k) rotation parametrized by x

> Tyw)(e) = inf.mal U(4) rotation param.d by ¢ (D7/D7 scalar)
> Ty(m)(p) = inf.mal U(m) rotation param.d by = (D3/D3 scalar)
» Tsyw)(€) = inf.mal SU(2)? rotation param.d by € (RR backg.d)

)



BRS-exactness of the action

» The moduli action S,,,4 includes “deformation’ terms describing the
interaction of moduli with the D7/D7 N = 2 multiplet ®, its
D3/D3 analogue I and a suitable RR 3-form background e

» These terms can all be consistently derived
from disk diagrams A_, ° ‘:,_
» In the following computation it will suffice to |
consider v.e.v.'s for ®, 1, ¢ (but be carefull...)

Cz.
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BRS-exactness of the action

» The moduli action S,,,4 includes “deformation’ terms describing the
interaction of moduli with the D7/D7 N = 2 multiplet ®, its
D3/D3 analogue I and a suitable RR 3-form background e

» These terms can all be consistently derived
from disk diagrams

» In the following computation it will suffice to
consider v.e.v.'s for ®, 1, ¢ (but be carefull...)

» The deformed action is BRS-exact w.r.t. to the action of @ just

defined:
Smod - QE
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BRS-exactness of the action

» The moduli action S,,,4 includes “deformation’ terms describing the
interaction of moduli with the D7/D7 N = 2 multiplet ®, its
D3/D3 analogue I and a suitable RR 3-form background e

» These terms can all be consistently derived P
from disk diagrams AL, -

> In the following computation it will suffice to b .
consider v.e.v.'s for ®, 1, ¢ (but be carefull...) -

» The deformed action is BRS-exact w.r.t. to the action of @ just
defined:
Smod = QE

» The (deformed) BRST structure allows to suitably rescale the
integration variables and show that the semiclassical approximation

IS exact
Moore+Nekrasov+Shatashvili, 1998; ...; Nekrasov, 2002; Flume+Poghossian, 2002; Bruzzo et al, 2003;

)
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Scaling to localization

» The integrals over all moduli except x become quadratic and yield in
the end L1
[ detri (@)
Mo

where Mg = first components of BRS doublets in the spectrum

» The action of Q% on My is completely determined by the symmetry
properties of M,

Cz.
z)



Scaling to localization

» The integrals over all moduli except x become quadratic and yield in
the end L1
[ detri (@)
Mo

where Mg = first components of BRS doublets in the spectrum

» The action of Q% on My is completely determined by the symmetry
properties of M,

» By taking the parameters x, ¢, m and ¢ in the Cartan directions, we
get a rational function determined by the weigths of the rep.s to
which the Mg moduli belong

Cz‘,‘)



Scaling to localization

» The integrals over all moduli except x become quadratic and yield in
the end L1
[ detri (@)
Mo

where Mg = first components of BRS doublets in the spectrum

» The action of Q% on My is completely determined by the symmetry
properties of M,

» By taking the parameters x, ¢, m and ¢ in the Cartan directions, we
get a rational function determined by the weigths of the rep.s to
which the Mg moduli belong

» Then, we still have to integrate over the x moduli

Cz‘,‘)



D-instanton partition function

> At instanton # k we get

k

Z" (.m0 = <(1(2> /HZ:; - %) ((Xf —xj) - 532)

1<J
((x,- +x;)% — S?>
=) = ‘2) ((X; +x5)° — ((+2>

a ((Xi+7r,)2 _ (e3—ea)? |
= (G = )2 = (léwg (xi = ou)

(here {e4} with 3°%_, €a = 0 are the Cartan param.s of SU(2)> embedded in
SO(4) x SO(4) rot.s and s, = ex + €3, 55 = €1 + €3, 53 = €1 + €2)

[~
[ -
—
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D-instanton partition function

» At instanton # k we get

k

Z" (.m0 = ((](2> /ng: - %) ((Xf —xj) - 532)

I<J
d (Ga+x? - s%)
i<j £=1 (( XJ)2 - ‘2) ((X/ < XJ) - ((+2>

TIT 1 o ((x;wmh%) |
><H 1] (4x — e 2) r=1 ((Xi—w,)2_%) (Xi—ou)

(here {e4} with 3°%_, €a = 0 are the Cartan param.s of SU(2)> embedded in
S50(4) x SO(4) rot.s and s1 = €2 + €3, 5o = €1 + €3, 53 = €1 + €2)

[~
[ -
—

» The y integrals can be done as contour integrals and the final result

for Zx(¢, m, €) comes from a sum over residues
Moore+Nekrasov-+Shatashvili, 1998

Cz.
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Taking the logarithm

» Once the integrals are done, we should be able to remove the
e-deformations and get the contributions to the eff. action.

» In the deformed theory, at instanton number k, there are
disconnected contributions from smaller instantons k; (with

> ki = k).
» To isolate the connected components we have to take the log of the
“grand-canonical” part. function:

zM=%"z7"q* — logZ!™
k

where g = exp(27iT).

Cz.
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The 8-dimensional part

> log Z(™ is still divergent as 1/(c1exezes).

» With &, I restricted to their v.e.v's and the def.s turned on, this
factor arises from the integral over the moduli corresponding to the
(super)coordinates in the first 8 directions

> Let us define
Fiv(o) = “mo er62e3c4 log 2 (¢, 7, €)
e—
> It has an 8d interpretation as a quartic prepotential for ®. It agrees

with the one computed in the D7/D(-1) system in type I’ silo et al, 2009
> It does not depend on the D3 d.o.f. 7 (hence not on m)

Cz.
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The 4d prepotential

» log Z(™ has also subleading divergences in 1/(¢;¢5)
» To isolate them we define

m g m 1
Fi(4) = lim (e1e2log Z™(g,m,€) - EJf,v(qﬁ))‘

(we neglect the D3 vevs as we're interested in the D7 d.o.f.)

=0
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The 4d prepotential

» log Z(™ has also subleading divergences in 1/(¢1¢5)

» To isolate them we define
=0

m . m 1
FiM(6) = lim (c1c2log 27 (9,7,0) = —— F(9))]

(we neglect the D3 vevs as we're interested in the D7 d.o.f.)
» Explicit result, up to 3 instantons:

F(m=0(g) = (Z¢¢j)q+(2¢»¢,f—2¢) + (- ZM;J)

i<j /<_/
Fr )= (33 si6;) a+ (3 @iy + Z¢,-)q + (43 gi9)d +
i<j i<j i i<j
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The 4d prepotential

» log Z(™ has also subleading divergences in 1/(¢;¢5)
> To isolate them we define
m . - 1
Fi(6) = lim (e1e2log Z(9,m,€) = — Fiv ()]
e—0 €3€4 =0
(we neglect the D3 vevs as we're interested in the D7 d.o.f.)
» Explicit result, up to 3 instantons:
F =) = (- Z¢¢j)q+(2¢»¢,f—2¢) + (- ZM;J)
i<j /<_/
Fr )= (33 si6;) a+ (3 @iy + Z¢,-)q + (a3 pid;) @+
i<j i<j i i<j
» We still have to sum over configurations of type (a) and (b)

The correct combinatorial factors imply that we should consider

Fop. =12 F(m=0 4 4 F(m=1)

Cz.
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The 4d prepotential (continued)

» The 1/(¢1¢2) factor arose in our computation from the integration
over the moduli x, 6 which correspond to the 4d spacetime
supercoordinates. We reinstate these integrals, and promote the
v.e.v. ¢ to the multiplet ®(x, )

» We obtain thus the following non-perturbative contributions to the
effective action:

S0 (¥) = / d*x d*0 F, ()
Fop.(®) =4 [-Trd> + 2(Trd)?] ¢° + O(q*)
» In other words, the n.p holomorphic couplings read
fop. =aq +0(q*), f, =—2a¢+0(q"

(« an overalll normaliz.)

> No contrib.s in g and ¢* (as effect of sum over conf.s)
> At order ¢, a fixed ratio between f and f’

Cz.
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Heterotic check

11-d sugra
Type ITA

» The type I' on T2 x T4/Z, has a
computable heterotic dual: the U(16) Type IIB
compactification of the SO(32) heterotic Het
string on T,/Z5 plus Wilson lines on 75
breaking U(16) to U(4)* Type I

Het SO(32)

» The holomorphic gauge couplings for a U(4) factor are derived from
a protected one-loop threshold computation

» Not present in the literature, so we carried it out finding precise
agreement (under the heterotic/type I" duality map) with our
D-instanton predictions

» This represents a very non-trivial duality check, but we mainly
regard it as a test of the correctness of our procedure to tackle
exotic instanton calculus
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Conclusions

» We've considered a consistent string set-up where the 4d gauge
theory living on a D-brane stack receives non-perturbative
corrections from “exotic” brane instantons which do not correspond
to usual gauge instantons

» We computed explicitly such corrections by integrating over exotic
instanton moduli space by means of localization techniques

» We successfully checked the result against a dual heterotic
computation

)



Perspectives

> In the set-up | described, there are other possible n.p. corrections
from E3 branes wrapped on 7,/7Z,. They correspond to usual gauge
instantons for the D7 theory, and would be n.p. on the heterotic
side. We're investigating them.
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Perspectives

> In the set-up | described, there are other possible n.p. corrections
from E3 branes wrapped on 7,/7Z,. They correspond to usual gauge
instantons for the D7 theory, and would be n.p. on the heterotic
side. We're investigating them.

» The n.p. description of D7 bacgkrounds should be geometrized by
F-theory. D7/D3/D(-1) systems are a testing ground to link directly
F-theory curves to n.p. prepotentials both in 8d and 4d. Work in
progress.
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Perspectives

> In the set-up | described, there are other possible n.p. corrections
from E3 branes wrapped on 7,/7Z,. They correspond to usual gauge
instantons for the D7 theory, and would be n.p. on the heterotic
side. We're investigating them.

» The n.p. description of D7 bacgkrounds should be geometrized by
F-theory. D7/D3/D(-1) systems are a testing ground to link directly
F-theory curves to n.p. prepotentials both in 8d and 4d. Work in
progress.

» Most important, the exotic instanton calculus might be applied in
different set-ups and to diferent kind of couplings, possibly of more
direct (string)-phenomenological interest
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