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Stringy construction of instantons: why?

Previous talks have convinced us that embedding gauge
field theories into String Theory via D-brane constructions
is a smart move:

I known facts get well and (yes!) intuitively organized
I connections, generalizations, new ideas (think of

holographic correspondences!)

Instantons are a particularly tractable class of
non-perturbative configurations of gauge theories leading
to many effects at strong coupling in QCD (e.g., U(1)
puzzle) and SYM theories.
They get reproduced in the string set-up by including
D(-1)-branes (or other Euclidean branes).

I Intuitive and efficient description
I Leads to generalizations such as “exotic” instanton effects

that can be important for string phenomenology
I Instantonic branes are crucial for string dualities



Topologically non-trivial sectors in YM
The instanton number

The path-integral over gauge fields decomposes into
sectors characterized by an integer k :∑

k∈Z

∫
DA(k)

µ e−SYM[A(k)] . . . .

k is the 2nd Chern number of the gauge bundle:

k =
1

8π

∫
trF ∧ F =

1
64π2

∫
d4xεµνρσF a

µνF a
ρσ .

k = 0 is the sector connected with the vacuum Aµ = 0,
where usual perturbation theory is carried out.



Instantonic solutions

When k 6= 0 the gauge fields have a non-trivial winding on
the S(∞)

3 boundary; in the Minkowskian regime this
correspond to tunnelling.
Instantons are (anti)self-dual configurations: F = ±∗F .
These have the lowest Euclidean action in a given sector:

Sk =
8π2

g2 |k | − iθk

(θ is the theta-angle).
It is convenient to introduce τ = θ

π + i8πi
g2 so that, for k > 0,

Sk = −πiτk

For anti-instantons S−k = S̄k = πiτ̄k .



Example: one-instanton solution in SU(2)

SU(2), k = 1 instanton solution:

Ai
µ =

2ηi
µν(x − x0)ν

(x − x0)2 + ρ2

It has a self-dual field-strength; for
r →∞ winds once over S(∞)

3

x0

ρ
S∞3

It depends on free parameters:
I The center position xµ

0 (N.B. centered in space and time:
instanton!)

I The size ρ
I A global SU(2) rotation (not explicitly visible)



Instanton calculus
Basic idea

In each sector expanding around the instanton solution we
end up with a path-integral of the form∑

k

∫
dM(k)qk

∫
D′Ã(k)

µ e−S′[Ã(k)
µ ] . . .

I finite-dimensional integral over the moduli M(k) (moduli =
parameters in the solution)

I weight qk = exp(−Sk ), where q = exp(πiτ0), non-
perturbative in the coupling. Negligible in the UV, instantons
become crucial at strong coupling.

I fluctuation part, usually treated semi-classically. For the
partition function yields fluctuation determinants



Instanton calculus
ADHM, susy, ...

The construction of multi-instanton solutions (|k | > 1) and
of their moduli space is very intricate
ADHM construction: work in an enlarged moduli space
M(k), with an auxiliary U(k) symmetry and constraints
imposed via Lagrange multipliers∫

dM(k)qk −→
∫

dM(k)qk e−SADHM
k (M)

In SYM theories
I bosonic and fermionic fluctuation determinants cancel in

the partition functions
I moduli include fermionic 0-modes. If unbalanced, they kill

the path integral. Selection rules on non-perturbative
contributions.



D-branes of type IIB

Dp-branes support p + 1-dim SYM theories
Dp action contains minimal coupling to RR p + 1 forms:

SDp = −Tp

∫
p+1

e−φ
√

det(1 + 2πα′F )− Tp

∫
p+1

∑
p

Cp+1 ∧ e2πα′F

In type IIB we have C0, C2, C4, (C6, C8) RR forms and thus
D(-1), D1, D3, D5, D7, D9 branes.
From F 2 terms, on D3-branes one identifies the 4d gauge
couplings with the dilaton-axion: e−φ ↔ 4π

g2 , C0 ↔ θ
2π



D-instantons (flat space)

D(−1) branes impose DD b.c. on all directions, including
time. They are points in space- time: D-instantons
The (Euclidean) effective action is 0-dim and reduces to

SD(−1) = 2πe−φ − 2πiC0 = −πi τ ,

where τ/2 is the closed-string field C0 + ie−φ, i.e., the
complexified gauge coupling for the D3 gauge theory.
The D-instanton action is thus just the classical instanton
action!
Conversely,from the WZ part of the D3 action, we see that
a gauge field of instanton number k couples to C0 exactly
as k D(-1)’s do.

[Witten 1995, Douglas 1995, Dorey 1999, ...]



D-instantons vs. gauge instantons

The correspondence between D-instantons and gauge
instantons goes well beyond the coincidence of the
classical action
The instanton moduli space, the profile of the instanton
solution and the contributions of instanton sectors to
correlation functions are all contained (and well organized!)
in the brane description

Polchinski 1994, Green-Gutperle 1997-1998, Billò et al 2002,...

To see how this goes, we must study what happens to
open strings when, beside D3 branes, they can end on
D-instantons as well. B.c’s are as follows:

0 1 2 3 4 5 6 7 8 9
D3 − − − − ∗ ∗ ∗ ∗ ∗ ∗

D(−1) ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗



Excitations of open strings

D3/D(−1)

D(−1)/D(−1)

D3/D3

N D3-branes

D-instantons

D3/D3 strings: NN or DD b.c.s, gauge theory fields
D(-1)/D(-1) strings: DD→ no momentum, instanton moduli
D3/D(-1) strings: ND→ no momentum, instanton moduli



(Gauge) instantons in brane-worlds

The flat space case admits natural generalizations
On a background R4 × X 6, a D(3 + m)-brane wrapped on
an m-cycle C ⊂ X 6 supports a 4d SYM theory
A Dm-brane wrapped on the same cycle C is point-like in
space-time. Its w.v. action equals that of gauge instantons
on the D(3 + m) brane. This “euclidean brane” indeed
represents the gauge instantons.
Euclidean branes wrapped on different cycles can produce
novel, stringy, non- perturbative effects (neutrino Majorana
masses, moduli stabilizing terms,... ): bonus of the string
construction! [Blumenhagen et al, 2006; Ibanez and Uranga, 2006;...]
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Different set-ups

Choice of internal manifold, type of branes, background
fields, etc allows to construct gauge theories with different
gauge groups, amount of susy and matter content
Gauge instantons lead then to different effects, e.g.

I in N = 1 SQCD they induce the ADS superpotential for
Nf = Nc − 1 ( −→ SUSY breaking );

I in N = 2 SYM they contribute to the SW Prepotential
( −→ exact strong/weak coupling duality ).

We will now consider the same example used in Alberto
Lerda’s talk, namely an orbifold model with fractional D3’s
supporting N = 2 SU(N) SYM



A specific model: the Z2, N = 2 quiver

Two kinds of fractional branes, even
or odd w.r.t. to the Z2 orbifold group
N = 2 SU(N) SYM lives on N fD3’s
of one type, say the even one.

x1, . . . , x4

x5, x6
D3

orbifold

fixed pointx7, . . . , x10

Even fD(-1) correspond to gauge
instantons (we focus on these);
odd ones to “exotic” instantons

The complexified gauge coupling of fD3’s is in this case
related to twisted closed string fields:
τ = θ

2π + i4π
g2 = c + ie−φb and the even fD(-1) classical

action reads −πiτ



Moduli spectrum

ADHM Meaning Vertex Chan-Paton
-1/-1 (NS) a′µ centers ψµ(z)e−ϕ(z) adj. U(k)

χ aux. Ψ(z)e−ϕ(z)
...

(aux. vert.) Dc Lagrange mult. η̄c
µνψ

ν(z)ψµ(z)
...

(R) MαA partners Sα(z)SA(z)e−
1
2ϕ(z)

...

λα̇A Lagrange mult. Sα̇(z)SA(z)e−
1
2ϕ(z)

...
-1/3 (NS) wα̇ sizes ∆(z)Sα̇(z) e−ϕ(z) k × N

w̄α̇
... ∆(z)Sα̇(z)e−ϕ(z)

...

(R) µA partners ∆(z)SA(z)e−
1
2ϕ(z)

...

µ̄A
... ∆(z)SA(z)e−

1
2ϕ(z)

...



Disk amplitudes and brane actions
D3 disks

D(–1) disks

D3/D(-1)
mixed disks

disk amplitudes

effective actions

SYM action moduli action

α′ → 0 limit

D3 disks D(-1) and mixed
disks



Moduli action

From disk diagrams with insertion of moduli vertices, in the field
theory limit we extract the ADHM moduli action (at fixed k )

S(k)
mod = S(k)

bos + S(k)
fer + S(k)

c

with

S(k)
bos = trk

{
− 2 [χ†,a′µ][χ,a′µ] + χ†w̄α̇w α̇χ+ χw̄α̇w α̇χ†

}
S(k)

fer = trk

{
i

√
2

2
µ̄AεABµ

Bχ† − i

√
2

4
MαAεAB[χ†,MB

α ]
}

S(k)
c = trk

{
− iDc

(
W c + iη̄c

µν

[
a′µ,a′ν

])
−iλα̇A

(
µ̄Awα̇ + w̄α̇µ

A +
[
a′αα̇,M

′αA])}

S(k)
c : bosonic and fermionic ADHM constraints



Field-dependent moduli action

We want to reproduce the instanton corrections to the
effective action

Seff[Φ] =

∫
d4x d4θF(Φ) + c.c

for the chiral multiplet in the Cartan direction

Φ(x , θ) = φ+ θΛ + (θγµνθ)F +
µν + . . .

The D-instantons modify correlators of
φ, Λ, F , hence the effective action,
through disk interactions among Φ and
the moduli
Such interactions make the moduli
action field-dependent: S(k)

mod(Φ,M)

X̄†

w

φ



The effective action and the pre-potential

The combinatorics of boundaries [Polchinski, 1994] is such that
D-instanton diagrams exponentiate
Integrating over the moduli one gets the effective action

S(k)
eff [Φ] =

∑
k

Λ2Nk
∫

d4x d4θ dM̂(k) qk e−Smod(Φ(x ,θ),M̂(k))

I The moduli x (center of mass position) and θ (susies
broken by the D(-1)) appear in Smod only through Φ(x , θ)

I The factor Λ2Nk compensates the dimensionality of dM̂(k)

The prepotential is thus given by

F(Φ) =
∑

k

Λ2Nk
∫

dM̂(k) e−Smod(Φ;M̂(k))

Φ(x , θ) is constant w.r.t. M̂(k); we can freeze it to a
constant value a (some care needed, see later!)



BRST structure and localization
Take a component Q of the susy charge as BRST charge

I “Lorentz” symmetry restricted to SU(2)3 preserving Q
I moduli organize in BRST-doublets
I the moduli action is Q-exact: Smod = Q Ξ

Deformations arise from the
interactions of a closed string RR
3-form ε with the moduli:
Smod(Φ, ε;M̂(k))

ελ

λ

Q is equivariantly closed w.r.t. to the action of U(k) and
U(N) CP groups and of the SU(2)3 symmetry:

Q2M = TU(k)(χ)M+ TU(N)(φ)M+ TSU(2)3 (ε)M

where TU(k)(χ) = U(k) rotation parametrized by χ, . . .
This structure leads to localization of the moduli integrals

Nekrasov 2002, Flume-Poghossian 2002, Nekrasov et al 2003, ...



Integration
The (deformed) BRST structure allows to suitably rescale
the integration variables and show that the semiclassical
approximation is exact

Moore+Nekrasov+Shatashvili, 1998; ...; Nekrasov, 2002; Flume+Poghossian, 2002; Bruzzo et al, 2003; ...

The integrals over all moduli except χ become quadratic
and yield in the end ∏

M0

det
± 1

2
M0

(Q2)

whereM0 = first components of BRST doublets. Entirely
determined by symmetry properties
The χ integrals can be done as contour integrals and the
final result for the partition function

Zk (a, ε) =

∫
dM(k)e

−Smod(a,ε;M(k))

comes from a sum over residues



Final expression
Removing the ε deformation needs some care

I The ε’s regulate the integral over x and θ: there’s a
divergence 1/(ε1ε2) that gets re-interpreted as the
supervolume

∫
d4x d4θ

I In the deformed theory, at instanton # k , we get
disconnected contributions from instantons {ki} (with∑

i ki = k ). Take the log to single out connected terms

Altogether, the final expression for the prepotential reads

Fn.p.(a) = lim
ε1,2→0

ε1ε2 log

(∑
k

Λ2Nk Zk (a, ε)

)

For instance, in the SU(2) case one gets

Fn.p.(a) =
1
2

Λ4

a2 +
5

64
Λ8

a6 +
3
64

Λ12

a10 + . . .

in agreement with Seiberg-Witten solution.



Conclusions

Instanton configurations and instanton calculus à la
Nekrasov are naturally and efficiently embedded in brane
constructions of gauge theories via instantonic branes
The brane realizations offer natural generalizations and
extensions, for instance

I keeping ε terms leads to “gravitational” non-perturbative
terms containing graviphoton interactions, connected to
topological string amplitudes;

I exotic instantonic effects;
I instantonic branes account for the non-perturbative part of

the gravitational profiles in gauge/gravity pairs;
I higher dimensional analogues, e.g. in 8d, often crucial for

string dualities
I . . .

Thanks for your attention!
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