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Abstract

The k-instanton sector of non-abelian (supersymmetric)
SU(NN) gauge theories in 4 dimensions can be described
by means of open strings in presence of N D3 branes
and k£ D-instantons. This description is more than just
as a book-keeping device to keep track of the ADHM
constraints describing the moduli space and its measure.
The profile of the classical solution itself arises naturally
from disks with mixed boundary conditions. So does
the prescription to compute correlation functions in the
instanton background, including the correct measure.

Based on: M. B., M. Frau, F. Fucito, |. Pesando, A. Lerda, A.
Liccardo, hep-th/0211250 (and on large previous literature).
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Introduction, main ideas and results

Usually, string theory S-matrix elements — effective vertices
in field theory. E.g.,

e Closed strings:
C (Vi(z1; k1, €1) Vi(22; k2, €2) Vi (zs; ks, €3)) g2
- C: sphere normaliz. factor fixed by factorization
— Vh: graviton vertex

— All gravitons on-shell: k* = 0, k,e"” = 0.
k1

k3

— effective 3-graviton vertex in SUGRA
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e Open strings:

Cp+1 ((VA(21§ k1, €1)VA(22; ks, 62)VA(Z3; ks, €3)>disk

xtr(t*t"t°) + perm.s)

— Cpy1: disk normaliz. (if p + 1 Neumann directions, 9 — p
Dirichlet)

— Va1 gluon vertex
— All gluons on-shell: k> =k -e =0

klaela a

ki,a
ko,e2,b ks, b

k3,}3&§

— 3-gluon vertex in SY M theory in p + 1 dimensions
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Nowadays, also the “solitonic” black p-brane solutions of
SUGRA have a perturbative string interpretation:

h h
source
Dp-brane

- The Dp-brane allows boundaries on the world-sheet
- On the disk attached to the Dp, tadpoles no longer zero:

(Vh)aisk,p(k1) = (h(k)|Dp) # 0

(V1 = graviton vertex without polarization: V;, = h V})

- Insertion of propagator 4+ Fourier transform — long-distance
behaviour of the classical p-brane solution:

1

h(x,) = /dkL oz (Vh)aisk,p(k)

— Utrecht, 24/01/2003 - 3



- More source terms (more boundaries) — subleading terms in
the large-distance expansion. In any case, from SUGRA bulk
equations + source terms — full p-brane solution.

Question: Can this be extended to the open string sector?

e Low energy theory of open strings (with p + 1 Neumann
directions) = super Yang-Mills in p 4+ 1 dimensions

e So the question is: 3 a perturbative open strings description
of the classical instantonic solutions of SYM?

Answer: Yes

e (Consider the case p = 3) A De-instanton on the D3
world-volume allows for disk diagrams with mixed boundary
conditions:

S
\ D(—1) boundary
\
! J
- '

D3 boundary Y- - 7
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o Let V4 = AV, = vertex in the D3/D3 string for the gauge
field. While (V4)adisk,p3 = 0, the tadpole on a mixed disk
does not vanish:

(V4) mixed disk = 0

e Insertion of propagator + Fourier transform — long-distance
behaviour of the classical instanton solution in the singular

gauge
1
1
Au(x) = / 4P 3 (Val)mixed disk (P)

e More mixed disk diagrams acting as “sources” — subleading
terms in large distance:
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Summarizing:

e Disks with mixed D3/D(-1) b.c.s <> sources of the classical
instanton conf.

e Analogous of Dp brane <+ source of classical p-brane conf.

Comments

e D3/D(-1) system in flat 10 — d space -+ N = 4 SYM in
4 dims. The open string description leads to the NV = 4
superinstanton Instantonic corrections to correl. functions
severely limited by fermionic 0-modes; for instance, no non-
perturbative corrections to gauge coupling.

e We're working on set-ups with lower SUSY (first of all N’ =
2). Here instantons do correct the l.e.e.a (resummed by
Seiberg-Witten).
e Possible development: N = 2 gauge/gravity correspondece.
— Avaliable SUGRA (wrapped branes) and string set-ups
(fractional D3-branes on C?/T") — perturbative part of
effective coupling only.

— Mixed disks in the closed string context — recover
instantonic contrib.s in the gravitational dual?
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Some literature...

. about the stringy description of instantons and of their effects

e Basic references about D-instantons

— J. Polchinski, Phys. Rev. D 50 (1994) 6041 [9407031].
— M.B. Green and M. Gutperle, Phys. B 498 (1997) 195, [9701093]; ...

e ADHM construction in supersymmetric case, realiz. in brane
set-up

— E. Witten, Nucl. Phys. B 460 (1996) 335 [9510135]; M. R. Douglas,
J. Geom. Phys. 28, 255 (1998) [9604198] (main ideas of the brane
realization)

— A.V. Belitsky, S. Vandoren and P. van Nieuwenhuizen, Class. Quant.
Grav. 17 (2000) 3521 [0004186]; N. Dorey, T. J. Hollowood,
V. V. Khoze and M. P. Mattis, [0206063] (reviews) and references
therein, e.g.:

— N. Dorey, V.V. Khoze, M.P. Mattis and S. Vandoren, Phys. Lett. B
442 (1998) 145, [9808157]; N. Dorey, T.J. Hollowood, V.V. Khoze,
M.P. Mattis and S. Vandoren, JHEP 9906 (1999) 023, [9810243];
N. Dorey, T. J. Hollowood, V. V. Khoze, M. P. Mattis and S. Vandoren,
Nucl. Phys. B 552 (1999) 88 [9901128]; N. Dorey, T. J. Hollowood
and V. V. Khoze, [0010015].

e Closely related discussion:

— M.B. Green and M. Gutperle, JHEP 0002 (2000) 014 [0002011]
However, focuses on D-instanton-induced modifications of the N/ = 4
action — only F? terms or gravitational interactions, and on the
abelian case

e . ..and many others . ..
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Gauge instantons and D-instantons

Consider the world-volume action of system of Dp-branes:

1
non-ab. Bl(F) + A (Cp_|_1 + 5029_3 NTrEF AN F + .. )
p
(F' = gauge field on the Dp brane. C,, = RR form fields)

e Instantonic conf. TrF A F # 0 (localized) — localized
charge for C,_3, i.e., D(p — 4) charge

e Instanton on the Dp <+ D(p—4) localized on the Dp, smeared
with characteristic size = char. scale p of the instanton

N D3 bra
& Stringy description of
instanton number k sector of
® the SU(NN) gauge theory in
° 4 dimensions (case p = 3).

Largely used in literature to
describe moduli space

k D-instantons
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Instantons & and their moduli (flashing review)

e Consider the k = 1 instanton of SU(2) theory

N (T — 0)"”

Af(x) = 2
.U( ) (m _ $0)2 + p2
S:° winding # 1 map 753 — SU(2)

R4 f

With a singular gauge transf. — so-called singular gauge:

(x — x0)”

(2 = 20)? | (& — @0)2 + p?]

v 2
2 _c (.’13‘ o .’L‘()) 1Y
2 1 — + ...
P T (x — o)t ( (x — xg)? >
R4 winding # -1 map _—=

1130 ////
S3 /\/l

(o]

c _ 2 _c
A'u,(x) — 2p ,r"ul/

|2

= Ny 7, self-dual (resp. anti-self-dual) 't Hooft symbols.
— A, in singular gauge is self-dual despite containing 7,,,,
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e Parameters (moduli) of kK = 1 sol. in SU(2) theory:

moduli meaning #
Ty center 4
p size 1
0 orientation*) 3

) from “large” gauge transf.s A —» U(O)AUT(O)
e For an SU(N) theory, embed SU(2) instanton in SU(N):

On_oxN—2 0 +
A,u =U ( 0 AiU(Q)) U
Thus there are 4N — 5 moduli parametrizing

SU(N)
SU(N — 2) x U(1)

— total #: 4N

e For instanton # k in SU(N): total # of moduli: 4Nk,
described by ADHM construction
— Realized by the N D3 branes, £ D-instantons set-up as
described later
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e We deal in fact with super YM, — super-instantons.
— Semiclassical quantization in an instantonic sector:
* the one-loop determinants (formally) cancel between
bosons and fermions
x we are left with integrals over moduli only
— Fermionic 0-modes (A = Weyl fermion in rep R)

M(Ainst)A =0
in an instanton background counted by index theorem

1 TR
-modes = —— r'rp =
#0-mod TrrF' N F k

772 Lfun

* R= fundam. — k zero-modes
* R= adjoint — 2 N k zero-modes
— Some (but not all) 0-modes accounted for by broken susy
and superconformal charges. E.g., in N/ = 4,
* 4 adjoint gauginos — 8 Nk ferm. zero-modes
x 16 susy charges Q, 8 broken by instanton
x 16 superconf. charges S , 8 broken by instanton
* the remaining 8Nk — 16 modes — true supermoduli
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The D3/D(-1) system

D D3/D3 strings, C-P: uv

\n

} D(-1)/D(-1) strings, C-P: i;

D(-1)/D(-1) stri -P: 4
D—instantolgs (-1)/D(-1) strings, C-P: du
1=1,...

e Open string fields: X*, 4" and S* (spin field).

— Under SO(10) — SO(4) x SO(6),

xM 5 xKH Xxe i 2 SaSa
M a S & A

(e — Yr, Y N 5T
(b=0,1,2,3,a=4,...,9, a,& = SO(4) spinor indices,

4 and 2 in the 4, resp. 4 of SU(4) ~ SO(6))
e Boundary conditions:
on a D(-1) | on a D3
XM ™M Dir. X*, ¥ Neu., X*, 1* Dir.
SA(z) = §A4(2) .=z | SA(z) = €TB5A(2)|,=-
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Broken symmetries

e Given an blueholomorphic current j(z), the charge

0=0-0=5= ([ i) - [az7))

z

is preserved by the b.c. m

j(2) = j(2)|:=2

N

e [ he combination

i=Q+@=5-([die) + [673)

is instead broken by it. Deforming the contour in ¢’ to the
boundary gives

/b A2 + 7)|oes

oundary

with (§ 4+ 7)(z) = massless vertex for Goldstone field of
broken symmetry generated by ¢’
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e Ezample for j%(z) = 0X%(z), the transl. symmetry
generated by g“ is broken by the Dirichlet b.c.

8Xa = _a_Xlz:Z
Goldstone fields = transverse scalars ¢, vertex op.s:

(3* = J)|2=z < B, X"

— Utrecht, 24/01,/2003 — 14



Supersymmetries

e The supercurrent is
: , 1
i*(z) = §M(z) 72

Define the “bulk” I.m. and r.m. charges
A_ 1 A ~A4_ 1 A
Q== [dz77(2), Q" == [ dz 77 (%)
271 271

e Boundary cond.s on spin fields can be written as follows:

on a D(-1) | on a D3
SaSA — €q€A|z:2 SaSA — E,SgSé|z:2
So’zSA — SaSA|z:2 SaSA — —CISaSAlz:z

= preserved and broken supercharges for ¢/ = —1:
charge D(-1) D3 parameter
Q* —Q* | OK OK Ean

Q4 + Qvé‘A broken | broken PaA
QaA — QaA OK broken &'aA
Qaa + Qaa | broken OK nO‘A

(For €’ = 1 exchange chiralities <+ anti-instantons on the D3's)
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Massless spectra

e D3/D3 strings
— Massless modes — N = 4 gauge multiplet in d = 4
(4-dim reduction of ' =1 SYM in d = 10)
— All modes: Chan-Paton indices uv — Chan-Paton factors
(T7) 4o in the adjoint of (S)U(N) (not written below)
— NS sector (space-time bosons): gauge field + 6 scalars

1 : v
AF o viEY(z) = A* e PP (4
(6) = 40) = 8

\- >4

v

Vf@l) (2;p)

1 : v
© o V() = — ae_¢e1p”X z
0 @) = ") s (=)

(—1), .
vgoa (zap)

— R sector (space-time fermions): gauginos, (4 + 4) Weyl

A o VEYD(2) = A (p) Sa Sae 2PN (2)

Vf\;{f) (2;p)

Raa & VEYD(2) = Raalp) §° 5% e 20 ¥ (1)

4

Vi /P Gw)
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— N = 4 fields related by 16 susies preserved by the D3's
(£an, n™7)

— Also (the linear part of) these susies obtained by stringy
manipulations.
Ezxample Acting with a preserved charge on a gaugino
vertex gives schematically

[£q,VA] = V(Sg—A

In detail

dy s

Eaad®™ VTP (@) =Eaa p =i VTP )
_ d - _1 —1¢ _ipy XV

= —E;an’P ;5 2—fi<s°“s% 2%)(y) (SpSpe™ 2% "X ) (2)

z

= (<i&a@"% ABA) P X (2)
5z AM — g
¢ Vfwl)(zsp)

accounts for the term
SAM =i€sa (G AS + ...

in the susy transf. rules of the N = 4 gauge multiplet
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e D(-1)/D(-1) strings

No momentum. Lowest lying “moduli” <> 0-dimensional
reduction of ' =1 SYM ind = 10

Chan-Paton indices ©5 — CP factors tg- in the adjoint of
U(k)

NS sector (bosonic moduli):

1
ot o V() = e (2)

7

1
a (—1) __ ..a —¢
X & V. (z)=x —2%6 (2)

\/_
R sector (fermionic moduli):
M o VEY(2) = M SaS4e”%?(2)
Aaa & VYD (2) = Maa S%5%e T2 (2)

Connected by 16 susies preserved by the D(-1) (€44, £7)
Again, (linear part of) susies can be retrieved by vertex
manipulations e.g.:

[éq7 VM] — V5£—a
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e D(-1)/D3 and D3/D(-1) strings

— In the directions p = 0, 1, 2,3 mixed D(irichlet)N(eumann)

or ND boundary conditions:
o 1 2 3 4 5 6 7 8 9

D3 | — — — ~—
D-1 : : e
— On each X*(z), switch in b.c. < insertion of twist field
A(z) of conformal weight 4 X 1z

A'H

oy AW~ o)

A(2) X" (w) ~

(the anti-twist D switches back the b.c.s)

D3
A A ~ A A

""""" D(-1) N 2

— Modings of X*#, ¥* shifted by 1/2 — peculiar spectrum

— No momentum in DD directions nor in ND (or DN) — again,
moduli rather than fields

— Chan-Paton indices wi or iu, bifundamental of SU(N) X
U(k)
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— NS sector: 1" has 0-modes — (chiral) SO(4) spinors

(Chirality choice: GSO + locality w.r.t. supercurrent jdA preserved on

both boundaries. Would be reversed for anti-instantons)
— R sector: ® has 0-modes — (chiral) SO(6) ~ SU(4)
spinors

it e VP () = pt ASaeT(2)

it e VIUP(2) = 5t ASae™(2)

(Chirality choice appropriate to instantonic conf.s)

— Related by the 8 susies preserved on both D3 and D(-1),

namely €4
— (Linear part of) susies retrived by vertex manipulations, e.g.:

[é(b V,u] — V5éw
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Effective action for massless modes

Tree level (=disk) string amplitudes
for massless vertex op.s

y
|

field theory limit “a’ — 0"

y
|

effective action for massless fields o
classical inst.

/ \> from D3/D3 fiels
-+ moduli

ADHM measure on
N = 4 SYM action D(-1)/D(-1) and
for D3/D3 fields D(_]_)/D3 moduli

e Disk amplitudes

V. <<Vg§j1) Vgﬂ LN =00 si—2)

Hi dzi <V(31)(21)V(p(;2)(22) .. >

xC
b9 o p+1 dVigs

— Utrecht, 24/01/2003 - 21



dzq dzi, dz . . .
— Above, dV . = (za_zb)(‘;b_gc)éc_za) = proj. invariant

volume (effect of ghosts)
— Cp41 = topological normalization of the disk

x fixed by factorization: D => @I@

* depends on the # of NN directions (= dimensionality of
momentum), p + 1

x  Explicitly,
Chor = 27 1 1 _ 1 1
Is (47r2a’)% Tpr1 2w gp Tpi
where

p—3
Gpy = 4m(4n’a) 2 g,

is the gauge coupling of the resulting SYM theory and xz=
index of the fundam. rep of the gauge group.

% In particular (gym = g4) the pure D3 and D(-1) disks give:

D3
— Oy = L
T g5y
D)
) oo L1 _ 8’

2 12 .2 7 9
2T 95 9y M
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Effective action for D3 /D3 fields

e All amplitudes computed on disks with D3 b.c.’s (— 4-dim.
momentum)
e For instance,

A
(vi PVt

+ ineq. color orderings

— Reinstate dim. factors of 2mwa’ (previously set to 1). Rule:
* NS sector ~ bos. fields: A, — (2%&’)%14“ so that
[A,] =1~ (canonical)
* R sector ~ bos. fields: A, A — (27roz')§£A, A so that
[A], [A] = 1 3/? (canonical)
— In the end we get the effective vertex
— o T (Raa [47, 457])

e Do the same for all other interactions surviving for

a' — 0 with g%M fixed
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e From the 1Pl part of the surviving amplitudes — N = 4
SYM action

1 4 1 .2 5 =aB, A
YM
2 1 2
+  (Dupa)” — 5 [Pa, ©b)

= 129" Asa e, A%] — (2D ap A" 00, AL | }
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D(-1)/D(-1) moduli

e All amplitudes on disks with D(-1) b.c. (— no momentum)

e Same procedure as above: after rescaling to canonical
dimensions, take

a' — 0 with g(2) fixed
e One remains with the “action”

8(—1) — Scubic + Squartic

where

1 ' A 1 AB ;
Scubic = g_gtr{Ao'zA [ﬁaﬂ,Mg ] — 5(20') A& A [Xa,AaB]

0

1 o A B

- 5 (EG)AB Ma |:Xaa Ma :| }

1 1 2 1 2 1 9

SQuartiC - - g_gtr{Z [aﬂ’ a,,] + B I:a,u,, Xa] + 1 [Xas Xb) }

— Utrecht, 24/01/2003 - 25



e Auxiliary fields The quartic interactions can be decoupled by

means of auxiliary fields:
— From

integrate out D, Y, Z — Squartic-

— Notice: D/(J;) antiselfdual sufficient — D, = Dcnw
— All the cubic interactions in S’ obtained from disks using vertex
operators for auxiliary fields (non BRST invariant):

1
V5 (2) = Do, ¥4 (2)
W) = Y d"'(2)

1
Vil(z) = 5 Zad"(2)

— Auxiliary fields and vertices also linearize the SUSY tansf.s —
susies completely derived via vertex manipulations
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D(-1)/D3 and D3/D(-1) moduli

e Disks with mixed boundary cond.s. No momentum. Pairs of
twist-antitwists A, A
e For instance, with usual procedure,

i
s (=1) 1 (=1/2)1 7 (~1/2)
1 . (Ve V0V
/ 21t ( u>\d _A
! — —tr (w, m u)
X- - g2 A
w

e Also non-zero amplitudes with auxiliary fields D:

2. (VOVEIVEDY
\$< D — iﬁc tr (w “D wﬁ) ("),
2 2 Tuv Q c U 3
/I go
_ -7 21
X = Ztr (D, W°)
90

where we introduce the &£ X k matrices

(WC)J’L — wd’u,i TC) IB,u—)ﬂu]
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e Altogether one gets the “action”

2i ;
s’ = g—2tr (ﬁﬁwdu + wduuAu> A4 — D W*
0

1 _A B . _ '
+ E(ZG)AB Koy K uXa — 1Xa wduwauxa

e Again, quartic terms can be disentangled introducing auxiliary
fields that also linearize susy transf.s
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Moduli space and ADHM measure

e For the moduli, both from D3/D3 and D3/D(-1) strings, we
got Smoduli = Scubic + S’ 4+ 8" in the limit

a' — 0 with 9(2) fixed
e SYM action on the D3 however arises for

a' — 0 with g%M fixed

e Since
__ gym
90 = 472a/
when o’ — 0 with g7 fixed we have gy — co. Keeping fixed
the moduli a, x, ... with canonical dimensions, Syodulii — O

e To retain the effect of the presence of the D(-1)'’s:
— rescale the moduli giving them non-canonical dimensions:

g0 / /
a:\/ig()ala X:X,, M=—M, A=\,
V2
D=D", Y=v2gqY', Z=g02Z" ,
—&w, w—&wl M—ﬂu, ﬂ—g_oﬁ,

— keep fixed the rescaled moduli

(we'll drop the primes, except for a’, M’ where are traditional)
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e [he result is

2 @ 1 o
Smoduli = 4 Y, +2Yua [al ,Xa] + ZZab
+Xa'wduwauxa
1 _A B 1 Ja A | B
+5(2G)ABM Wb Xa — Z(ZG)ABM [xa,M o ]

A .
+i (ﬁﬁwau + Baup ™™ + [M'B ﬂba}) A4
—iD, (WC + iﬁfw [am, a’y] )

1

integrate out Y, Z
J
e~Smoduli = exp. measure on instanton moduli space
as in ADHM construction

— In particular, quadratic terms for D, and )\é‘A have been rescaled
away — multipliers of bosonic and fermionic constraints
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e Classical vacua (bosonic):
tr [a'“, xa] =0, ftr (Xau_)d“) =0
We+in,, [a'u, a’y] =0
— “Coulomb phase”: (x) # 0= (a') = (w) =0

D3 D(-1)
D(-1) separated from the D3 1 (x)

— “Higgs phase”: (x) = 0 = generically (a'), (w) # 0,
subject to the ADMH constraints W* + 475, [a'#, a’"] = 0

D(-1)
® Phase of interest for us:

03 { D(-1)«»> instantonic conf. localized
on D3, centered at (a’), with spread
related to (w)
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e Summarizing: in the Higgs phase, considering also fermionic
moduli,

Smoduli — classical vacua given by ADHM constraints
we+in;, [a",d"] =0 (bosonic)

_ _ A ..
uAuwd“ + Waupt + [M’ﬂ , a'ﬂd] =0 (fermionic)
(Notice: k X k matrix constraints)

e Moduli space of k-instantons = HyperKahler space, defined
as a HyperKahler quotient by ADHM
The quotient is realized in string theory by a brane set-up, as
it often happens
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The instanton solution from mixed disks

e A further piece of information can be extracted from the
stringy description: the classical instanton profile.

e We concentrate on the one-instanton sector (k = 1). The
method extends to the general case.

e Consider amplitudes with D3/D3 fields and moduli at the

same time, on disks with part(s) of the boundary on a D3,
part(s) on a D(-1)
e Simplest case: emission of a gauge boson from a mixed disk

w
A, (p; 0, w) .
= (VD EpVy "
w

— Gluon vertex op. in the picture 0:
0 - : —ip- X
Vi{i(Z; —p) = 2T (0X, —ip - Pyu)e 77 (2)
with outgoing momentum and no polarization

— The amplitude Ai(p;w,w) has Lorentz and quantum
numbers of emitted gauge field
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e Usual contractions of vertex op.s; in particular,

(Be1)e P XD A(z) ) = —e 70 (zy — 25) 717

ip- X
D3 <
N\
A A
____________ i
D(-1) at z,

The D(-1) part of the boundary is fixed at g (=(a’))

— this breaks translational invariace in the D3 world-volume
— we can have a tadpole o< 70

e [he result is

I — . v 71 — —ip-
A (pyw,w) =ip J, (0,w)e prEo

where
I — I\v _c u & [
Th(w,w) = (T, 75, (ws (r)% @)

e To get the space-time profile of the field generated by the
emission amplitude:
— attach a (massless) propagator 4, /p
— Fourier transform
That is,

Al (z) = JL (@, w) / (%)2 P e
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e \We can write the field as
I I — v
A (z) =J,,(0,w) " G(z — o)

where G(z — x¢) = (x — xo) 2 is the massless propagator
in configuration space.

e The above solution contains as parameters:
— the position zj of the D(-1)

— the 4N moduli wz‘, w;j‘, up to an irrelevant phase rotation:
0 —i6 —

w ~ e’wand w ~ e Yw

— it is defined on the 4 N — 3-dim. unconstrained moduli
space

e Upon enforcing the 3 bosonic ADHM constraints
W= wi(7° .BU_)BU =0
arising from the moduli action,
Ali(:r:) — instanton in singular gauge
in the large-distance expansion, and

: . size p
uwr Wy
¢ orientation of SU(2) inside SU(N)

w
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— Define

— The N x N matrices

satisfy an su(2) subalgebra: [t.,t4q] = i€cqete iff the
constraints W° = 0 hold.

e The gauge vector profile can be written as

c (CE - xo)v
w(

I 2 I, \—
AL@) = 49" (T by,

e For N = 2, we get the SU(2) connection

_ (CU - CBO)V
Ac — 9 2 _c

= leading term in |z —xo| > p expansion of SU(2) instanton
in the singular gauge:

A(x) = 2p77,,
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N
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e Subleading terms can be recostructed from disks with more
w, W insertions:

w
Ip s w
: )
AW

X_f

w

gives the 2nd term in the expansion:

A ()@ _ o aoe (B = To)

e Question: Why singular gauge?

— Instanton produced by a point-like source, the D(-1), inside
the D3 — singular at the location of the source

— In the singular gauge, rapid fall-off of the fields — eq.s of
motion reduce to free eq.s at large distance — “perturbative”
solution in terms of the source term
(leading term Ai(x) = J,fﬂ(u?, w)0"G(x — xp))

— non-trivial properties of the instanton profile from the region
near the singularity through the embedding

S0 — SU(2) C SU(N)

— Utrecht, 24/01/2003 - 37



The super-instanton profile

e We're dealing with N = 4 SYM — we should recover the
N = 4 super-instanton.

e There are mixed disks that act as sources for the other fields
in the multiplet

e For the gauginos, diagrams (a) and (b):

E.g., (a) corresponds to

/—\dA,I(p; D, ,LL) — <<Vu‘()_1)v;\;.1/2)(_p)v,u(_lﬂ)»

oA

From (a) 4+ (b), upon insertion of the fermionic massless
propagator and Fourier transform, we get

AT, el A Au_ Y\ - \Bal(z —20)”
A () = =2i(T7)", (wB“u v T 1 wﬂv) (ov) (@ — 20)®
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— Imposing ADHM fermionic constraints — leading order at
large distance of the gaugino profile in the N/ = 4 instanton
in the singular gauge:

(00)% (w1 + u" @) (= — 20)”

R A (@), = —F -
\/ (@ = 20)2 (@ = 20)? + 02|
e For the 6 adjoint scalars ¢ (often rewritten as i
S5 (59) 4P
fi
p IR L i
I - \ Soa(p’ :u’7 /’l’)
_________ ! _ (=1/2) y,(—=1) (—1/2)
a // = <<Vﬁ chgl (—p) VM >>
X_//
7

Inserting the massless propagator and Fourier transforming
gives

AB, 1 v Au — 1
P (2) = — —(T"", p* 5",

V2 “(z — 20)?

= leading term at large distance of exact instanton solution
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e The profiles for the gaugino and the scalars can be got via
Ward identities on the disk amplitudes for the D3 susies
preserved by the D(-1) (namely, £4.4).

These Ward identities relate the gaugino emission amplitude to the gauge

boson one, and the scalar emission to the gaugino one

Example:
W
A N\ %\
0 = : — ), \,
1 /
. ad -7
7]

EBAPV(5V“)5d<<VwV/—\éA(—P)Vu>> = —<<VwVA£(—P)V55w>>
e Acting with the D3 SUSY charges ¢ , broken by the D(-1)
shifts the supermoduli

— Move the integration contour in g., , to the D(-1) part of the
boundary — integrated vertex op. of the goldstinos M'*4

— Ward identities relate emission diagrams with no D(-1)/D(-1)
moduli to diagrams with extra insertions of M’ moduli
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— In the above example, one gets

T&AT, | : A & AT _
{\a (p;w,w,M’l: :1M’ﬂ (a“)ﬁ Au(p;w,w)J

4-point diagram alg. manipul. of 3-point diagram

From /_\é‘A’I(p; w,w, M") — space-time profile

r—oo 1

aA, T A vy a1
A (z) TR §M'ﬂ (0" 5 F,, ()

= chiral ferm. profile created acting by broken susies on the
instanton background.

— Repeating the procedure — entire structure of fermionic O-
modes
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Correlators in the instanton background

e Tree-level string amplitudes for D3/D3 states (without

/
. 0 .
polarizations) =5 amputated Green functions:

<</>1(p1) e ¢n(pn)> = <<V¢1(—p1) e V¢n(—pn)>>
amp.

e \What modifications from D-instantons?
— Disk diagrams with only moduli (M) insertions

1PI

a! =0

These “vacuum” contrib.s (from the D3 point of view) give

872k

(1 N paey "= —S[M] =

5 - Smoduli
I9ym

2
(the “pure” D(-1) disk gives Cy = 8"5—"’ [Polchinski])

YM
— Correlators of D3/D3 fields on D(M), i.e. with mixed
b.c.’s and insertion of moduli

<<V¢1(P1) e v¢n(pn)>>’D(M)
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e The correlators on D(M) have to be integrated on the
moduli. Several important consequences

— Diagrams disconnected from the world-sheet point of view are
connected from the point of view of the field theory on the D3
because of the moduli integration

¢(1) ¢(1) ¢(k) ¢(k)

Notice: the combinatorics of boundaries (Polchinski) — the
“vacuum’ terms <<1>>D(M) exponentiate

— Every 2-d amplitude on D(M) «x Cy o g;', dominant
contrib = most disconnected one = product of tadpoles (Green-
Gutperle)

®1 @2
b/
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namely,

<<V¢1 (p1)>>D(Mj . <<v¢n (pn)>>D(M) LD

e Altogether we have

D—inst.
<¢1(p1) ¢n(pn)>
amput.
B B I pm
/dM <<V¢1( p1)>>D(./\/l) <<V¢n( p”)>>D(M)e ( )a,_>0
J
insert propagators + Fourier transform
J

Green function

(o1600). ol )

D—inst.

/dM o3k (1 M) - pdisk (g0 Ay o SIM
where
d*p

disk , . L ip-x
o (z; M) = (2n)? e
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e As already argued (main point of the talk)
¢($;M)di8k — QbCl(CU;M)

e Under this identification,

stringy prescription for corrl.s in presence of D-instantons

7

standard field theory prescription of instanton calculus

e Effect of D-inst. — effective vertices for the D3/D3 fields
— originate from one-point functions on D(M) —

S(-1)/3 = Z/(g 720) (V6®)) iy
= Since {Vo(P) ) popgy ~ Jo(M) e?70,

S—iys = — D d(mo) Jp(M)
5

al!—0

— Explicitly,
1 v
S(-1y/3 = —EF,fV(fvo)J“ (M)
— AL a@@o) I I (M) — ol g(20) TAB T (M)

(non-ab. extension of Green-Gutperle approach)
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