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Foreword

This talk is based on

M. Billo, M. Frau, F. Fucito and A. Lerda,
arXiv:hep-th/0606013 (to appear on JHEP).

It of course builds over a vast literature. The few references
scattered on the slides are by no means intended to be
exhaustive. I apologize for the many relevant ones which will be
missing.



Plan of the talk

Introduction

Stringy instanton calculus for N = 2 SYM

Inclusion of a graviphoton background

Effective action and relation to topological strings



Introduction



General idea

I We consider an explicit example (in a controllable set-up)
of a type of computation which is presently attracting some
attention:

I deriving D-instanton-induced interactions in effective
actions

I We study D-instanton induced couplings of the chiral and
the Weyl multiplet in the N = 2 low energy effective theory

I In this framework, we obtain a natural interpretation of a
remarkable conjecture by Nekrasov regarding the N = 2
multi-instanton calculus and its relation to topological string
amplitudes on CY’s



The quest for the multi-instanton contributions

The semiclassical limit of the exact SW prepotential displays
1-loop plus instanton contributions: Back

F(a) =
i

2π
a2 log

a2

Λ2 +
∞∑

k=1

F (k)(a)

I Important task: compute the multi-instanton contributions
F (k)(a) within the “microscopic” description of the
non-abelian gauge theory to check them against the SW
solution

I Only recently fully accomplished using localization
techniques to perform the integration over the moduli
space of the ADHM construction of the super-instantons

[Nekrasov 2002, Flume-Poghossian 2002, Nekrasov et al 2003, ...]



The localizing deformation

Introduce a deformation of the ADHM measure on the moduli
spaces exploiting the 4d chiral rotations symmetry of ADHM
constraints.

I The deformed instanton partition function

Z (a, ε) =
∑

k

Z (k)(a, ε) =
∑

k

∫
dM̂(k)e

−Smod(a,ε;M(k))

can then be computed using localization techniques and
the topological twist of its supersymmetries. One has

Z (a, ε) = exp
(
Fn.p.(a; ε)

ε2

)
lim
ε→0

Fn.p.(a; ε) = Fn.p.(a) = non-pert. part of SW prepotential



Multi-instanton calculus and topological strings

What about higher orders in the deformation parameter ε?
I Nekrasov’s proposal: terms of order ε2h ↔ gravitational

F -terms in the N = 2 eff. action involving metric and
graviphoton curvatures [Nekrasov 2002, Losev et al 2003, Nekrasov 2005] Back∫

d4x(R+)2(F+)2h−2

I When the effective N = 2 theory is obtained from type II
strings on a “local” CY manifold M via geometrical
engineering, such terms

I arise from world-sheets of genus h
I are computed by the topological string

[Bershadsky et al 1993, Antoniadis et al 1993]

I For the local CY describing the SU(2) theory the proposal
has been tested [Klemm et al, 2002]



The aim of this work

I Reproduce the semiclassical instanton expansion of the
low energy effective action for the N = 2 SYM theory in
the microscopic string realization via (fractional) D3/D(-1)
branes

I Show that the inclusion of the graviphoton of the N = 2
bulk sugra, which comes from the RR sector,

I produces in the effective action the gravitational F-terms
which are computed by the topological string on local CY

I leads exactly to the localization deformation on the
instanton moduli space which allows to perform the
integration



The aim of this work

I Reproduce the semiclassical instanton expansion of the
low energy effective action for the N = 2 SYM theory in
the microscopic string realization via (fractional) D3/D(-1)
branes

I The situation is therefore as follows:

Geometrically engineered
string description

of l.e.e.t on local CY

Microscopic string
description

Gravitational F-term
interactions

deformed multi-instanton
computations

topological string
amplitudes at genus h

I The two ways to compute the same F-terms must coincide
if the two descriptions are equivalent



Stringy instanton calculus for N = 2 SYM



SYM from fractional branes

Consider pure SU(N) Yang-Mills in 4 dimensions with N = 2
susy.

I It is realized by the massless
d.o.f. of open strings attached to
fractional D3-branes in the
orbifold background

R4 × R2 × R4/Z2
x1, . . . , x4

x5, x6
D3

orbifold

fixed pointx7, . . . , x10

I The orbifold breaks 1/2 SUSY in the bulk, the D3 branes a
further 1/2:

32× 1
2
× 1

2
= 8 real supercharges



Fields and string vertices

I Field content: N = 2 chiral superfield

Φ(x , θ) = φ(x) + θΛ(x) +
1
2
θσµνθ F+

µν(x) + · · ·

I String vertices:

VA(z) =
Aµ(p)√

2
ψµ(z) eip·X(z) e−ϕ(z)

VΛ(z) = ΛαA(p) Sα(z)SA(z) eip·X(z) e−
1
2 ϕ(z)

Vφ(z) =
φ(p)√

2
Ψ(z) eip·X(z) e−ϕ(z)

with all polariz.s in the adjoint of U(N)



Gauge action from disks on fD3’s

α′→0−→ + + . . .

I String amplitudes on disks attached to the D3 branes in
the limit

α′ → 0 with gauge quantities fixed.

give rise to the tree level (microscopic) N = 2 action

SSYM =

∫
d4x Tr

{1
2

F 2
µν + 2 Dµφ̄Dµφ− 2 Λ̄α̇AD̄/ α̇βΛ A

β

+ i
√

2 g Λ̄α̇Aε
AB[φ, Λ̄α̇

B
]
+ i
√

2 g ΛαAεAB
[
φ̄,Λ B

α

]
+ g2[φ, φ̄ ]2 }



Scalar v.e.v’s and low energy effective action

I We are interested in the l.e.e.a. on the Coulomb branch
parametrized by the v.e.v.’s of the adjoint chiral superfields:

〈Φuv 〉 ≡ 〈φuv 〉 = auv = au δuv , u, v = 1, ...,N ,
∑

u

au = 0

breaking SU(N) → U(1)N−1 [we focus on SU(2)]
I Up to two-derivatives, N = 2 susy forces the effective

action for the chiral multiplet Φ in the Cartan direction to be
of the form

Seff[Φ] =

∫
d4x d4θF(Φ) + c.c

I We want to discuss the instanton corrections to the
prepotential F Recall in our string set-up



Instantons and D-instantons

I Consider the Wess-Zumino term of the effective action for
a stack of D3 branes:

D. B. I. +

∫
D3

[
C3 +

1
2

C0 Tr
(

F ∧ F
)]

The topological density of an instantonic configuration
corresponds to a localized source for the RR scalar C0,
i.e., to a distribution of D-instantons on the D3’s.

I Instanton-charge k solutions of 3+1 dims. SU(N) gauge
theories correspond to k D-instantons inside N D3-branes.

[Witten 1995,Douglas 1995, Dorey 1999, ...]



Stringy description of gauge instantons

1 2 3 4 5 6 7 8 9 10
D3 − − − − ∗ ∗ ∗ ∗ ∗ ∗

D(−1) ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

N D3 branes
u = 1, . . . , N

k D(–1) branes
i = 1, . . . , k

D3/D3, C-P: uv

D(-1)/D(-1), C-P: ij

D(-1)/D3, C-P: iu



Moduli vertices and instanton parameters

Open strings ending on a D(-1) carry no momentum:
moduli (rather than fields) ↔ parameters of the instanton.

ADHM Meaning Vertex Chan-Paton
-1/-1 (NS) a′µ centers ψµ(z)e−ϕ(z) adj. U(k)

χ aux. Ψ(z)e−ϕ(z)
...

(aux. vert.) Dc Lagrange mult. η̄c
µνψ

ν(z)ψµ(z)
...

(R) MαA partners Sα(z)SA(z)e−
1
2 ϕ(z)

...

λα̇A Lagrange mult. Sα̇(z)SA(z)e−
1
2 ϕ(z)

...
-1/3 (NS) wα̇ sizes ∆(z)Sα̇(z) e−ϕ(z) k × N

w̄α̇

... ∆(z)Sα̇(z)e−ϕ(z)
...

(R) µA partners ∆(z)SA(z)e−
1
2 ϕ(z)

...

µ̄A
... ∆(z)SA(z)e−

1
2 ϕ(z)

...



Instanton calculus from the string standpoint

Consider disk diagrams involving only moduli M(k), and no
D3/D3 state (these are “vacuum” contributions from the D3
point of view)

w̄

+ . . .≡ +

µ

λ

α′→0' − 8π2 k
g2 − Smod

(the “pure” D(-1) disks yields kC0 [Polchinski, 1994])

I The combinatorics of boundaries [Polchinski, 1994] is such that
these D-instanton diagrams exponentiate



Instanton calculus from the string standpoint

Consider disk diagrams involving only moduli M(k), and no
D3/D3 state (these are “vacuum” contributions from the D3
point of view)

w̄

+ . . .≡ +

µ

λ

α′→0' − 8π2 k
g2 − Smod

(the “pure” D(-1) disks yields kC0 [Polchinski, 1994])

I The moduli must be integrated over:

Z (k) =

∫
dM(k)e

− 8π2 k
g2 −Smod



Disk amplitudes and effective actions

Usual disks:
D3

D(-1)

Mixed disks:

D3 D(-1)
N = 2 SYM action ADHM measure

Effective actions

Disk amplitudes

α′ → 0 field theory limit

D3/D3 D(-1)/D(-1) and mixed



The action for the moduli

From disk diagrams with insertion of moduli vertices, in the field
theory limit we extract the ADHM moduli action (at fixed k )

Smod = S(k)
bos + S(k)

fer + S(k)
c

with Back

S(k)
bos = trk

{
− 2 [χ†,a′µ][χ,a′µ] + χ†w̄α̇w α̇χ+ χw̄α̇w α̇χ†

}
S(k)

fer = trk

{
i
√

2
2
µ̄AεABµ

Bχ† − i
√

2
4

MαAεAB[χ†,MB
α ]
}

S(k)
c = trk

{
− iDc

(
W c + iη̄c

µν

[
a′µ,a′ν

])
−iλα̇

A
(
µ̄Awα̇ + w̄α̇µ

A +
[
a′αα̇,M

′αA])}

I S(k)
c : bosonic and fermionic ADHM constraints



Field-dependent moduli action

Consider correlators of D3/D3 fields, e.g of the scalar φ in the
Cartan direction, in presence of k D-instantons. It turns out that

[Green-Gutperle 1997-2000, Billò et al 2002]

I the dominant contribution to 〈φ1 . . . φn〉 is from n one-point
amplitudes on disks with moduli insertions. The result can
be encoded in extra moduli-dependent vertices for φ’s, i.e.
in extra terms in the moduli action containing such
one-point functions

Smod(ϕ;M) = φ(x)Jφ(M̂) + Smod(M̂)

where x is the instanton center and

φ(x)Jφ(M̂) =

φ



Moduli action with the unbroken multiplet Φ

To determine Smod(φ;M) we systematically compute mixed
disks with a scalar φ emitted from the D3 boundary, e.g.

X̄†

w

φ

〈〈
VX̄†VφVw

〉〉
≡ C0

∫ ∏
i dzi

dVCKG
× 〈VX̄†(z1)Vw (z2)Vφ(z3)〉

= ... = trk

{
X̄ †

α̇ φ(x) w α̇
}

I Other non-zero diagrams couple the components of the
gauge supermultiplet to the moduli, related by the Ward
identities of the susies broken by the D(-1).

I The superfield-dependent moduli action Smod(Φ;M) is
obtained by simply letting φ(x) → Φ(x , θ)



Inclusion of a graviphoton background



Including fields from the closed sector

In the stringy setup, is quite natural to consider also the effect
of D-instantons on correlators of fields from the closed string
sector.

F

I The effect can be encoded in a
field-dependent moduli action determined
from one-point functions of closed string
vertices on instanton disks with moduli
insertions.

I Our aim is to study interactions in the low
energy N = 2 effective action involving the
graviphoton Recall . This is the closed string
field we turn now on.



The Weyl multiplet

I The field content of N = 2 sugra:

hµν (metric) , ψαA
µ (gravitini) , Cµ (graviphoton)

can be organized in a chiral Weyl multiplet:

W +
µν(x , θ) = F+

µν(x) + θχ+
µν(x) +

1
2
θσλρθR+

µνλρ(x) + · · ·

(χ αA
µν is the gravitino field strength)

I These fields arise from massless vertices of type IIB
strings on R4 × C× C2/Z2



Graviphoton vertex

The graviphoton vertex is given by

VF (z, z̄) =
1

4π
FαβAB(p)

×
[
Sα(z)SA(z)e−

1
2 ϕ(z)Sβ(z̄)SB(z̄)e−

1
2 ϕ(z̄)

]
eip·X(z,z̄)

(Left-right movers identification on disks taken into account)



Graviphoton vertex

The graviphoton vertex is given by

VF (z, z̄) =
1

4π
FαβAB(p)

×
[
Sα(z)SA(z)e−

1
2 ϕ(z)Sβ(z̄)SB(z̄)e−

1
2 ϕ(z̄)

]
eip·X(z,z̄)

I The bi-spinor graviphoton polarization is given by

F (αβ)[AB] =

√
2

4
F+

µν

(
σµν)αβ εAB



Graviphoton vertex

The graviphoton vertex is given by

VF (z, z̄) =
1

4π
FαβAB(p)

×
[
Sα(z)SA(z)e−

1
2 ϕ(z)Sβ(z̄)SB(z̄)e−

1
2 ϕ(z̄)

]
eip·X(z,z̄)

I A different RR field, with a similar structure, will be useful:

VF̄ (z, z̄) =
1

4π
F̄αβÂB̂(p)

×
[
Sα(z)SÂ(z)e−

1
2 ϕ(z)Sβ(z̄)SB̂(z̄)e−

1
2 ϕ(z̄)

]
eip·X(z,z̄)

Â, B̂ = 3,4 ↔ odd “internal” spin fields Recall



Graviphoton-dependent moduli action

To determine the contribution of the graviphoton to the
field-dependent moduli action

I we have to consider disk amplitudes with open string
moduli vertices on the boundary and closed string
graviphoton vertices in the interior which survive in the field
theory limit α′ → 0.

I Other diagrams, connected by susy, have the effect of
promoting the dependence of the moduli action to the full
Weyl multiplet

F+
µν → W +

µν(x , θ)



Graviphoton-dependent moduli action

To determine the contribution of the graviphoton to the
field-dependent moduli action

I we have to consider disk amplitudes with open string
moduli vertices on the boundary and closed string
graviphoton vertices in the interior which survive in the field
theory limit α′ → 0.

I Other diagrams, connected by susy, have the effect of
promoting the dependence of the moduli action to the full
Weyl multiplet

F+
µν → W +

µν(x , θ)



Non-zero diagrams

Very few
diagrams
contribute.

a′

Y †

M

M

F , F̄ F̄

I Result: (same also with F̄+
µν)〈〈

VY †Va′VF
〉〉

= −4i trk

{
Y †

µ a′ν F+
µν

}
I Moreover, term with fermionic moduli and a VF̄ :〈〈

VMVMVF̄
〉〉

=
1

4
√

2
trk

{
MαAMβBF̄+

µν

}
(σµν)αβεAB



Effective action and relation to topological
strings



Contributions to the prepotential

Integrating over the moduli the interactions described by the
field-dependent moduli action Smod(Φ,W +;M(k)) one gets the
effective action for the long-range multiplets Φ and W + in the
instanton # k sector:

S(k)
eff [Φ,W +] =

∫
d4x d4θ dM̂(k) e

− 8πk
g2 −Smod(Φ,W +;M(k))

The prepotential is thus given by the centred instanton partition
function

F (k)(Φ,W +) =

∫
dM̂(k) e

− 8πk
g2 −Smod(Φ,W +;M(k))

I Φ(x , θ) and W +
µν(x , θ) are constant w.r.t. the integration

variables M̂(k). We can compute F (k)(a; f ) giving them
constant values



Contributions to the prepotential

Integrating over the moduli the interactions described by the
field-dependent moduli action Smod(Φ,W +;M(k)) one gets the
effective action for the long-range multiplets Φ and W + in the
instanton # k sector:

S(k)
eff [Φ,W +] =

∫
d4x d4θ dM̂(k) e

− 8πk
g2 −Smod(Φ,W +;M(k))

The prepotential is thus given by the centred instanton partition
function

F (k)(Φ,W +) =

∫
dM̂(k) e

− 8πk
g2 −Smod(Φ,W +;M(k))

I Φ(x , θ) and W +
µν(x , θ) are constant w.r.t. the integration

variables M̂(k). We can compute F (k)(a; f ) giving them
constant values



The deformed moduli action
Fixing the multiplets to constant background values

Φ(x , θ) → a , W +
µν(x , θ) → fµν

one gets a “deformed” moduli action Recall Back

Smod(a, ā; f , f̄ ) =

−trk

{(
[χ†,a′

αβ̇
] + 2f̄c(τ ca′)αβ̇

)(
[χ,a′β̇α

] + 2fc(a′τ c)β̇α
)

−
(
χ†w̄α̇ − w̄α̇ ā

)(
w α̇χ− a w α̇

)
−
(
χw̄α̇ − w̄α̇ a

)(
w α̇χ† − ā w α̇

)}
+i
√

2
2

trk

{
µ̄AεAB

(
µBχ† − āµB)

−1
2

MαAεAB
(
[χ†,MB

α ] + 2 f̄c (τ c)αβMβB)}+ S(k)
c

I The constraint part of the action, S(k)
c , is not modified



Holomorphicity, Q-exactness

In the action Smod(a, ā; f , f̄ ) the v.e.v.’s a, f and ā, f̄ are not on the
same footing: a and f do not appear in the fermionic action.

I The moduli action has the form Smod(a, ā; f , f̄ ) = Q Ξ where
Q is the scalar twisted supercharge:

Qα̇B top. twist−→ Qα̇β̇ , Q ≡ 1
2
εα̇β̇ Qα̇β̇

I The parameters ā,̄fc appear only in the gauge fermion Ξ

I The instanton partition function

Z (k) ≡
∫

dM(k) e−Smod(a,ā;f ,̄f )

is independent of ā,̄fc : variation w.r.t these parameters is
Q-exact.



Graviphoton and localization

The moduli action obtained inserting the graviphoton
background coincides exactly with the “deformed” action
considered in the literature to localize the moduli space
integration if we set [Nekrasov 2002, Flume-Poghossian 2002, Nekrasov et al 2003, ...]

fc =
ε

2
δ3c , f̄c =

ε̄

2
δ3c ,

and moreover (referring to the notations in the above ref.s)

ε = ε̄ , ε = ε1 = −ε2

I The localization deformation of the N = 2 ADHM
construction is produced, in the type IIB string realization,
by a graviphoton background



Expansion of the prepotential

Some properties of the prepotential F (k):
I from the explicit form of Smod(a,0; f ,0) Recall it follows that
F (k)(a; f ) is invariant under

a, fµν → −a,−fµν

I Regular for f → 0, to recover the instanton # k contribution
to the SW prepotential

I Odd powers of af µν cannot appear.
Altogether, reinstating the superfields,

F (k)(Φ,W +) =
∞∑

h=0

ck ,h Φ2
(

Λ

Φ

)4k(W +

Φ

)2h



The non-perturbative prepotential

Sum over the instanton sectors:

Fn.p.(Φ,W +) =
∞∑

k=1

F (k)(Φ,W +) =
∞∑

h=0

Ch(Λ,Φ)(W +)2h

with

Ch(Λ,Φ) =
∞∑

k=1

ck ,h
Λ4k

Φ4k+2h−2

I Many different terms in the eff. action connected by susy.
Saturating the θ integration with four θ’s all from W +∫

d4x Ch(Λ, φ) (R+)2(F+)2h−2
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∞∑
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Evaluation via localization

To compute ck ,h, use constant values Φ → a and W +
µν → fµν

I The localization deformation is obtained for

fµν =
1
2
ε η3

µν , f̄µν =
1
2
ε̄ η3

µν

I Z (k)(a, ε) does not depend on ε̄. However, ε̄ = 0 is a
limiting case: some care is needed

F (k)(a; ε) is well-defined. S(k)[a; ε] diverges because of the
(super)volume integral

∫
d4x d4θ. ε̄ regularizes the superspace

integration by a Gaussian term. Effective rule:∫
d4x d4θ → 1

ε2

I One can then work with the effective action, i.e., the full
instanton partition function



The deformed partition function vs the prepotential

a and ε, ε̄ deformations localize completely the integration over
moduli space which can be carried out

[Nekrasov 2002, Flume-Poghossian 2002, Nekrasov et al 2003, ...]

I With ε̄ 6= 0 (complete localization) a trivial superposition of
instantons of charges ki contributes to the sector k =

∑
ki

I Such disconnected configurations do not contribute when
ε̄ = 0. The partition function computed by localization
corresponds to the exponential of the non-perturbative
prepotential:

Z (a; ε) = exp
(
Fn.p.(a, ε)

ε2

)
= exp

( ∞∑
k=1

F (k)(a, ε)
ε2

)

= exp

( ∞∑
h=0

∞∑
k=1

ck ,h
ε2h−2

a2h

(
Λ

a

)4k
)



Summarizing

I The computation via localization techniques of the
multi-instanton partition function Z (a; ε) determines the
coefficients ck ,h which appear in the gravitational F -terms
of the N = 2 effective action∫

d4x Ch(Λ, φ) (R+)2(F+)2h−2

via the relation

Ch(Λ, φ) =
∞∑

k=1

ck ,h
Λ4k

φ4k+2h−2

I The very same gravitational F -terms can been extracted in
a completely different way: topological string amplitudes on
suitable Calabi-Yau manifolds
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∞∑
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Geometrical engineering and topological strings

I SW: low energy N = 2 ↔ (auxiliary) Riemann surface
I Geometrical engineering: embed directly the low energy

theory into string theory as type IIB on a suitable local CY
manifold M [Kachru et al 1995, Klemm et al 1996-97]

I geometric moduli of M ↔ gauge theory data (Λ,a);
I The coefficients Ch in the l.e.e.a. gravitational F-terms

Ch (R+)2(F+)2h−2

are given by topological string amplitudes at genus h
[Bershadsky et al 1993-94, Antoniadis et al 1993]

I For the local CY MSU(2) the couplings Ch were checked to
coincide with those given by the deformed multi-instanton
calculus as proposed by Nekrasov [Klemm et al 2002]



Microscopic vs effective string description

2h disks
connected by
integration over
moduli

with D3/D(-1) system
Moduli action depends on

Orbifold space

gauge theory data Λ,a
open and closed strings

Local CY manifold
Geometric moduli determined
from gauge theory data Λ,a
No branes - closed strings only

genus h Riemann surface

χ = 2h − 2

Same gravitational F-term interactions

Ch(Λ,a) (R+)2(F+)2h−2



Perspectives



Some interesting directions to go...

I Explicit computations of D-instanton and wrapped
euclidean branes effects in N = 1 contexts. Very recently
considered for

I neutrino masses [Blumenhagen et al 0609191, Ibanez-Uranga 0609213]

I susy breaking [Haack et al 0609211, Florea et al 0610003]

I Study of D3’s along a CY orbifold to derive BH partition
functions in N = 2 sugra (which OSV relates to |Ztop|2)

I Study of the instanton corrections to N = 2 eff. theory in
the gauge/gravity context: modifications of the classical
solution of fD3’s

I ...
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Some notations



String fields in the orbifold space

I In the six directions transverse to the brane,

Z ≡ (X 5 + iX 6)/
√

2 , Z 1 ≡ (X 7 + iX 8)/
√

2 , Z 2 ≡ (X 9 + iX 10)/
√

2 ,

Ψ ≡ (ψ5 + iψ6)/
√

2 , Ψ1 ≡ (ψ7 + iψ8)/
√

2 , Ψ2 ≡ (ψ9 + iψ10)/
√

2

the Z2 orbifold generator h acts by

(Z 1, Z 2)→ (−Z 1,−Z 2) , (Ψ1, Ψ2)→ (−Ψ1, −Ψ2)

I Under the SO(10)→SO(4)×SO(6) induced by D3’s,
SȦ→(SαSA′ ,Sα̇SA′)

I Under SO(6)→SO(2)×SO(4) induced by the orbifold, Back

SA′ notat. SO(2) SO(4) SA′ notat. SO(2) SO(4) h
S+++ SA 1

2 (2, 1) S−−− SA − 1
2 (2, 1) +1

S+−−
A=1, 2 S−++ A=1, 2

S−+− SÂ − 1
2 (1, 2) S+−+ SÂ

1
2 (1, 2) −1

S−−+
Â=3, 4 S++− Â=3, 4
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