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Foreword

This talk is based on

M. Billó and M. Caselle, “Polyakov loop correlators from
D0-brane interactions in bosonic string JHEP 0507 (2005) 038
[arXiv:hep-th/0505201].

also outlined in the LATTICE 2005 talk of M. Caselle:

M. Billo, M. Caselle, M. Hasenbusch and M. Panero, “QCD
string from D0 branes,” PoS (LAT2005) 309
[arXiv:hep-lat/0511008].

and on a paper in preparation:

M. Billó, L. Ferro and M. Caselle, “The partition function for the
effective string theory of interfaces”, to appear (soon!).
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The main ideas

String theory and (lattice) gauge theories

A description of strongly coupled gauge theories in terms of
strings has long been suspected
These strings should describe the fluctuations of the color flux
tube in the confining regime

Potential V (R) between two external,
massive quark and anti-quark sources
from Wilson loops

〈W (L, R)〉 ∼ e−LV (R) (large R)

Area law ↔ linear potential

V (R) = σR + . . .

σ is the string tension

q q̄

R

L

Marco Billò ( D.F.T., Univ. Torino ) Bosonic strings for LGT Turin, November 15, 2005 5 / 35



The main ideas

Quantum corrections and effective models

Leading correction for large R

V (R) = σ R − π

24
d − 2

R
+ O

(
1

R2

)
.

from quantum fluctuations of d − 2 massless modes: transverse
fluctuations of the string

Lüscher, Symanzik and Weisz

Simplest effective description via the c = d − 2 two-dimensional
conformal field theory of free bosons

I Higher order interactions among these fields distinguish the various
effective theories

I The underlying string model should determine a specific form of the
effective theory, and an expression of the potential V (R) that
extends to finite values of R.
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The main ideas

Various models of effective strings

“Free” theory: the d − 2 bosonic fields living on the surface
spanned by the string, describing its transverse fluctuations
Standard bosonic string theory. Nambu-Goto action ∝ area of the
world-sheet surface

I Possible first-order formulation á la Polyakov (we’ll use this)
I In d 6= 26, bosonic string is ill-defined (conformal invariance broken

by quantum effects). This is manifest at short distances in the
description of LGT observables.

Attempts to a consistent string theory description:
Polchinski-Strominger, Polyakov, AdS/CFT
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The main ideas

The Nambu-Goto approach

Action ∼ area of the surface spanned by the string in its motion:

S = −σ

∫
dσ0dσ1

√
det gαβ

where gαβ is the metric “induced” on the w.s. by the embedding:

gαβ =
∂X M

∂σα

∂X N

∂σβ
GMN

σα = world-sheet coords. (σ0 = proper time, σ = 1 spans the
extension of the string)

σ1

σ0

X M(σ0, σ1)
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The main ideas

The nambu-Goto approach (cont.ed)

One can use the world-sheet re-parametrization invariance of the
NG action to choose a “physical gauge”:

I The w.s. coordinates σ0, σ1 are identified with two target space
coordinates x0, x1

One can study the 2d QFT for the d − 2 transverse bosonic fields
with the gauge-fixed NG action

Z =

∫
DX ie−σ

R
dx0dx1

√
1+(∂0

~X)2+(∂1
~X)2+(∂0

~X∧∂1
~X)2

=

∫
DX ie−σ

R
dx0dx1{1+(∂0

~X)2+(∂1
~X)2+int.s}

perturbatively, the loop expansion parameter being 1/(σA) [e.g.,

Dietz-Filk, 1982]
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The main ideas

The first order approach

The NG goto action can be given a 1st order formulation (no
awkward square roots)

S = −σ

∫
dσ0dσ1

√
hhαβ∂αX M∂βX M

with hαβ = independent w.s metric
Use re-parametrization and Weyl invariance to set hαβ → ηαβ

I Actually, Weyl invariance is broken by quantum effects in d 6= 26
Remain with a free action but

I Virasoro constraints Tαβ = 0 from hαβ e.o.m.
I residual conformal invariance
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The main ideas

Physical gauge vs. covariant quantization

The residual conformal invariance can be used to fix a light-cone
(physical) type of gauge: w.s. coordinates identified with two
target space ones (non-covariant choice)

I One explicitly solves the Virasoro constraints and remains with the
d − 2 transverse directions as the only independent d.o.f.

I The quantum anomaly for d 6= 26 manifests as a failure in Lorentz
algebra

In a covariant quantization, the Virasoro constraints are imposed
on physical states á la BRST

I All d directions are treated on the same footing
I Introduction of ghosts
I For d 6= 26, anomaly in the conformal algebra
I This is the framework we will use
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Polyakov loop correlators

Polyakov loop correlators
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Polyakov loop correlators

The set-up

T

~r

~x

q̄

x0

P(~0)

q

P(~R)

Finite temperature geometry + static
external sources (quarks)
Polyakov loop = trace of the temporal
Wilson line

〈P(~R)〉 = e−F 6= 0 → de-confinement

On the lattice, the correlator

〈P(~0)P(~R)〉c .

can be measured with great accuracy.
In the string picture, the correlation is due
to the strings connecting the two external
sources: cylindric world-sheet

P(~0)

P(~R)
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Polyakov loop correlators

Nambu-Goto description of the correlator (1)

P.L. correlator = partition function of an open string with
I Nambu-Goto action
I Dirichlet boundary conditions (end-points attached to the Polyakov

loops)

Operatorial formulation:

I Spectrum obtained via formal quantization by Arvis:

En(R) = σR

√
1 +

2π

σR2 (n − d − 2
24

) .

I Partition function: Back

Z =
∑

n

wne−LEn(R)

wn = multiplicities of the bosonic string: η(q) =
∑

n wnqn− 1
24
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Polyakov loop correlators

Nambu-Goto description of the correlator (1)

P.L. correlator = partition function of an open string with
I Nambu-Goto action
I Dirichlet boundary conditions (end-points attached to the Polyakov

loops)

Operatorial formulation:

I Expansion of the energy levels:

En = σR +
π

R

(
n − d − 2

24

)
+ . . .

I Expansion of the partition function

Z = e−σLR
∑

n

wne−π L
R (n− d−2

24 )+... = e−σLRη(i
L

2R
) (1 + . . .)
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Polyakov loop correlators

Nambu-Goto description of the correlator (2)

Functional integral result (Dietz and Filk):
I Loop expansion. Expansion parameter 1/(σLR)
I Two-loop result [set τ̂ = iL/(2R), d = 3]:

Z = e−σLR 1
η(τ̂)

(
1− π2L

1152σR3

[
2E4(τ̂)− E2

2 (τ̂)
]
+ . . .

)
This is reproduced by the partition function of the operatorial
formulation, upon expanding the energy levels En

Caselle et al
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Polyakov loop correlators

First order formulation
Action (in conformal gauge)

S =
1

4πα′

∫
dσ0

∫ π

0
dσ1

[
(∂τX M)2 + (∂σX M)2

]
+ Sgh.

L

~r

~x

x0 ∼ x0 + L

P(~0) P(~R)

σ1 = 0
σ1 = π

σ1

World-sheet parametrized by
I σ1 ∈ [0, π] (open string)
I σ0 (proper time)
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Polyakov loop correlators

First order formulation
Action (in conformal gauge)

S =
1

4πα′

∫
dσ0

∫ π

0
dσ1

[
(∂τX M)2 + (∂σX M)2

]
+ Sgh.

L

~r

~x

x0 ∼ x0 + L

P(~0) P(~R)

σ1 = 0
σ1 = π

σ1

σ0

X0(σ0, σ1), ~X(σ0, σ1)

The field X M (M = 0, . . . , d − 1) describe
the embedding of the world-sheet in the
target space
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Polyakov loop correlators

First order formulation
Action (in conformal gauge)

S =
1

4πα′

∫
dσ0

∫ π

0
dσ1

[
(∂τX M)2 + (∂σX M)2

]
+ Sgh.

L

~r

~x

x0 ∼ x0 + L

P(~0) P(~R)

σ1 = 0
σ1 = π

σ1

σ0

Boundary conditions:
I Neumann in “time” direction:

∂σX 0(τ, σ)
∣∣
σ=0,π

= 0

I Dirichlet in spatial directions:

~X (τ, 0) = 0 , ~X (τ, π) = ~R

“open string suspended between two
D0-branes”
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Polyakov loop correlators

First order formulation
Action (in conformal gauge)

S =
1

4πα′

∫
dσ0

∫ π

0
dσ1

[
(∂τX M)2 + (∂σX M)2

]
+ Sgh.

L

~r

~x

x0 ∼ x0 + L

P(~0) P(~R)

σ1 = 0
σ1 = π

σ1

σ0

The string fields have thus the expansion

X 0 = x̂0+
p̂0

πσ
+

i√
πσ

∑
n 6=0

α0

n
e−inσ0 cos nσ1

~X =
~R
π

σ1 −
1√
πσ

∑
n 6=0

~α

n
e−inσ0 sin nσ1

Canonical quantization leads to[
αM

m , αN
n

]
= m δm+n,0 δMN .
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Polyakov loop correlators

First order formulation
Action (in conformal gauge)

S =
1

4πα′

∫
dσ0

∫ π

0
dσ1

[
(∂τX M)2 + (∂σX M)2

]
+ Sgh.

L

~r

~x

x0 ∼ x0 + L

P(~0) P(~R)

σ1 = 0
σ1 = π

σ1

σ0

The target space has finite temperature:

x0 ∼ x0 + L

I The 0-th component of the momentum
is therefore discrete:

p0 → 2πn
L
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Polyakov loop correlators

The free energy

Interaction between the two Polyakov loops (the D0-branes) ↔
free energy of the open string

F = L
∫ ∞

0

dt
2t

TrqL0

q = e−2πt , and t is the only parameter of the
world-sheet cylinder (one loop of the open
string)

σ10 π

t

σ0
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Polyakov loop correlators

The free energy

Interaction between the two Polyakov loops (the D0-branes) ↔
free energy of the open string

F = L
∫ ∞

0

dt
2t

TrqL0

L is the “world-volume” of the D0-brane, i.e. the volume of the only
direction along which the excitations propagate, the Euclidean
time
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Polyakov loop correlators

The free energy

Interaction between the two Polyakov loops (the D0-branes) ↔
free energy of the open string

F = L
∫ ∞

0

dt
2t

TrqL0

Virasoro generator L0 (Hamiltonian)

L0 =
(p̂0)2

2πσ
+

σR2

2π
+

∞∑
n=1

N(d−2)
n − d − 2

24

I N(d−2)
n is the total occupation number for the oscillators appearing

in d − 2 bosonic fields (the -2 is due to the ghosts)
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Polyakov loop correlators

The free energy

Interaction between the two Polyakov loops (the D0-branes) ↔
free energy of the open string

F = L
∫ ∞

0

dt
2t

TrqL0

The trace over the oscillators yields, for each bosonic direction,

q−
1
24

∞∏
r=1

1
1− qr =

1
η(it)
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Polyakov loop correlators

The free energy

Interaction between the two Polyakov loops (the D0-branes) ↔
free energy of the open string

F = L
∫ ∞

0

dt
2t

TrqL0

We must trace also over the discrete zero-mode eigenvalues
p0 = 2πn/L. Altogether,

F =

∫ ∞

0

dt
2t

∞∑
n=−∞

e
−2πt

„
2πn2

σL2 +σR2
2π

«(
1

η(it)

)d−2
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Polyakov loop correlators

Topological sectors
Poisson resum over the integer n getting

F = F (0) + 2
∞∑

m=1

F (m)

with Back

F (m) =

√
σL2

4π

∫ ∞

0

dt

2t
3
2

e−
σL2 m2

4t −σR2t
(

1
η(it)

)d−2

The integer m is the # of times the open string wraps the compact
time in its one loop evolution.
Each topological sector F (m) describes the fluctuations around an
“open world-wheet instanton”

X 0(σ0 + t , σ1) = X 0(σ0, σ1) + mL
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Polyakov loop correlators

Topological sectors
Poisson resum over the integer n getting

F = F (0) + 2
∞∑

m=1

F (m)

with Back

F (m) =

√
σL2

4π

∫ ∞

0

dt

2t
3
2

e−
σL2 m2

4t −σR2t
(

1
η(it)

)d−2

L

~x

An example with m = 0 (N.B. The
classical solution degenerates to a line)
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Polyakov loop correlators

Topological sectors
Poisson resum over the integer n getting

F = F (0) + 2
∞∑

m=1

F (m)

with Back

F (m) =

√
σL2

4π

∫ ∞

0

dt

2t
3
2

e−
σL2 m2

4t −σR2t
(

1
η(it)

)d−2

L

~x

The case m = 1. The world-sheet exactly
maps to the cylinder connecting the two
Polyakov loops.
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Polyakov loop correlators

The case m = 1 and the NG result

The sector with m = 1 of our free energy should correspond to the
effective NG partition function

Expand in series the Dedekind functions:( ∞∏
r=1

1
1− qr

)d−2

=
∞∑

k=0

wkqk

Plug this into F (m) Recall and integrate over t using∫ ∞

0

dt

t
3
2

e−
α2
t −β2t =

√
π

|α|
e−2|α| |β|
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Polyakov loop correlators

The case m = 1 and the NG result

The sector with m = 1 of our free energy should correspond to the
effective NG partition function

The result is

F (m) =
1

2|m|
∑

k

wk e−|m|LEk (R) , (m 6= 0)

with

Ek (R) =
R

4πα′

√
1 +

4π2α′

R2

(
k − d − 2

24

)
So, in particular,

2F (1) = Z (R)
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Polyakov loop correlators

Transformation to the closed channel

The modular transformation t → 1/t
maps the open string channel 1-loop free
energy to a closed string channel tree
level exchange between boundary states
The result of the transformation is

F (m) = L
T 2

0
4

∑
k

wk G (R; M(m, k))

σ0

σ1

σ0

σ1
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Polyakov loop correlators

Transformation to the closed channel

The modular transformation t → 1/t
maps the open string channel 1-loop free
energy to a closed string channel tree
level exchange between boundary states
The result of the transformation is

F (m) = L
T 2

0
4

∑
k

wk G (R; M(m, k))

σ0

σ1

σ0

σ1

G (R; M) = propagator of a scalar field of mass M2 over the
distance ~R between the two D0-branes along the d − 1 spatial
directions:

G(R; M) =

∫
dd−1p

(2π)d−1
ei~p·~R

p2 + M2 =
1

2π

(
M

2πR

) d−3
2

K d−3
2

(MR)
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Polyakov loop correlators

Transformation to the closed channel

The modular transformation t → 1/t
maps the open string channel 1-loop free
energy to a closed string channel tree
level exchange between boundary states
The result of the transformation is

F (m) = L
T 2

0
4

∑
k

wk G (R; M(m, k))

σ0

σ1

σ0

σ1

The mass M(m, k) is that of a closed string state with k
representing the total oscillator number, and m the wrapping
number of the string around the compact time direction

M2(m, k) = (mσL)2
[
1 +

8π

σL2m2

(
k − d − 2

24

)]
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Polyakov loop correlators

Transformation to the closed channel

The modular transformation t → 1/t
maps the open string channel 1-loop free
energy to a closed string channel tree
level exchange between boundary states
The result of the transformation is

F (m) = L
T 2

0
4

∑
k

wk G (R; M(m, k))

σ0

σ1

σ0

σ1

T0 = usual D0-brane tension in bosonic string theory:

T 2
0 = 8π

(π

σ

) d
2−2
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Polyakov loop correlators

Closed string interpretation

Our first-order formulation is well-suited to give the direct closed
string channel description of the correlator:

F = 〈B;~0 |D|B; ~R 〉 =
1

4σ

∫ ∞

0
ds 〈B;~0 |e−2πs(L0+Lgh.

0 )|B; ~R 〉

I D is the closed string propagator
I The boundary states enforce on the closed string fields the b.c.’s

corresponding to the D-branes (the Polyakov loops)

∂τ X 0(σ, τ)
∣∣
τ=0 |B; ~R〉 = 0 ,

(
X i(σ, τ)− R i)∣∣

τ=0 |B; ~R〉 = 0

I The b.s. has a component in each closed string Hilbert space
sector corresponding to winding number m

The modular transformed form of the free energy in indeed exactly
retrieved
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Polyakov loop correlators

Recapitulating

The NG partition function describes the lattice data about
Polyakov loop correlators for various gauge theories and
dimensions:

I very well for rather large R, L
I with deviations stronger and stronger as R, L decrease

These deviations should be related to the breaking of conformal
invariance in d 6= 26
In our first-order approach, we derive this NG partition function
with standard bosonic string theory techniques: interaction
between two D0-branes á la Polchinski

I We neglect the effects of the Polyakov mode which arises for
d 6= 26

I The deviations at short distances could be attributed to this extra
mode (eventually to be taken into account)
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Interface partition function

Interfaces

Interface

Spin up region

Spin down region

b.c’s (via frustrated links)

L2

L1

anti-periodic b.c’s

Back

An interface separating regions with
different magnetization is observed in
simulations of spin models (Ising, etc.),
and its fluctuations are measured
A similar situation can be engineered and
studied in LGT, by considering the
so-called ’t Hooft loops

It is rather natural to try to describe the fluctuating interface by
means of some effective string theory

I Some string predictions (in particular, the universale effect of the
quantum fluctuations of the d − 2 transverse free fields) have
already been considered

e.g., De Forcrand, 2004
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Interface partition function

The Nambu Goto model for interfaces

In the “physical gauge” approach, we consider a string whose
world-sheet is identified with the minimal interface, which has the
topology of a torus T2, of sides L1 and L2, i.e., area A = L1L2 and
modulus u = L2/L1 Recall

We are thus dealing with the one-loop partition function Z of a
closed string.
The functional integral approach [Dietz-Filk, 1982]gives the result up to
two loops:

Z ∝ e−σA 1

[η(iu)]2d−4

{
1 +

(d − 2)2

2σA

[π2

36
u2E2

2 (iu)

− π

6
uE2(iu) + cd

]}
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Interface partition function

The NG partition function?

The partition function for the NG interface string in the operatorial
formulation is not avaliable (to our knowledge) in the literature
This would be the analogue of the partition function for the
Polyakov loop correlators based on Arvis’ spectrum Recall and
would resum the loop expansion.
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The NG partition function?

The partition function for the NG interface string in the operatorial
formulation is not avaliable (to our knowledge) in the literature
This would be the analogue of the partition function for the
Polyakov loop correlators based on Arvis’ spectrum Recall and
would resum the loop expansion.

I It is not too difficult to propose the analogue of Arvis formula for the
spectrum, based on canonical quantization [Drummond,Kuti,...]

E2
n,N+Ñ = σ2L2

1

{
1 +

4π

σL2
1

(
N + Ñ − d − 2

12

)
+

4π2

σ2L4
1

n2 + ~p2
T )

}
where N, Ñ = occupation #’s of left (right)-moving oscillators, n the
discretized momentum in the direction x1, ~pT the transverse
momentum
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Interface partition function

The NG partition function?

The partition function for the NG interface string in the operatorial
formulation is not avaliable (to our knowledge) in the literature
This would be the analogue of the partition function for the
Polyakov loop correlators based on Arvis’ spectrum Recall and
would resum the loop expansion.

I However, the “naive” form of a partition function based on
this spectrum: ∑

N,Ñ,n

δ(N − Ñ + n)cNcÑ e−L2EN+Ñ,n

(where cN , cÑ = multiplicities of left- and right-moving oscillator
states) does not reproduce the functional integral 2-loop result
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Interface partition function

The first order approach
We start from the Polyakov action in the conformal gauge, and do
not impose any physical gauge identifying world-sheet and target
space coordinates
We consider the closed string one loop partition function, and we
have thus a toroidal world-sheet
This world-sheet can be mapped in many topologically distinct
ways on the target space torus Td
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Interface partition function

String partition function

In the Polyakov formulation, the partition function includes an
integration over the modular parameter τ = τ1 + iτ2:

Z =

∫
d2τ

τ2
Z (d)(q, q̄) Z gh(q, q̄)

I Z (d)(q, q̄) CFT partition function of d compact bosons:

Z (d)(q, q̄) = Tr qL0− d
24 q̄L̃0− d

24

where q = exp 2πiτ , q̄ = exp−2πiτ̄ .
I The CFT partition function of the ghost system, Z gh(q, q̄) will cancel

the (non-zero modes of) two bosons
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Interface partition function

CFT partition function of a compact boson

Consider a compact boson field

X (σ0, σ1) ∼ X (σ0, σ1) + L

In the operatorial formulation, we find

Z (q, q̄) =
∑

n,w∈Z
q

1
8πσ ( 2πn

L +σwL)
2

q̄
1

8πσ ( 2πn
L −σwL)

2 1
η(q)

1
η(q̄)

I The Dedekind functions encode the non-zero mode contributions
I The 0-mode n denotes the discretized momentum p = 2πn/L
I The integer w is the winding around the compact target space::

X must be periodic in σ1, but we can have

X (σ0, σ1 + 2π) = X (σ0, σ1) + wL
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Interface partition function

CFT partition function of a compact boson

Consider a compact boson field

X (σ0, σ1) ∼ X (σ0, σ1) + L

Upon Poisson resummation over the momentum n,

Z (q, q̄) = σL
∑

m,w∈Z
e−

σ L2
2τ2

|m−τw |2 1
√

τ2η(q)η(q̄)

I This is natural expression from the path-integral formulation
I Sum over “world-sheet instantons”: classical solutions of the field X

with wrappings w (along σ1) and m (along σ0, loop geometry):

X (σ0, σ1 + 2π) = X (σ0, σ1) + wL

X (σ0 + 2πτ2, σ
1 + 2πτ1) = X (σ0, σ1) + mL .
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Interface partition function

The interface sector

The partition function includes Z (d)(q, q̄), the product of partition
functions for the d compact bosons X M → contains the sum over
windings wM and discrete momenta nM

We can select the topological sector
corresponding to an interface in the
x1, x2 plane

I considering a string winding once in the
x1 direction:

w1 = 1 , w2 = w3 = . . . = wd = 0

I Poisson resumming over n2, . . . , nd and
then choosing

m2 = 1 , m3 = m4 = . . . = md = 0

m2 = 1

w1 = 1
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Interface partition function

The interface partition function

The expression for the partition function of the interface in the
first-order, covariant, bosonic string theory, is thus

Z =
d∏

i=2

(σLi)
∞∑

N,Ñ=0

∑
n1∈Z

cNcÑ

∫ ∞

−∞
dτ1e2πi(N−Ñ+n1)

∫ ∞

0

dτ2

(τ2)
d+1

2

× exp

{
−τ2

[
σL2

1
2

+
2π2n2

1

σL2
1

+ 2π(k + k ′ − d − 2
12

)

]
− 1

τ2

[
σL2

2
2

]}
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Interface partition function

The result

The integration over the parameters τ1, τ2 of the world-sheet torus
can be performed.
The final result depends only on the geometry of the target space,
in particular on the area A = L1L2 and the modulus u = L2/L1 of
the interface plane: Back

Z = 2
d∏

i=2

(σLi)
∞∑

m=0

m∑
k=0

ckcm−k

(
X
u

) d−1
2

K d−1
2

(σAX )

with

X =

√
1 +

4πu
σA

(m − d − 2
12

) +
4πu2(2k −m)2

σ2A2

This is the expression that should resum the loop expansion of the
functional integral
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Interface partition function

Check of the result (and new findings)

Expanding in powers of 1/(σA) we get

Z ∝ e−σA

η2d−4(iu)
·

·
{

1 +
(d − 2)2

2σA

[
π2

36
u2E2

2 (iu)− π

6
uE2(iu) + cd

]
+ . . .

}

Not too difficult to go to higher loops. In particular, we have
worked out the 3-rd loop

I New numerical simulations [Hasembush et al., to appear] are precise enough to
be sensible to the 3-rd order corrections and seem to match our
prediction.

I If confirmed, this means that NG would still be a good model for the
sizes considered in such simulations

I We’re working on a check of the simulations with full NG prediction
Recall
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Interface partition function

Some remarks

Any “naive” treatment of bosonic string in d 6= 26 suffers from the
breaking of conformal invariance (heavily used to solve the model)
at the quantum level. This applies to the 1st order treatment we
used as well.

I This should manifest itself more and more as the area A decreases
I Our explicit expression of the NG partition function should allow to

study the amount and the onset of the discrepancy of the NG model
with the “real” (= simulated) interfaces

There has been some recent attempts in the literature [see Kuti, Lattice

2005] to the inferface partition function using the
Polchinski-Strominger string

I No problems with quantum conformal invariance
I But non-local terms in the action
I Apparently (computations are not so detailed) up to the 2nd loop it

should agree with NG. Discrepancies should inset from then on.
Further study of such model is required.
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Interface partition function

Conclusions and outlook

The covariant quantization in 1st order formalism of the NG action
is a convenient way to derive partition functions of the string with
different b.c.s, related to different LGT observables

I It reproduces the partition function based on Arvis spectrum for the
Polyakov loop correlator case ∼ D0-brane interaction with compact
time

I It yields the partition function for the interfaces ∼ appropriate sector
of one loop closed strings

Various developments are possible
I The most pressing task:

F Finish the paper about the interface spectrum!
I Work on the comparison with numerical simulations of interfaces,

try to connect to works on ’t Hooft loops
I Consider the Wilson loop geometry
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